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Abstract
Following the introduction of the notion of chromatic completion of a graph, this paper presents results for the
chromatic completion number for the corona operations, Pn ◦Pm and Pn ◦Cm, n≥ 1 and m≥ 1. From the aforesaid
a general result for the chromatic completion number of Pn ◦Km came to the fore. The paper serves as a basis for
further research with regards to the chromatic completion number of corona, join and other graph products.
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1. Introduction
For general notation and concepts in graphs see [1, 2, 5].

It is assumed that the reader is familiar with the concept of
graph coloring. Recall that in a proper coloring of G all edges
are good i.e. uv⇔ c(u) 6= c(v). For any proper coloring ϕ(G)
of a graph G the addition of all good edges, if any, is called the
chromatic completion of G in respect of ϕ(G). The additional
edges are called chromatic completion edges. The set of such
chromatic completion edges is denoted by, Eϕ(G). The resul-
tant graph Gϕ is called a chromatic completion graph of G.
See [3] for an introduction to chromatic completion of a graph.

The chromatic completion number of a graph G denoted
by, ζ (G) is the maximum number of good edges that can be
added to G over all chromatic colorings (χ-colorings). Hence,
ζ (G) = max{|Eχ(G)| : over all ϕχ(G)}.

A χ-coloring which yields ζ (G) is called a Lucky χ-
coloring or simply, a Lucky coloring and is denoted by, ϕL (G).
The resultant graph Gζ is called a minimal chromatic comple-
tion graph of G. It is trivially true that G⊆ Gζ . Furthermore,
the graph induced by the set of completion edges, 〈Eχ〉 is a
subgraph of the complement graph, G. See [4] for the notion
of stability in respect of chromatic completion.

Recall that perfect Lucky χ-coloring1 of a graph G is a

1Note that for many graphs a perfect Lucky coloring is equivalent to an
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graph for which the vertex V (G) can be partitioned in accor-
dance to Lucky’s theorem i.e. in the Lucky partition form,

{{b n
χ(G)c-element},{b n

χ(G)c-element}, . . . ,{b n
χ(G)c-element}︸ ︷︷ ︸

(χ(G)−r)−subsets

,

{d n
χ(G)e-element},{d n

χ(G)e-element}, . . . ,{d n
χ(G)e-element}︸ ︷︷ ︸

(r≥0)−subsets

}.

Else, any graph is always near Lucky χ-colorable (similar
to near equitable colorable). The vertex partition which ap-
proximates a Lucky partition closest is called an optimal near-
completion χ-partition. See [3, 4]. The number of times a
color ci is assigned in a graph coloring is denoted by, θG(ci).
If the graph context is clear we abbreviate as, θ(ci).

Various graph parameters have been studied in respect of
sensitivity (how critical) the parameters are in respect of edge
deletion, edge addition, vertex deletion or vertex insertion
and alike. Note that after chromatic completion of a graph G
which has been assigned a chromatic coloring (χ(G) colors),
the chromatic completion graph itself has chromatic number,
χ(G). However, the addition of one or more further edges
will result in an increase in chromatic number. If vertices
and edges in a graph G represent modules (or entities) and
initial linkages in machine learning or artificial intelligence
configurations, then:
(a) Different color classes could signal destructive linkages
which may not occur and,
(b) Maximum permissible linkages may be needed to enhance
machine learning or artificial intelligence interactive learning.
(c) In such application the chromatic completion number of G
signals the critical threshold.
Similar applications can be visioned. This justifies further
research into this parameter.

2. Chromatic Completion Number of
Pn ◦Pm

Recall that the corona between graph G or order n and
graph H of order m is obtained by taking n copies of H say, H1,
H2, H3,. . . , Hn and adding the edges, viui, j, i = 1,2,3, . . . ,n
and j = 1,2,3, . . . ,m. Put differently, ∀ vi construct vi +Hi to
G. We say, H has been corona’d with G.

A path graph (or simply, a path) of order n denoted by, Pn,
is a graph on n ≥ 1 vertices say, V (Pn) = {v1,v2,v3, . . . ,vn}
and n−1 edges namely, E(Pn) = {vivi+1 : i = 1,2,3, . . . ,n−
1}. In this section we denote, V (Pn) = {v1,v2,v3, . . . ,vn}
and V (Pm) = {ui,1,ui,2,ui,3, . . . ,ui,m}, i = 1,2,3, . . . ,n and the
edges accordingly. The corona operator (not necessarily com-
mutative) will be, Pn ◦Pm.

equitable χ-coloring. Since it is not generally the case the alias is meant
to associate the paper with Lucky’s Theorem and the notion of chromatic
completion in [3, 4].

For P1 ◦P1 it follows that ζ (P1 ◦P1) = 0 because, P1 ◦P1 ∼=
K2. Similarly, ζ (P1 ◦P2) = 0 because, P1 ◦P2 ∼= K3. Also,
ζ (P1 ◦P3) = 0 because, c(u1,1) = c(u1,3) in any perfect Lucky
χ-coloring. We recall two important results from [3].

Lemma 2.1. [3] For a chromatic coloring ϕ : V (G) 7→ C a
pseudo completion graph, H(ϕ) = Kn1,n2,n3,...,nχ

exists such
that,

ε(H(ϕ))−ε(G)=
χ−1

∑
i=1

θG(ci)θG(c j)( j=i+1,i+2,i+3,...,χ)−ε(G)

≤ ζ (G).

Corollary 2.1. [3] Let G be a graph. Then

ζ (G) = max{ε(H(ϕ))− ε(G) : over all ϕ : V (G) 7→ C }.

Corollary 2.2. (a) For P1 ◦Pm, m≥ 4 it follows that, ζ (P1 ◦
Pm) = dm

2 eb
m
2 c− (m−1).

(b) For Pn ◦P1, n≥ 2 it follows that, ζ (Pn ◦P1) = n2−n+1.

Proof. (a) Since χ(P1 ◦Pm) = 3 let c(v1) = c1. Clearly Pm
can be assigned a perfect Lucky 2-coloring with the set of
colors, {c2,c3}. Because P1 ◦Pm ∼= P1 +Pm, no chromatic
completion edges, v1u1,i, 1 ≤ i ≤ m can be added. Hence,
ζ (P1 ◦Pm) = ζ (Pm) = dm

2 eb
m
2 c− (m−1). See [3].

(b) Because Pn ◦P1 is a tree on 2n vertices the result is imme-
diate from Lemma 2.1 and Corollary 2.1.

Note the subtlety in the proof above i.e. P1 ◦Pm is not
perfect Lucky 3-colorable. However, the induced subgraph
Pm of P1 ◦Pm, is perfect 2-colorable. Such vertex partition is
called an optimal near-completion χ-partition.

Proposition 2.1. For P2 ◦Pm, m≥ 2 it follows that,

ζ (P2 ◦Pm) =


5m2

4 −m+2, if m is even,

5m2+2m+1
4 −m, if m is odd.

Proof. Part 1. Consider m is even. Without loss of generality,
let c(v1) = c1, c(v2) = c2. Also without loss of generality
let c(u1, j) = c2, j = 1,3,5, . . . ,(m−1) and c(u1, j) = c3, j =
2,4,6, . . . ,m. Also let, c(u2, j) = c1, j = 1,3,5, . . . ,(m− 1)
and c(u2, j) = c3, j = 2,4,6, . . . ,m. Therefore, θ(c1) =

m
2 +1,

θ(c2) =
m
2 +1 and θ(c3) = m. Clearly for m≥ 6, the vertex

partition is an optimal near-completion χ-partition.
From Lemma 2.1 and Corollary 2.1 it follow that,

ζ (P2 ◦Pm) = (m
2 +1)2+2m(m

2 +1)−(4m−1) = 5m2

4 −m+2.

Part 2. Consider m is odd. Without loss of generality, let
c(v1) = c1, c(v2) = c2. Also without loss of generality let
c(u1, j)= c2, j = 1,3,5, . . . ,m and c(u1, j)= c3, j = 2,4,6, . . . ,
(m−1). Also let, c(u2, j) = c1, j = 1,3,5, . . . ,m and c(u2, j) =
c3, j = 2,4,6, . . . ,(m−1). Therefore, θ(c1)=

m+1
2 +1, θ(c2)=

m+1
2 +1 and θ(c3) = m−1. Clearly for m≥ 7, the vertex par-

tition is an optimal near-completion χ-partition.
From Lemma 2.1 and Corollary 2.1 it follow that,

2
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ζ (P2 ◦Pm) = (m+1
2 +1)2 +2(m−1)(m+1

2 +1)− (4m−1) =
5m2+2m+1

4 −m.

2.1 Corona of paths, Pn ◦Pm, n = 3t, t = 1,2,3, . . . ,
and m is even

The families of paths considered first, i.e. n = 0(mod 3) is
meant to provide the foundation for n = 1(mod 3) or n =
2(mod 3) as well as for the corona, Pn ◦Cm, m is even.

Proposition 2.2. For Pn ◦Pm, n = 3t, t = 1,2,3, . . . , and m is
even it follows that, ζ (Pn ◦Pm) =

n2(m−1)2

3 −2nm+1.

Proof. Since χ(Pn◦Pm)= 3, color the vertices vi, i= 1,2,3, . . . ,
n as follows, c(vi+3 j) = ci, i = 1,2,3 and j = 0,1,2, . . . ,(t−
1). Furthermore, color the vertices of the n copies of Pm, as fol-
lows. For j = 0,1,2, . . . ,(t−1) and k1 = 1,3,5, . . . ,(m−1),
k2 = 2,4,6, . . . ,m, let:

c(u1+3 j,k1) = c2, c(u1+3 j,k2) = c3,
c(u2+3 j,k1) = c1, c(u2+3 j,k2) = c3,
c(u3+3 j,k1) = c1, c(u3+3 j,k2) = c2.

It follows easily that, θ(c1) = θ(c2) = θ(c3) which is a per-
fect Lucky 3-coloring of Pn ◦Pm.
Furthermore, θ(ci) = 2t m

2 + t = n(m−1)
3 , i = 1,2,3. Also,

ε(Pn ◦Pm) = (n−1)+nm+n(m−1) = 2nm−1. Therefore,
from Lemma 2.1 and Corollary 2.1 it follow that, ζ (Pn ◦Pm) =
n2(m−1)2

3 −2nm+1.

2.2 Corona of paths, Pn′ ◦Pm, n′ = 3t +1, t = 1,2,3, . . . ,
and m is even

Through immediate induction it follows we just need to ex-
tend path Pn in Proposition 2.2 to path, Pn+1 and derive the
result through similar reasoning. The result is presented as a
corollary of Proposition 2.2.

Corollary 2.3. For Pn′ ◦Pm, n′ = 3t+1, t = 1,2,3, . . . , and m
is even it follows that, ζ (Pn′ ◦Pm) = 2( n(m−1)

3 +1)( n(m−1)
3 +

m
2 )+( n(m−1)

3 + m
2 )

2−2m(n+1)+1.

Proof. Following the coloring protocol in Proposition 2.2
and without loss of generality let, c(vn+1) = c1. It implies
that, c(u(n+1),i) = c2, i = 1,3,5, . . . ,(m−1) and c(u(n+1),i) =

c3, i = 2,4,6, . . . ,m. Hence, θ(c1) =
n(m−1)

3 + 1, θ(c2) =
n(m−1)

3 + m
2 and θ(c3) =

n(m−1)
3 + m

2 . Clearly, for sufficiently
large m the coloring is not a perfect Lucky 3-coloring. How-
ever, the vertex partition is an optimal near-completion χ-
partition. Therefore, the chromatic completion will yield the
chromatic completion number.
Also, ε(Pn+1 ◦Pm) = 2nm−1+(1+m+(m−1)) = 2m(n+
1)−1. Finally,

ζ (Pn′ ◦Pm) = ζ (Pn+1 ◦Pm) =

2( n(m−1)
3 +1)( n(m−1)

3 + m
2 )+( n(m−1)

3 + m
2 )

2−2m(n+1)+1.

2.3 Corona of paths, Pn′ ◦Pm, n′ = 3t + 2, t = 1,2,3, . . .
and m is even

Through immediate induction it follows we just need to ex-
tend path Pn+1 in Corollary 2.3 to path, Pn+2 and derive the
result through similar reasoning. The result is presented as a
corollary of Proposition 2.2.

Corollary 2.4. For Pn′ ◦Pm, n′ = 3t+2, t = 1,2,3, . . . , and m
is even it follows that, ζ (Pn′ ◦Pm)= ( n(m−1)

3 + m
2 +1)( n(m−1)

3 +
m
2 + m

2 )+( n(m−1)
3 + m

2 +1)( n(m−1)
3 + m

2 +m)+( n(m−1)
3 + m

2 +
m
2 )(

n(m−1)
3 + m

2 +m)
−2nm−4m+1.

Proof. Following the coloring protocol in Corollary 2.3 (ex-
tended from Proposition 2.2) and without loss of general-
ity let, c(vn+2) = c2. It implies that, c(u(n+2),i) = c1, i =
1,3,5, . . . ,(m−1) and c(u(n+2),i)= c3, i= 2,4,6, . . . ,m. Hence,

θ(c1)=
n(m−1)

3 + m
2 +1, θ(c2)=

n(m−1)
3 + m

2 +
m
2 and θ(c3)=

n(m−1)
3 + m

2 +m. Clearly, for sufficiently large m the coloring
is not a perfect Lucky 3-coloring. However, the vertex par-
tition is an optimal near-completion χ-partition. Therefore,
the chromatic completion will yield the chromatic completion
number.
Also, ε(Pn+2 ◦Pm) = 2nm−1+2(1+m+(m−1)) = 2nm+
4m−1. Finally,

ζ (Pn′ ◦Pm) = ζ (Pn+2 ◦Pm) =

( n(m−1)
3 + m

2 +1)( n(m−1)
3 + m

2 + m
2 )+( n(m−1)

3 + m
2 +

1)( n(m−1)
3 + m

2 +m)+

( n(m−1)
3 + m

2 + m
2 )(

n(m−1)
3 + m

2 +m)− ε(Pn+2 ◦Pm) =

( n(m−1)
3 + m

2 +1)( n(m−1)
3 + m

2 + m
2 )+( n(m−1)

3 + m
2 +

1)( n(m−1)
3 + m

2 +m)+

( n(m−1)
3 + m

2 + m
2 )(

n(m−1)
3 + m

2 +m)−2nm−4m+1.

The results can be summarized as a main result for n =
i(mod 3).

Theorem 2.1. For Pn ◦Pm, n≥ 3 and m is even it follows that,
(a) If m = 0(mod 3) then, ζ (Pn ◦Pm) =

n2(m−1)2

3 −2nm+1.
(b) If m = 1(mod 3) then,

ζ (Pn ◦Pm) = 2( (n−1)(m−1)
3 +1)( 9n−1)(m−1)

3 + m
2 )+

( (n−1)(m−1)
3 + m

2 )
2−2mn+1.

(c) If m = 2(mod 3) then,

ζ (Pn ◦Pm) = ( (n−2)(m−1)
3 + m

2 +1)( (n−2)(m−1)
3 + m

2 + m
2 )+

( (n−2)(m−1)
3 + m

2 +1)( (n−2)(m−1)
3 + m

2 +m)+

( (n−2)(m−1)
3 + m

2 + m
2 )(

(n−2)(m−1)
3 + m

2 +m)−
2m(n−2)−4m+1.

3
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2.4 Corona of paths, Pn ◦Pm, n = 3t, t = 1,2,3, . . . ,
and m is odd

The families of paths considered first, i.e. n = 0(mod 3) is
meant to provide the foundation for n = 1(mod 3) or n =
2(mod 3).

Proposition 2.3. For Pn ◦Pm, n = 3t, t = 1,2,3, . . . , and m≥
3, m is odd it follows that, ζ (Pn ◦Pm) = n2(m+1)2−2nm+1.

Proof. Since χ(Pn◦Pm)= 3, color the vertices vi, i= 1,2,3, . . . ,
n as follows, c(vi+3 j) = ci, i = 1,2,3 and j = 0,1,2, . . . ,(t−
1). Furthermore, color the vertices of the n copies of Pm,
as follows. For j = 0,1,2, . . . ,(t−1) and k1 = 1,3,5, . . . ,m,
k2 = 2,4,6, . . . ,(m−1), let:

c(u1+3 j,k1) = c2, c(u1+3 j,k2) = c3,
c(u2+3 j,k1) = c3, c(u2+3 j,k2) = c1,
c(u3+3 j,k1) = c1, c(u3+3 j,k2) = c2.

It follows easily that, θ(c1) = θ(c2) = θ(c3) which is a per-
fect Lucky 3-coloring of Pn ◦Pm.
Furthermore, θ(ci) = t(dm

2 e+ b
m
2 c)+ t = n(m+1)

3 , i = 1,2,3.
Also, ε(Pn ◦Pm) = (n−1)+nm+n(m−1) = 2nm−1. There-
fore, from Lemma 2.1 and Corollary 2.1 it follow that, ζ (Pn ◦
Pm) = n2(m+1)2−2nm+1.

For Pn′ ◦Pm, n′ = 3t +1 or n′ = 3t +2, t = 1,2,3, . . . , and
m ≥ 3, m is odd, a corollary follows since the methodology
of proof is similar to that in Subsections 2.2 and 2.3.

Corollary 2.5. For Pn′ ◦Pm, t = 1,2,3, . . . , and m ≥ 3, m is
odd we have that:
(a) If n′ = 3t +1 then,

ζ (Pn′ ◦Pm) = 2( n(m+1)
3 +1)( n(m+1)

3 + m−1
2 )+

( n(m+1)
3 + m+1

2 )( n(m+1)
3 + m−1

2 )−2m(n+1)+1.

(b) If n′ = 3t +2 then,

ζ (Pn′ ◦Pm) = ( n(m+1)
3 + m−1

2 +1)( n(m+1)
3 + m+1

2 +1)+

( n(m+1)
3 + m−1

2 +1)( n(m+1)
3 +m)+( n(m+1)

3 + m+1
2 +

1)( n(m+1)
3 +m)−

2m(n+2)+1.

3. Chromatic Completion Number of
Pn ◦Cm

A cycle graph (or simply, a cycle) of order n denoted by,
Cn, is a graph on n≥ 1 vertices say, V (Cn)= {v1,v2,v3, . . . ,vn}
and n edges namely, E(Cn) = {vivi+1 : i = 1,2,3, . . . ,n−1}∪
{vnv1}.
In this section we denote, V (Cm) = {ui,1,ui,2,ui,3, . . . ,ui,m},
i = 1,2,3, . . . ,n and the edges accordingly.

Theorem 3.1. For Pn ◦Cm, n≥ 3 and m≥ 4 is even it follows
that, ζ (Pn ◦Cm) = ζ (Pn ◦Pm)−n.

Proof. Since m is even, c(ui,1) 6= c(ui,m), ∀ i in any proper
coloring. Since edge ui,1ui,m ∈ E(Cm) it cannot be a chromatic
completion edge as yielded in the chromatic completion of
Pn ◦Pm. Therefore, the result is immediate.

The next general result provides for the result, ζ (Pn ◦
C3) = (n−1)(6n−1).

Theorem 3.2. For Pn ◦Km, n ≥ 1, m ≥ 1, it follows that,
ζ (Pn ◦Km) = (n−1)( nm(m+1)

2 −1).

Proof. Consider Pn ◦Km, n ≥ 1, m ≥ 1. Since, Pn ◦Km ∼= H
where H is the graph obtained from n copies of 〈{vi} ∪
{ui, j}∈V (Km,i)〉 ∼= K(m+1),i, i = 1,2,3, . . . ,n, j = 1,2,3, . . . ,m
linked as a string by the edges vivi+1, i = 1,2,3, . . . ,(n−
1), it follows that χ(Pn ◦Km) = m+ 1. Hence, θ(ci) = n,
1 ≤ i ≤ (m+ 1) which is a perfect Lucky (m+ 1)-coloring.
Also, ε(Pn ◦Km) =

nm(m+1)
2 +(n−1). Thus, from Lemma 2.1

and Corollary 2.1 it follow that, ζ (Pn ◦Km) = ( n2m(m+1)
2 )−

( nm(m+1)
2 +(n− 1)) = (n− 1)( nm(m+1)

2 − 1). Immediate in-
duction ensures that the result holds for, n,m ∈ N.

It follows easily that for, P1 ◦G, G any graph, ζ (P1 ◦G) =
ζ (G). The set of odd integers, {m ∈ N : m ≥ 3 and m is
odd} will be partitioned into three sets. The sets are, O1 =
{3+6t : t = 0,1,2,3, . . .}, O2 = {5+6t : t = 0,1,2, . . .} and
O3 = {7+6t : t = 0,1,2, . . .}.

3.1 Corona Pn ◦Cm, m ∈ O1 and n = 4k, k = 1,2,3, . . .
First the cases n = 2,3 will be presented.

Proposition 3.1. For P2 ◦Cm, m ∈ O1 and m ≥ 9 it follows
that, ζ (P2 ◦Cm) =

m(13m−6)
9 .

Proof. Without loss of generality let c(v1) = c1, c(v2) = c2.
Because m ∈ O1 we have, θ(c1) =

m
3 + 1, θ(c1) =

m
3 + 1,

θ(c3) =
2m
3 and θ(c4) =

2m
3 which is not a perfect Lucky 3-

coloring. However, the vertex partition is an optimal near-
completion χ-partition. Therefore, the chromatic completion
will yield the chromatic completion number.
Also, ε(P2 ◦Cm) = 4m+1. From Lemma 2.1 and Corollary
2.1 it follow that, ζ (P2 ◦Cm) =

13m2

9 + 10m
3 +1− (4m+1) =

m(13m−6)
9 .

Proposition 3.2. For P3 ◦Cm, m ∈ O1 and m ≥ 9 it follows
that, ζ (P3 ◦Cm) = 3(( 2m

3 +1)2 +m( 2m
3 +1))−2(3m+1).

Proof. Without loss of generality let c(v1) = c1, c(v2) =
c2, c(v3) = c3. Because m ∈ O1 we have, θ(c1) =

2m
3 + 1,

θ(c2) =
2m
3 +1, θ(c3) =

2m
3 +1 and θ(c4) =

3m
3 = m which

is not a perfect Lucky 3-coloring. However, the vertex par-
tition is an optimal near-completion χ-partition. Therefore,
the chromatic completion will yield the chromatic completion
number.
Also, ε(P3 ◦Cm) = 2(3m+1). From Lemma 2.1 and Corol-
lary 2.1 it follow that, ζ (P3 ◦Cm) = 3(( 2m

3 + 1)2 +m( 2m
3 +

1))−2(3m+1).
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Proposition 3.3. For Pn◦Cm, m∈O1 and n= 4k, k= 1,2,3, . . .
it follows that,
ζ (Pn ◦Cm) =

3n2

8 (m+1)2−n(m+1)− (m−1).

Proof. Since χ(Pn ◦Cm) = 4, color the vertices vi as follows,
c(vi+4 j) = ci, i = 1,2,3,4 and j = 0,1,2, . . . ,(k− 1). Fur-
thermore, color the vertices of the n copies of Cm, as fol-
lows. For j = 0,1,2, . . . ,(k−1) and s1 = 1,4,7, . . . ,(m−2),
s2 = 2,5,8, . . . ,(m−1), s3 = 3,6,9, . . . ,m let:

c(u1+4 j,s1) = c2, c(u1+4 j,s2) = c3, c(u1+4 j,s3) = c4,
c(u2+4 j,s1) = c1, c(u2+4 j,s2) = c3, c(u2+4 j,s3) = c4,
c(u3+4 j,s1) = c1, c(u3+4 j,s2) = c2, c(u3+4 j,s3) = c4,
c(u4+4 j,s1) = c1, c(u4+4 j,s2) = c2, c(u4+4 j,s3) = c3.

Thus, the vertex partition is a perfect Lucky 4-partition yield-
ing a perfect Lucky 4-coloring. Also, θ(ci) = k(m+1), 1≤
i≤ 4 and ε(Pn ◦Cm) = n(m+1)+(m−1). From Lemma 2.1
and Corollary 2.1 it follow that, ζ (Pn ◦Cm) = 6k2(m+1)2−
n(m+1)− (m−1) = 3n2

8 (m+1)2−n(m+1)− (m−1).

3.2 Corona Pn′ ◦Cm, m ∈ O1 and n′ = 4k+1,
k = 1,2,3, . . .

Through immediate induction it follows that we just need to
extend path Pn in Proposition 3.3 to path Pn+1 and derive the
result through similar reasoning.

Corollary 3.1. For Pn′ ◦Cm, m ∈ O1 and n′ = 4k + 1, k =
1,2,3, . . . it follows that,
ζ (Pn′ ◦Cm) = 3[( n

4 (m+1)+1)( n
4 (m+1)+ m

3 )+( n
4 (m+1)+

m
3 )

2]−n(m+1)−3m.

Proof. Following the coloring protocol in Proposition 3.3
and without loss of generality let, c(vn+1) = c1. It implies
that c(un+1,i) = c2, i = 1,4,7, . . . ,(m−2), c(un+1,i) = c3, i =
2,5,8, . . . ,(m− 1), c(un+1,i) = c4, i = 3,6,8, . . . ,m. Hence,
θ(c1) = k(m+1)+1, θ(c2) = θ(c3) = θ(c4) = k(m+1)+ m

3
which is not a perfect Lucky 4-coloring. However, the vertex
partition is an optimal near-completion χ-partition. Therefore,
the chromatic completion will yield the chromatic completion
number.
Also, ε(Pn′ ◦Pm) = n(m+1)+(m−1)+(m+1)+m = n(m+
1)+ 3m. From Lemma 2.1 and Corollary 2.1 it follow that,
ζ (Pn′ ◦Cm) = 3[( n

4 (m+1)+1)( n
4 (m+1)+ m

3 )+( n
4 (m+1)+

m
3 )

2]−n(m+1)−3m.

3.3 Corona Pn′ ◦Cm, m ∈ O1 and n′ = 4k+2,
k = 1,2,3, . . .

Through immediate induction it follows that we just need to
extend path Pn in Proposition 3.3 to path Pn+2 and derive the
result through similar reasoning.

Corollary 3.2. For Pn′ ◦Cm, m ∈ O1 and n′ = 4k + 2, k =
1,2,3, . . . it follows that,
ζ (Pn′ ◦Cm) = (( n

4 (m + 1) + m
3 + 1)( 5n

4 (m + 1) + 3m + 1) +
( n

4 (m+1)+ 2m
3 )2−n(m+1)−5m−1.

Proof. Consider the coloring of Pn+1 in Corollary 3.2. Follow
the coloring protocol in Proposition 3.3 and without loss of
generality let, c(vn+2) = c2. It implies that c(un+2,i) = c1,
i = 1,4,7, . . . ,(m−2), c(un+1,i) = c3, i = 2,5,8, . . . ,(m−1),
c(un+1,i) = c4, i = 3,6,8, . . . ,m. Hence, θ(c1) = k(m+1)+
m
3 + 1, θ(c2) = k(m + 1) + m

3 + 1, θ(c3) = θ(c4) = k(m +

1)+ 2m
3 which is not a perfect Lucky 4-coloring. However,

the vertex partition is an optimal near-completion χ-partition.
Therefore, the chromatic completion will yield the chromatic
completion number.
Also, ε(Pn′ ◦ Pm) = n(m + 1) + 5m + 1. From Lemma 2.1
and Corollary 2.1 it follow that, ζ (Pn′ ◦Cm) = (( n

4 (m+1)+
m
3 +1)( 5n

4 (m+1)+3m+1)+( n
4 (m+1)+ 2m

3 )2−n(m+1)−
5m−1.

3.4 Corona Pn′ ◦Cm, m ∈ O1 and n′ = 4k+3,
k = 1,2,3, . . .

Through immediate induction it follows that we just need to
extend path Pn in Proposition 3.3 to path Pn+3 and derive the
result through similar reasoning.

Corollary 3.3. For Pn′ ◦Cm, m ∈ O1 and n′ = 4k + 3, k =
1,2,3, . . . it follows that,
ζ (Pn′ ◦Cm)= 3[(k(m+1)+ 2m

3 +1)2+(k(m+1)+ 2m
3 +1)(k(m+

1)+m)]−n(m+1)−7m−2.

Proof. Consider the coloring of Pn+2 in Corollary 3.2. Follow
the coloring protocol in Proposition 3.3 and without loss of
generality let, c(vn+3) = c3. It implies that c(un+3,i) = c1,
i = 1,4,7, . . . ,(m−2), c(un+1,i) = c2, i = 2,5,8, . . . ,(m−1),
c(un+1,i) = c4, i = 3,6,8, . . . ,m. Hence, θ(c1) = θ(c2) =
θ(c3) = k(m+1) 2m

3 +1, θ(c4) = k(m+1)+m which is not
a perfect Lucky 4-coloring. However, the vertex partition
is an optimal near-completion χ-partition. Therefore, the
chromatic completion will yield the chromatic completion
number.
Also, ε(Pn′ ◦Pm) = n(m+1)+7m+2. From Lemma 2.1 and
Corollary 2.1 it follow that, ζ (Pn′ ◦Cm) = 3[(k(m+1)+ 2m

3 +

1)2 +(k(m+1)+ 2m
3 +1)(k(m+1)+m)]−n(m+1)−7m−

2.

4. Conclusion
In Section 3 the family of paths were considered by a

partition of order i.e. n = 1,2,3 and n = 4k,(4k+ 1),(4k+
2),(4k+ 3), k = 1,2,3, . . . Corona’d to these paths Pn, only
the cycles Cm of order m ∈ O1 were considered. It is the au-
thor’s considered view that the methodology has been well
established in this paper. Therefore, deriving the results for
the cycles of order m∈O2 and m∈O3 Corona’d with the path
partitions respectively, remain an exercise for the reader.

Conjecture: ζ (Cn◦Pm)= ζ (Pn◦Pm)−1 and ζ (Cn◦Cm)=
ζ (Pn ◦Cm)−1. Prove or disprove the conjecture.

It is deemed worthy research to find results for other
known graph operations.
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