

https://doi.org/10.26637/MJM0801/0004

On various quasi ideals in *b*-semirings

G. Mohanraj^{1*} and M. Palanikumar²

Abstract

We introduce six types of quasi ideals in *b*-semirings. Each quasi ideals generated by single element(set) is established. We characterize various 1-regular(2-regular, regular) by using generalized 1-quasi (generalized 2-quasi, generalized quasi) ideal, 1-quasi (2-quasi, quasi) ideal, weak1(2)-right(left) ideal and weak1(2)-ideal. Examples are provided to strengthen our results.

Keywords

1-quasi ideal, 2-quasi ideal, generalized 1-quasi ideal, generalized 2-quasi ideal.

AMS Subject Classification 16Y60

^{1,2} Department of Mathematics, Annamalai University, Annamalai Nagar-608002, Tamil Nadu, India.
*Corresponding author: ¹ gmohanraaj@gmail.com; ² palanimaths86@gmail.com
Article History: Received 14 October 2019; Accepted 26 December 2019

©2020 MJM

Contents

1	Introduction	20
2	Preliminaries	20
3	1-quasi ideals in b-semirings	20
4	2-quasi ideals in b-semirings	23
	References	26

1. Introduction

The concept of *b*-semirings [4] was introduced by Ronnason in 2009. The concept of weak 1(2)-right ideal, weak 1(2)- left ideal, weak 1(2)-ideal in *b*-semirings are introduced by Mohanraj et al [3]. By introducing the 1-regular(2-regular, regular) *b*-semirings. The 1-regular(2-regular, regular) *b*semirings are characterized by using various weak-ideals by Mohanraj et al [1].We initiated the notions of *k*-regular *b*semirings using they are various weak *k*-ideals [2].

2. Preliminaries

The algebraic structure $(S, +, \cdot)$ is called a *b*-semiring if (S, +) and (S, \cdot) are semigroups, connected by four distributive laws that " \cdot " distributes over "+" from left and right and "+" distributes over " \cdot " from left and right[4]. The subset *A* of *S* is called a sub *b*-semiring in *S* if *A* is itself a *b*-semiring. The subset *A* of *S* is called a weak-1 right ideal (weak-1 left ideal) in *S* if $a_1 + a_2 \in A$ and $a_1 \cdot s \in A$ ($s \cdot a_1 \in A$) for all $a_1, a_2 \in A$ and $s \in S$ [1]. The subset *A* of *S* is called a weak-2 right ideal (weak-2 left ideal) in *S* if $a_1 \cdot a_2 \in A$ and $a_1 + s \in A$ ($s + a_1 \in A$) for all $a_1, a_2 \in A$ and $s \in S$ [1]. The

subset *A* of *S* is called a weak-1 ideal (weak-2 ideal) in *S* if it is both weak-1 right ideal (weak-2 right ideal) and weak-1 left ideal(weak-2 left ideal) in *S* [1]. The subset *A* of *S* is called a right ideal (left ideal) in *S* if it is both weak-1 right ideal (weak-1 left ideal) and weak-2 right ideal(weak-2 left ideal) in *S* [1]. The *b*-semiring *S* [1] is called 1-regular [2-regular] if for each $a \in S$ there exists $x \in S$ such that $a \cdot (x \cdot a) = a$ [a + (x + a) = a]. The *b*-semiring *S* [1] is called regular if it is both 1-regular and 2-regular in *S*.

3. 1-quasi ideals in b-semirings

Throughout this paper, *S* denotes *b*-semirings unless otherwise noted. The intersection of a weak-1 right ideal and weak-1 left ideal in *S* is neither weak-1 right ideal nor weak-1 left ideal in *S* by the following Example 3.1. Naturally one question arises;

What is the intersection of weak 1(2)-right ideal with weak 1(2)-left ideal? We answer the questions by introducing 1-quasi(2-quasi)ideal.

Example 3.1. Consider the b-semiring $S = \{g_1, g_2, g_3, g_4, g_5, g_6\}$ by the following table.

+	<i>g</i> ₁	g 2	<i>8</i> 3	<i>8</i> 4	85	<i>8</i> 6
g_1	g_1	g_2	<i>g</i> ₃	g_4	<i>8</i> 5	<i>8</i> 6
<i>g</i> ₂	g_1	g_2	<i>8</i> 3	<i>8</i> 4	85	g 6
<i>8</i> 3	g_1	g_2	<i>8</i> 3	<i>8</i> 4	<i>8</i> 5	g 6
g_4	g_1	g_2	<i>8</i> 3	<i>8</i> 4	85	<i>8</i> 6
85	<i>g</i> ₁	<i>8</i> 2	<i>8</i> 3	<i>8</i> 4	85	<i>8</i> 6
g 6	<i>g</i> ₁	<i>g</i> ₂	<i>8</i> 3	<i>8</i> 4	85	<i>8</i> 6

On various quasi ideals in <i>b</i> -semirings — 21	1/2	2	
---	-----	---	--

•	g_1	<i>g</i> ₂	<i>g</i> 3	g_4	<i>8</i> 5	<i>8</i> 6
<i>g</i> ₁	g_1	<i>g</i> ₁	g_1	g_1	85	85
<i>g</i> ₂	<i>g</i> ₁	<i>g</i> ₂	g_1	<i>8</i> 4	85	<i>8</i> 6
<i>g</i> ₃	<i>g</i> ₁	<i>g</i> ₁	<i>g</i> ₃	<i>g</i> ₁	85	85
<i>8</i> 4	g 6	<i>8</i> 6				
85	<i>g</i> ₁	<i>g</i> ₁	85	<i>g</i> ₁	85	85
<i>g</i> ₆	<i>g</i> ₄	<i>g</i> ₄	<i>g</i> 6	<i>g</i> ₄	<i>8</i> 6	<i>8</i> 6

Now, $A = \{g_1, g_5\}$ and $B = \{g_5, g_6\}$ are weak-1 right ideal and weak-1 left ideal respectively, but $A \cap B$ is neither weak-1 right ideal nor weak-1 left ideal in S.

Definition 3.2. (i) The subset Q of S is called a generalized 1-quasi ideal in S if $(Q \cdot S) \cap (S \cdot Q) \subseteq Q$. (ii) The generalized 1-quasi ideal Q is called a 1-quasi ideal in S if Q is a sub b-semiring.

Lemma 3.3. The generalized 1-quasi ideal Q is a 1-quasi ideal in S if Q is closed under "+".

Proof. Suppose that Q is a generalized 1-quasi ideal which is closed under "+". Now, $Q \cdot Q \subseteq Q \cdot S$ and $Q \cdot Q \subseteq S \cdot Q$ imply $Q \cdot Q \subseteq (Q \cdot S) \cap (S \cdot Q) \subseteq Q$. Thus, Q is a 1-quasi ideal in S.

Remark 3.4. The generalized 1-quasi ideal fails to be a 1quasi ideal in S by the Example 3.5.

Example 3.5. Consider the b-semiring $S = \{a_1, a_2, a_3, a_4, a_5, a_6\}$ by the following table.

+	a_1	a_2	<i>a</i> ₃	a_4	a_5	<i>a</i> ₆
a_1	a_1	a_1	a_1	a_1	a_5	a_5
a_2	a_1	a_2	a_1	a_4	a_5	<i>a</i> ₆
<i>a</i> ₃	a_1	a_1	<i>a</i> ₃	a_1	a_5	a_5
a_4	a_4	a_4	a_4	a_4	a_6	a_6
a_5	a_1	a_1	a_5	a_1	a_5	a_5
a_6	a_4	a_4	a_6	a_4	a_6	a_6
·	a_1	a_2	<i>a</i> ₃	a_4	a_5	<i>a</i> ₆
a_1						
a_2						
a_3	<i>a</i> ₃					
a_4						
a_5	a_5	a_5	a_5	a_5	a_5	<i>a</i> 5
a_6						

Clearly, $\{a_2, a_5\}$ is a generalized 1-quasi ideal, but $a_5 + a_2 \notin \{a_2, a_5\}$ implies $\{a_2, a_5\}$ is not 1-quasi ideal in S.

Lemma 3.6. Every weak-1 right (left) ideal is a 1-quasi ideal in S.

Remark 3.7. Converse of the Lemma 3.6 fails by the Example 3.8.

Example 3.8. Consider the b-semiring $(S, +, \cdot)$ by the following table.

+	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
x_1	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆
<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆
<i>x</i> ₃	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
<i>x</i> ₄	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆
<i>x</i> ₅	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆
<i>x</i> ₆	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
•	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
<i>x</i> ₁						
<i>x</i> ₂	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₂	<i>x</i> ₄	<i>x</i> ₄	<i>x</i> ₄
<i>x</i> ₃	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆
x_4	x_1	<i>x</i> ₂	<i>x</i> ₂	<i>x</i> ₄	<i>x</i> ₄	<i>x</i> ₄
<i>x</i> ₅	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
x_6	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> 5	<i>x</i> ₆

Clearly, $\{x_1, x_2\}$ is a 1-quasi ideal, but not weak-1 right ideal in S.

Theorem 3.9. The intersection of weak-1 right ideal with weak-1 left ideal in S is a 1-quasi ideal.

Proof. For the weak-1 right ideal *A* and weak-1 left ideal *B* in $S,A \cap B$ is a sub b-semiring. Now, $[(A \cap B) \cdot S] \cap [S \cdot (A \cap B)] \subseteq (A \cdot S) \cap (S \cdot B) \subseteq A \cap B$ implies $A \cap B$ is a 1- quasi ideal in *S*.

Theorem 3.10. For any $a \in S$, the generalized 1-quasi ideal generated by "a", denoted by $\langle a \rangle_{g1q}$ is given by $\{a\} \cup [(a \cdot S) \cap (S \cdot a)]$.

Proof. Now, $x \in (a \cdot S) \cap (S \cdot a)$, then $(x \cdot S) \cap (S \cdot x) \subseteq (a \cdot S) \cap (S \cdot a)$. Thus, $\{a\} \cup [(a \cdot S) \cap (S \cdot a)]$ is a generalized 1-quasi ideal in *S*. If *A* is a generalized 1-quasi ideal in *S* such that $a \in A$, then $\{a\} \cup [(a \cdot S) \cap (S \cdot a)] \subseteq A$. Thus $\langle a \rangle_{g1q}$ is the generalized 1-quasi ideal generated by "*a*". \Box

Corollary 3.11. For a subset A of S, $A \cup [(A \cdot S) \cap (S \cdot A)]$ is the generalized 1-quasi ideal generated by a set A in S.

Lemma 3.12. [1] For $n \in \mathbb{Z}^+$ and $a \in S$, (i) $(na \cdot s) = n(a \cdot s) = (a \cdot ns)$. (ii) $(s \cdot na) = n(s \cdot a) = (ns \cdot a)$, where na = a + a + ...n times. (iii) $(a^n + s) = (a + s)^n = (a + s^n)$. (iv) $(s + a^n) = (s + a)^n = (s^n + a)$, where $a^n = a \cdot a \cdot ...n$ times.

Theorem 3.13. For any $a \in S$, the 1-quasi ideal generated by "a", denoted by $\langle a \rangle_{1q}$ is given by $\{na|n \in \mathbb{Z}^+\} \cup [(a \cdot S) \cap (S \cdot a)].$

Proof. Clearly, $\{na|n \in \mathbb{Z}^+\} \cup [(a \cdot S) \cap (S \cdot a)]$ is generalized 1-quasi ideal. For $x, y \in [(a \cdot S) \cap (S \cdot a)], x+y = a \cdot (s_1+s_3) \in a \cdot S$. Similarly, $x+y = (s_2+s_4) \cdot a \in S \cdot a$ imply $x+y \in (a \cdot S) \cap (S \cdot a)$. For $x \in \{na|n \in \mathbb{Z}^+\}$ and $y \in [(a \cdot S) \cap (S \cdot a)]$ and by Lemma 3.12, $x+y = na+(a \cdot s_3) = a \cdot [(n+1)(na+s_3)] \in a \cdot S$ and $x+y = na+(s_4 \cdot a) = [(n+1)(na+s_4)] \cdot a \in S \cdot a$. Thus $x+y \in [(a \cdot S) \cap (S \cdot a)]$. Similarly $y+x \in [(a \cdot S) \cap (S \cdot a)]$. By Lemma 3.3, $\{na|n \in \mathbb{Z}^+\} \cup [(a \cdot S) \cap (S \cdot a)]$ is a 1-quasi ideal in *S*. If *A* is a 1-quasi ideal in *S* such that $a \in A$, then $\{na|n \in \mathbb{Z}^+\} \cup [(a \cdot S) \cap (S \cdot a)] \subseteq A$. Hence $< a >_{1q}$ is the 1-quasi ideal generated by "a". □

Notation 3.14. For a subset A of S and i = 1, 2, 3, ..., n(i) $\sum A = \{(a_1 + a_2 + ... + a_n) | a_i \in A\}.$ (ii) $\prod A = \{(a_1 \cdot a_2 \cdot ... \cdot a_n) | a_i \in A\}.$ (iii) $\sum (A \cdot S) = \{(a_1 \cdot s_1) + (a_2 \cdot s_2) + ... + (a_n \cdot s_n) | a_i \in A, s_i \in S\}.$ (iv) $\prod (A + S) = \{(a_1 + s_1) \cdot (a_2 + s_2) \cdot ... \cdot (a_n + s_n) | a_i \in A, s_i \in S\}.$

Corollary 3.15. For the subset A of S, $\sum A \cup [\sum (A \cdot S) \cap \sum (S \cdot A)]$ is the 1-quasi ideal generated by a set A in S.

Theorem 3.16. [1] (i) The b-semiring S is 1-regular if and only if

 $R \cap L = R \cdot L$, for every weak-1 right ideals R and every weak-1 left ideals L in S.

(ii) The b-semiring S is 2-regular if and only if $R \cap L = R + L$, for every weak-2 right ideals R and every weak-2 left ideals L in S.

Theorem 3.17. For a b-semiring S, the following conditions are equivalent.

(1) S is 1-regular.

(2) $R \cap Q_1 \subseteq R \cdot Q_1$, for the weak-1 right ideals R and generalized 1-quasi ideals Q_1 .

(3) $R \cap Q \subseteq R \cdot Q$, for the weak-1 right ideals R and 1-quasi ideals Q.

(4) $Q_1 \cap L \subseteq Q_1 \cdot L$, the for generalized 1-quasi ideals Q_1 and weak-1 left ideals L.

(5) $Q \cap L \subseteq Q \cdot L$, for the 1-quasi ideals Q and weak-1 left ideals L.

(6) $R \cap L = R \cdot L$, for the weak-1 right ideals R and weak-1 left ideals L.

Proof. First, we prove that $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (6) \Rightarrow (1)$ and $(1) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$.

(1) \Rightarrow (2) For $a \in R \cap Q_1$, then there example ist $s \in S$ such that $a = (a \cdot s) \cdot a$. Thus, $R \cap Q_1 \subseteq R \cdot Q_1$.

 $(2) \Rightarrow (3)$ Straightforward.

(3) \Rightarrow (6) By Lemma 3.6, $R \cap L \subseteq R \cdot L$. Now, $R \cdot L \subseteq R \cdot S \subseteq R$ and $R \cdot L \subseteq S \cdot L \subseteq L$. Then (6) follows.

 $(6) \Rightarrow (1)$ The proof follows from Theorem 3.16.

(1) \Rightarrow (4) For $a \in Q_1 \cap L$, then there example ist $s \in S$ such that $a = a \cdot (s \cdot a)$. Thus, $Q_1 \cap L \subseteq Q_1 \cdot L$.

 $(4) \Rightarrow (5)$ Straightforward.

 $(5) \Rightarrow (6)$ The proof follows from Lemma 3.6.

Theorem 3.18. For a b-semiring S, the following conditions are equivalent.

(1) S is 1-regular.

(2) $Q_1 \cap I \cap Q_2 \subseteq Q_1 \cdot I \cdot Q_2$, for the generalized 1-quasi ideals Q_1 and Q_2 and weak-1 ideals I.

(3) $Q_1 \cap I \cap Q \subseteq Q_1 \cdot I \cdot Q$, for the generalized 1-quasi ideals Q_1 , weak-1 ideals I and 1-quasi ideals Q.

(4) $Q \cap I \cap Q_2 \subseteq Q \cdot I \cdot Q_2$, for the 1-quasi ideals Q, weak-1 ideals I and generalized 1-quasi ideals Q_2 .

(5) $Q \cap I \cap Q \subseteq Q \cdot I \cdot Q$, for the 1-quasi ideals Q and weak-1 ideals I.

(6) $Q_1 \cap I \cap L \subseteq Q_1 \cdot I \cdot L$, for the generalized 1-quasi ideals Q_1 , weak-1 ideals I and weak-1 left ideals L.

(7) $Q \cap I \cap L \subseteq Q \cdot I \cdot L$, for the 1-quasi ideals Q, weak-1 ideals

I and weak-1 left ideals L.

(8) $R \cap I \cap Q_2 \subseteq R \cdot I \cdot Q_2$, for the weak-1 right ideals R, weak-1 ideals I and generalized 1-quasi ideals Q_2 .

(9) $R \cap I \cap Q \subseteq R \cdot I \cdot Q$, for the weak-1 right ideals R, weak-1 ideals I and 1-quasi ideals Q.

(10) $R \cap I \cap L \subseteq R \cdot I \cdot L$, for the weak-1 right ideals R, weak-1 ideals I and weak-1 left ideals L.

(11) $R \cap L = R \cdot L$, for the weak-1 right ideals R and weak-1 left ideals L.

(12) $Q_1 \cap I \subseteq Q_1 \cdot I \cdot Q_1$, for the generalized 1-quasi ideals Q_1 and weak-1 ideals I.

(13) $Q \cap I \subseteq Q \cdot I \cdot Q$, for the 1-quasi ideals Q and weak-1 ideals I.

(14) $Q_1 = Q_1 \cdot S \cdot Q_1$, for the generalized 1-quasi ideals Q_1 . (15) $Q = Q \cdot S \cdot Q$, for the 1-quasi ideals Q.

Proof. First, we prove that $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (5) \Rightarrow (11) \Rightarrow$ (1), $(3) \Rightarrow (6) \Rightarrow (7) \Rightarrow (11)$, $(2) \Rightarrow (4) \Rightarrow (8) \Rightarrow (9) \Rightarrow$ (10) $\Rightarrow (11)$, $(12) \Rightarrow (14) \Rightarrow (1)$ and $(2) \Rightarrow (12) \Rightarrow (13) \Rightarrow$ (15) $\Rightarrow (1)$.

(1) \Rightarrow (2) For $a \in Q_1 \cap I \cap Q_2$, then there exists $s \in S$ such that $a = a \cdot s \cdot a$. Thus, $a = a \cdot (s \cdot a \cdot s) \cdot a \in Q_1 \cdot I \cdot Q_2$. Thus (2) holds.

 $(2) \Rightarrow (3)$ Straightforward.

 $(3) \Rightarrow (5)$ Straightforward.

 $(5) \Rightarrow (11)$ Taking I = S in (5), $R \cap L \subseteq R \cdot L$. Thus, $R \cap L = R \cdot L$.

 $(11) \Rightarrow (1)$ The proof follows from Theorem 3.16.

 $(3) \Rightarrow (6)$ By Lemma 3.6, (6) holds.

 $(6) \Rightarrow (7)$ Straightforward.

(7) \Rightarrow (11) By taking $I = S, R \cap L \subseteq R \cdot L$. Thus, $R \cap L = R \cdot L$.

 $(2) \Rightarrow (4)$ Straightforward.

 $(4) \Rightarrow (8)$ By Lemma 3.6, we get the result.

 $(8) \Rightarrow (9)$ Straightforward.

 $(9) \Rightarrow (10)$ The proof follows from Lemma 3.6.

 $(10) \Rightarrow (11)$ Taking I = S in (10), $R \cap L \subseteq R \cdot L$. Thus, $R \cap L = R \cdot L$.

 $(12) \Rightarrow (14) \text{ By } (12), Q_1 \subseteq Q_1 \cdot S \cdot Q_1 \subseteq [(Q_1 \cdot S) \cap (S \cdot Q_1)] \subseteq Q_1 \text{ implies } Q_1 = Q_1 \cdot S \cdot Q_1.$

(14) \Rightarrow (1) For any $a \in S$, $a \in \langle a \rangle_{g1q} \cdot S \cdot \langle a \rangle_{g1q}$ and by Theorem 3.10, $a \in [a \cdot S \cdot a] \cup [a \cdot S \cdot [(a \cdot S) \cap (S \cdot a)]] \cup [[(a \cdot S) \cap (S \cdot a)]]$

 $S) \cap (S \cdot a)] \cdot S \cdot a \bigg] \cup \bigg[[(a \cdot S) \cap (S \cdot a)] \cdot S \cdot [(a \cdot S) \cap (S \cdot a)] \bigg].$

Thus, $a \in a \cdot S \cdot a$. Therefore S is 1-regular.

 $(2) \Rightarrow (12)$ Taking $Q_2 = Q_1$ in (2), we get the result.

 $(12) \Rightarrow (13)$ Straightforward.

 $(13) \Rightarrow (15)$ By $(13), Q \subseteq Q \cdot S \cdot Q \subseteq [(Q \cdot S) \cap (S \cdot Q)] \subseteq Q$ implies $Q = Q \cdot S \cdot Q$.

 $S) \cap (S \cdot a)] \cdot S \cdot [(a \cdot S) \cap (S \cdot a)]]$. Thus, $a \in a \cdot S \cdot a$. Hence S is 1-regular.

4. 2-quasi ideals in b-semirings

Definition 4.1. (i) The subset Q of S is called a generalized 2-quasi ideal in S if $(Q+S) \cap (S+Q) \subseteq Q$. (ii) The generalized 2-quasi ideal Q is called a 2-quasi ideal in S if Q is a sub b-semiring.

Definition 4.2. *The generalized 1-quasi ideal Q is called a generalized quasi ideal if it is generalized 2-quasi ideal.*

Definition 4.3. The sub b-semiring Q of S is called a quasi ideal if it is Q is generalized quasi ideal.

Lemma 4.4. The generalized 2-quasi ideal Q is a 2-quasi ideal in S if Q is closed under " \cdot ".

Proof. Suppose that Q is generalized 2-quasi ideal in S which is closed under " \cdot ". Now, $Q + Q \subseteq Q + S$ and $Q + Q \subseteq S + Q$ implies $Q + Q \subseteq (Q + S) \cap (S + Q) \subseteq Q$. Thus, Q is a 2-quasi ideal in S.

Remark 4.5. The generalized 2-quasi ideal fails to be a 2quasi ideal in S by the Example 4.6.

Example 4.6. Consider the b-semiring $(S, +, \cdot)$ by the following table.

+	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	<i>s</i> 5	<i>s</i> ₆
s_1	<i>s</i> ₁	<i>s</i> ₁	s_1	<i>s</i> ₁	<i>s</i> ₁	<i>s</i> ₁
s_2	<i>s</i> ₂					
<i>s</i> ₃						
<i>s</i> ₄	<i>s</i> ₄	<i>S</i> 4	<i>s</i> ₄	<i>s</i> ₄	<i>s</i> ₄	<i>s</i> ₄
<i>s</i> ₅	<i>S</i> 5	<i>s</i> ₅				
<i>s</i> ₆						
•	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	<i>s</i> ₄	<i>s</i> ₅	<i>s</i> ₆
s_1	<i>s</i> ₁	<i>s</i> ₁	s_1	<i>s</i> ₁	<i>s</i> ₁	<i>s</i> ₁
<i>s</i> ₂	<i>s</i> ₁	<i>s</i> ₂				
<i>s</i> ₃	<i>s</i> ₁	<i>s</i> ₃	<i>s</i> ₃	<i>s</i> 3	<i>s</i> ₃	<i>s</i> ₃
<i>s</i> ₄	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₂	<i>s</i> ₄	<i>s</i> ₄	<i>s</i> ₄
\$5	<i>s</i> ₁	<i>s</i> ₃	<i>s</i> ₃	<i>S</i> 5	<i>S</i> 5	<i>S</i> 5
<i>s</i> ₆	<i>s</i> ₁	\$3	\$3	<i>s</i> ₆	<i>s</i> ₆	<i>s</i> ₆

Clearly, $\{s_1, s_2, s_5\}$ is a generalized 2-quasi ideal, but $s_5 \cdot s_2 \notin \{s_1, s_2, s_5\}$ implies $\{s_1, s_2, s_5\}$ is not 2-quasi ideal in S.

Lemma 4.7. Every weak-2 right (left) ideal is a 2-quasi ideal in S.

Remark 4.8. Converse of the Lemma 4.7 fails by the Example 4.9.

Example 4.9. In Example 4.6, $\{s_3, s_5\}$ is a 2-quasi ideal, but $s_1 + s_5 \notin \{s_3, s_5\}$ implies $\{s_3, s_5\}$ not weak-2-left ideal in S.

Theorem 4.10. *The intersection of weak-2 right ideal with weak-2 left ideal in S is a 2-quasi ideal.*

Proof. For the weak-2 right ideal *A* and weak-2 left ideal *B* in *S*, $A \cap B$ is a sub b-semiring. Now, $[(A \cap B) + S] \cap [S + (A \cap B)] \subseteq (A + S) \cap (S + B) \subseteq A \cap B$ implies $A \cap B$ is a 2-quasi ideal in *S*.

Theorem 4.11. For any $a \in S$, the generalized 2-quasi ideal generated by "a", denoted by $\langle a \rangle_{g2q}$ is given by $\{a\} \cup [(a + S) \cap (S+a)]$.

Proof. Now, $x \in (a+S) \cap (S+a)$, then $(x+S) \cap (S+x) \subseteq (a+S) \cap (S+a)$. Thus $\{a\} \cup [(a+S) \cap (S+a)]$ is a generalized 2-quasi ideal in *S*. If *A* is a generalized 2-quasi ideal in *S* such that $a \in A$, then $\{a\} \cup [(a+S) \cap (S+a)] \subseteq A$. Therefore $\langle a \rangle_{g2q}$ is the generalized 2-quasi ideal generated by "*a*".

Corollary 4.12. For a subset A of S, $A \cup [(A + S) \cap (S + A)]$ is the generalized 2-quasi ideal generated by a set A in S.

Theorem 4.13. For any $a \in S$, the 2-quasi ideal generated by "a", denoted by $\langle a \rangle_{2q}$ is given by $\{a^m | m \in \mathbb{Z}^+\} \cup [(a + S) \cap (S + a)].$

Proof. Clearly, $\{a^m | m \in \mathbb{Z}^+\} \cup [(a+S) \cap (S+a)]$ is generalized 2-quasi ideal. For $x, y \in [(a+S) \cap (S+a)], x \cdot y = a + (s_1 \cdot s_3) \in a + S$ and $x \cdot y = (s_2 \cdot s_4) + a \in S + a$ imply $x \cdot y \in [(a+S) \cap (S+a)]$ and by Lemma 3.12, $x \cdot y = a^m \cdot (a+s_3) = a + [(a^m \cdot s_3)^{m+1}] \in a + S$ and $x \cdot y = a^m \cdot (s_4 + a) = [(a^m \cdot s_4)^{m+1}] + a \in S + a$. Thus, $x \cdot y \in [(a+S) \cap (S+a)]$. Similarly, $y \cdot x \in [(a+S) \cap (S+a)]$. By Lemma 4.4, $\{a^m\} \cup [(a+S) \cap (S+a)]$ is a 2-quasi ideal in *S*. If *A* is a 2-quasi ideal in *S* such that $a \in A$, then $\{a^m\} \cup [(a+S) \cap (S+a)] \subseteq A$. Hence $< a >_{2q}$ is the 2-quasi ideal generated by "a". □

Corollary 4.14. For a subset A of S, $\prod A \cup [\prod (A+S) \cap \prod (S+A)]$ is the 2-quasi ideal generated by a set A in S.

Theorem 4.15. For a b-semiring S, the following conditions are equivalent.

(1) S is 2-regular.

(2) $R \cap Q_1 \subseteq R + Q_1$, for the weak-2 right ideals R and generalized 2-quasi ideals Q_1 .

(3) $R \cap Q \subseteq R + Q$, for the weak-2 right ideals R and 2-quasi ideals Q.

(4) $Q_1 \cap L \subseteq Q_1 + L$, for the generalized 2-quasi ideals Q_1 and weak-2 left ideals L.

(5) $Q \cap L \subseteq Q + L$, for the 2-quasi ideals Q and weak-2 left ideals L.

(6) $R \cap L = R + L$, for the weak-2 right ideals R and weak-2 left ideals L.

Proof. First, we prove that $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (6) \Rightarrow (1)$ and $(1) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$.

 $(1) \Rightarrow (2)$ For $a \in R \cap Q_1$, then there exist $s \in S$ such that a = (a+s) + a. Thus, $R \cap Q_1 \subseteq R + Q_1$.

 $(2) \Rightarrow (3)$ Straightforward.

(3) \Rightarrow (6) By Lemma 4.7, $R \cap L \subseteq R + L$. Now, $R + L \subseteq R + S \subseteq R$ and $R + L \subseteq S + L \subseteq L$. Then (6) follows.

 $(6) \Rightarrow (1)$ The proof follows from Theorem 3.16.

(1) \Rightarrow (4) For $a \in Q_1 \cap L$, then there exist $s \in S$ such that a = a + (s+a). Thus, $Q_1 \cap L \subseteq Q_1 + L$.

 $(4) \Rightarrow (5)$ By Lemma 4.5, (5) holds.

 $(5) \Rightarrow (6)$ The proof follows from Lemma 4.7.

Theorem 4.16. For a b-semiring S, the following conditions are equivalent.

(1) S is 2-regular.

(2) $Q_1 \cap I \cap Q_2 \subseteq Q_1 + I + Q_2$, for the generalized 2-quasi ideals Q_1 and Q_2 and weak-2 ideals I.

(3) $Q_1 \cap I \cap Q \subseteq Q_1 + I + Q$, for the generalized 2-quasi ideals Q_1 , weak-2 ideals I and 2-quasi ideals Q.

(4) $Q \cap I \cap Q_2 \subseteq Q + I + Q_2$, for the 2-quasi ideals Q, weak-2 ideals I and generalized 2-quasi ideals Q_2 .

(5) $Q \cap I \cap Q \subseteq Q + I + Q$, for the 2-quasi ideals Q and weak-2 ideals I.

(6) $Q_1 \cap I \cap L \subseteq Q_1 + I + L$, for the generalized 2-quasi ideals Q_1 , weak-2 ideals I and weak-2 left ideals L.

(7) $Q \cap I \cap L \subseteq Q + I + L$, for the 2-quasi ideals Q, weak-2 ideals I and weak-2 left ideals L.

(8) $R \cap I \cap Q_2 \subseteq R + I + Q_2$, for the weak-2 right ideals R, weak-2 ideals I and generalized 2-quasi ideals Q_2 .

(9) $R \cap I \cap Q \subseteq R + I + Q$, for the weak-2 right ideals R, weak-2 ideals I and 2-quasi ideals Q.

(10) $R \cap I \cap L \subseteq R + I + L$, for the weak-2 right ideals R, weak-2 ideals I and weak-2 left ideals L.

(11) $R \cap L = R + L$, for the weak-2 right ideals R and weak-2 left ideals L.

(12) $Q_1 \cap I \subseteq Q_1 + I + Q_1$, for the generalized 2-quasi ideals Q_1 and weak-2 ideals I.

(13) $Q \cap I \subseteq Q + I + Q$, for the 2-quasi ideals Q and weak-2 ideals I.

(14) $Q_1 = Q_1 + S + Q_1$, for the generalized 2-quasi ideals Q_1 . (15) Q = Q + S + Q, for the 2-quasi ideals Q.

Proof. First, we prove that $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (5) \Rightarrow (11) \Rightarrow$ $(1), (3) \Rightarrow (6) \Rightarrow (7) \Rightarrow (11), (2) \Rightarrow (4) \Rightarrow (8) \Rightarrow (9) \Rightarrow$ $(10) \Rightarrow (11), (12) \Rightarrow (14) \Rightarrow (1) \text{ and } (2) \Rightarrow (12) \Rightarrow (13) \Rightarrow$ $(15) \Rightarrow (1).$ $(1) \Rightarrow (2)$ For $a \in Q_1 \cap I \cap Q_2$, then there exists $s \in S$ such that a = a + s + a. Thus, $a = a + (s + a + s) + a \in Q_1 + I + Q_2$. Then (2) follows. $(2) \Rightarrow (3)$ Straightforward. $(3) \Rightarrow (5)$ Straightforward. $(5) \Rightarrow (11)$ By taking I = S in (5), $R \cap L \subseteq R + L$. Thus, $R \cap L = R + L$. $(11) \Rightarrow (1)$ The proof follows from Theorem 3.16. $(3) \Rightarrow (6)$ The proof follows from Lemma 4.7. $(6) \Rightarrow (7)$ Straightforward. $(7) \Rightarrow (11)$ By taking $I = S, R \cap L \subseteq R + L$. Thus, $R \cap L =$ R+L. $(2) \Rightarrow (4)$ Straightforward. $(4) \Rightarrow (8)$ By Lemma 4.7, the result holds. $(8) \Rightarrow (9)$ Straightforward. $(9) \Rightarrow (10)$ By Lemma 4.7, (10) holds. $(10) \Rightarrow (11)$ Taking I = S in (10), $R \cap L \subseteq R + L$. Thus, $R \cap L \subseteq R + L$. L = R + L. $(12) \Rightarrow (14)$ By (12), $Q_1 \subseteq Q_1 + S + Q_1 \subseteq [(Q_1 + S) \cap (S + Q_1)]$ $[Q_1) \subseteq Q_1$. Thus, (14) holds. $(14) \Rightarrow (1)$ For any $a \in S$, $a \in \langle a \rangle_{g2q} + S + \langle a \rangle_{g2q}$ and by Theorem 4.11 , $a \in [a+S+a] \cup [a+S+[(a+S) \cap (S+a)] \cup [a+S+[(a+S+a)] \cup [a+S+a)] \cup [a+S+a)] \cup [a+S+[(a+S+a)] \cup [a+S+a)] \cap [a+S+a)] \cap [a+S+a)] \cap [a+S+a)] \cap [a+S+a)] \cap [a+S+a)] \cap [a+A$ $a)]\Big] \cup \Big[[(a+S) \cap (S+a)] + S + a\Big] \cup \Big[[(a+S) \cap (S+a)] + S + a\Big] + a\Big] \cup \Big[[(a+S) \cap (S+a)] + S + a\Big] + a\Big$

 $[(a+S) \cap (S+a)]$. Thus, $a \in a+S+a$. Therefore S is 2-regular.

(2) \Rightarrow (12) Taking $Q_2 = Q_1$ in (2), we get the result. (12) \Rightarrow (13) Straightforward. (13) \Rightarrow (15) By (13), $Q \subseteq Q + S + Q \subseteq [(Q+S) \cap (S+Q)] \subseteq$

 $\begin{array}{l} Q \text{ implies } Q = Q + S + Q. \\ (15) \Rightarrow (1) \text{ For any } a \in S \text{ by } (15), a \in \langle a \rangle_{2q} + S + \langle a \rangle_{2q} \\ \text{and by Theorem 4.13 and Lemma 3.12, } a \in [a^n + S + a^m] \cup \\ \left[a^n + S + [(a+S) \cap (S+a)]\right] \cup \left[[(a+S) \cap (S+a)] + S + a^m\right] \cup \\ \left[[(a+S) \cap (S+a)] + S + [(a+S) \cap (S+a)]\right]. \text{ Thus, } a \in a + a^m \end{bmatrix} \end{array}$

$$\overline{S} + a$$
. Hence S is 2-regular.

Theorem 4.17. For a b-semiring S, the following conditions are equivalent.

(1) S is regular.

(2) $R \cap Q_1 \subseteq (R \cdot Q_1) \cap (R + Q_1)$, for the right ideals R and generalized quasi ideals Q_1 .

(3) $R \cap Q \subseteq (R \cdot Q) \cap (R + Q)$, for the right ideals R and quasi ideals Q.

(4) $Q_1 \cap L \subseteq (Q_1 \cdot L) \cap (Q_1 + L)$, for the generalized quasi ideals Q_1 and left ideals L.

(5) $Q \cap L \subseteq (Q \cdot L) \cap (Q + L)$, for the quasi ideals Q and left ideals L.

(6) $R \cap L = (R \cdot L) \cap (R + L)$, for the right ideals R and left ideals L.

Proof. First, we prove that $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (6) \Rightarrow (1)$ and $(1) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$.

(1) \Rightarrow (2) By Theorem 3.17, $R \cap Q_1 \subseteq R \cdot Q_1$ and by Theorem 4.15, $R \cap Q_1 \subseteq R + Q_1$. Thus, $R \cap Q_1 \subseteq (R \cdot Q_1) \cap (R + Q_1)$

 $(2) \Rightarrow (3)$ The proof follows from Theorem 3.17 and 4.15.

(3) \Rightarrow (6) By Theorem 3.17, $R \cap L = R \cdot L$ and by Theorem 4.15, $R \cap L = R + L$. Then (6) follows.

 $(6) \Rightarrow (1)$ Now, $R \cdot L \subseteq R \cap L = (R \cdot L) \cap (R + L) \subseteq R \cdot L$, then by Theorem 3.16, *S* is 1-regular. Similarly, $R + L \subseteq R \cap L =$ $(R \cdot L) \cap (R + L) \subseteq R + L$. Then by Theorem 3.16, *S* is 2regular. Thus, *S* is regular.

(1) \Rightarrow (4) By Theorem 3.17 and 4.15, $Q_1 \cap L \subseteq Q_1 \cdot L$ and $Q_1 \cap L \subseteq Q_1 + L$. Then (4) follows.

 $(4) \Rightarrow (5)$ The proof follows from Theorem 3.17 and 4.15.

 $(5) \Rightarrow (6)$ By Lemma 3.6 and 4.7, (6) holds.

Theorem 4.18. For a b-semiring S, the following conditions are equivalent.

(1) S is regular.

(2) $Q_1 \cap I \cap Q_2 \subseteq (Q_1 \cdot I \cdot Q_2) \cap (Q_1 + I + Q_2)$, for the generalized quasi ideals Q_1 and Q_2 and ideals I.

(3) $Q_1 \cap I \cap Q \subseteq (Q_1 \cdot I \cdot Q) \cap (Q_1 + I + Q)$, for the generalized quasi ideals Q_1 , ideals I and quasi ideals Q.

(4) $Q \cap I \cap Q_2 \subseteq (Q \cdot I \cdot Q_2) \cap (Q + I + Q_2)$, for the quasi ideals Q, ideals I and generalized quasi ideals Q_2 .

(5) $Q \cap I \cap Q \subseteq (Q \cdot I \cdot Q) \cap (Q + I + Q)$, for the quasi ideals Q and ideals I.

(6) $Q_1 \cap I \cap L \subseteq (Q_1 \cdot I \cdot L) \cap (Q_1 + I + L)$, for the generalized quasi ideals Q_1 , ideals I and left ideals L.

(7) $Q \cap I \cap L \subseteq (Q \cdot I \cdot L) \cap (Q + I + L)$, for the quasi ideals Q, ideals I and left ideals L.

(8) $R \cap I \cap Q_2 \subseteq (R \cdot I \cdot Q_2) \cap (R + I + Q_2)$, for the right ideals *R*, ideals *I* and generalized quasi ideals Q_2 .

(9) $R \cap I \cap Q \subseteq (R \cdot I \cdot Q) \cap (R + I + Q)$, for the right ideals R, ideals I and quasi ideals Q.

(10) $R \cap I \cap L \subseteq (R \cdot I \cdot L) \cap (R + I + L)$, for the right ideals R, ideals I and left ideals L.

(11) $R \cap L = (R \cdot L) \cap (R + L)$, for the right ideals R and left ideals L.

(12) $Q_1 \cap I \subseteq (Q_1 \cdot I \cdot Q_1) \cap (Q_1 + I + Q_1)$, for the generalized quasi ideals Q_1 and ideals I.

(13) $Q \cap I \subseteq (Q \cdot I \cdot Q) \cap (Q + I + Q)$, for the quasi ideals Q and ideals I.

(14) $Q_1 = (Q_1 \cdot S \cdot Q_1) \cap (Q_1 + S + Q_1)$, for the generalized quasi ideals Q_1 .

(15) $Q = (Q \cdot S \cdot Q) \cap (Q + S + Q)$, for the quasi ideals Q.

Proof. First, we prove that $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (5) \Rightarrow (11) \Rightarrow$ (1), $(3) \Rightarrow (6) \Rightarrow (7) \Rightarrow (11)$, $(2) \Rightarrow (4) \Rightarrow (8) \Rightarrow (9) \Rightarrow$ (10) $\Rightarrow (11)$, $(12) \Rightarrow (14) \Rightarrow (1)$ and $(2) \Rightarrow (12) \Rightarrow (13) \Rightarrow$ (15) $\Rightarrow (1)$.

(1) \Rightarrow (2) By Theorem 3.18, $Q_1 \cap I \cap Q_2 \subseteq (Q_1 \cdot I \cdot Q_2)$ and by Theorem 4.16, $Q_1 \cap I \cap Q_2 \subseteq (Q_1 + I + Q_2)$. Thus, (2)holds. (2) \Rightarrow (3) By Theorem 3.18 and 4.16, (3) holds.

 $(3) \Rightarrow (5)$ The proof follows from Lemma 3.6 and 4.7.

 $(5) \Rightarrow (11)$ By Theorem 3.18 and 4.16, (11) holds.

 $(11) \Rightarrow (1)$ The proof follows from Theorem 4.17.

 $(3) \Rightarrow (6)$ The proof follows from Theorem 3.18 and 4.16.

 $(6) \Rightarrow (7)$ By Theorem 3.18 and 4.16, (7) holds.

(7) \Rightarrow (11) By Theorem 3.18, $R \cap L = R \cdot L$ and by Theorem 4.16, $R \cap L = R + L$. Thus, (11) holds.

 $(2) \Rightarrow (4)$ By Theorem 3.18 and 4.16, (4) holds.

 $(4) \Rightarrow (8)$ The proof follows from Lemma 3.6 and 4.7.

 $(8) \Rightarrow (9)$ The proof follows from Theorem 3.18 and 4.16.

 $(9) \Rightarrow (10)$ By Lemma 3.6 and Lemma 4.7, (10) holds.

 $(10) \Rightarrow (11)$ The proof follows from Theorem 3.18 and 4.16. $(12) \Rightarrow (14)$ By Theorem 3.18 and 4.16, $Q_1 = Q_1 \cdot S \cdot Q_1$ and $Q_1 = Q_1 + S + Q_1$. Thus, (14)holds.

 $(14) \Rightarrow (1)$ Now, $Q_1 \subseteq Q_1 \cdot S \cdot Q_1 \subseteq [(Q_1 \cdot S) \cap (S \cdot Q_1)] \subseteq Q_1$. Then $Q_1 = Q_1 \cdot S \cdot Q_1$. By Theorem 3.18, *S* is 1-regular. Then, $Q_1 \subseteq Q_1 + S + Q_1 \subseteq [(Q_1 + S) \cap (S + Q_1)] \subseteq Q_1$. Thus $Q_1 = Q_1 + S + Q_1$. By Theorem 4.16, *S* is 2-regular. Thus, *S* is regular.

 $(2) \Rightarrow (12)$ Taking $Q_2 = Q_1$ in (2), we get the result.

 $(12) \Rightarrow (13)$ By Theorem 3.18 and 4.16, (13) holds.

 $(13) \Rightarrow (15)$ By Theorem 3.18 and 4.16, $Q = Q \cdot S \cdot Q$ and Q = Q + S + Q. Thus, (15)holds.

 $(15) \Rightarrow (1)$ Now, $Q \subseteq Q \cdot S \cdot Q \subseteq [(Q \cdot S) \cap (S \cdot Q)] \subseteq Q$. Then $Q = Q \cdot S \cdot Q$. By Theorem 3.18, *S* is 1-regular. Then, $Q \subseteq Q + S + Q \subseteq [(Q + S) \cap (S + Q)] \subseteq Q$. Thus Q = Q + S + Q. By Theorem 4.16, *S* is 2-regular. Thus, *S* is regular.

Theorem 4.19. For any $a \in S$, the generalized quasi ideal generated by "a", denoted by $\langle a \rangle_{gq}$ is given by $\{a\} \cup [(a \cdot S) \cap (S \cdot a)] \cup [(a+S) \cap (S+a)] \cup [[(a \cdot S) + S] \cap [S + (S \cdot a)]].$

Proof. By Theorem 3.10 and $4.11, \{a\} \cup [(a \cdot S) \cap (S \cdot a)]$ and $\{a\} \cup [(a + S) \cap (S + a)]$ is a generalized 1-quasi ideal and generalized 2-quasi ideal of *S* respectively.

For $x \in [(a \cdot S) \cap (S \cdot a)], x + s' = (a \cdot s_1) + s' \in [(a \cdot S) + S]$ and

 $s'' + x = s'' + (s_2 \cdot a) \in [S + (S \cdot a)] \text{ imply } [(a \cdot S) \cap (S \cdot a)] +$ $S \Big] \cap \Big[S + [(a \cdot S) \cap (S \cdot a)] \Big] \subseteq \Big[[(a \cdot S) + S] \cap [S + (S \cdot a)] \Big].$ For $x \in [(a+S) \cap (S+a)]$, $x \cdot s' = (a+s_1) \cdot s' \in [(a \cdot S) + S]$ and $s'' \cdot x = s'' \cdot (s_2 + a) \in [S + (S \cdot a)] \text{ imply } [[(a+S) \cap (S+a)] \cdot S]$ $\cap \left[S \cdot \left[(a+S) \cap (S+a) \right] \right] \subseteq \left[\left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right].$ Now, $[(a \cdot S) + S] + S \subseteq [(a \cdot S) + S]$ and $S + [S + (S \cdot a)] \subseteq$ $[S] + S] \cap [S + (S \cdot a)]] \subseteq \left[[(a \cdot S) + S] \cap [S + (S \cdot a)] \right].$ Now, $[(a \cdot S) + S] \cdot S \subseteq [(a \cdot \vec{S}) + \vec{S}]$ and $S \cdot [S + (S \cdot a)] \subseteq [S + (S \cdot a)]$ imply $\left[\left[\left[(a \cdot S) + S\right] \cap [S + (S \cdot a)]\right] \cdot S\right] \cap \left|S \cdot \left[\left[(a \cdot S) + S\right] \cap S\right]\right]$ $[S + (S \cdot a)]] \subseteq \left[[(a \cdot S) + S] \cap [S + (S \cdot a)] \right].$ Thus, $\{a\} \cup [(a \cdot S) \cap (S \cdot a)] \cup [(a + S) \cap (S + a)] \cup |[(a \cdot S) + (a \cdot S) \cap (S + a)] | = (a \cdot S) |$ $S \cap [S + (S \cdot a)]$ is a generalized quasi ideal in S. If A is a generalized quasi ideal in S such that $a \in A$, then $\{a\} \cup [(a \cdot$ $S)\cap (S\cdot a)]\cup [(a+S)\cap (S+a)]\cup \left|\left[(a\cdot S)+S\right]\cap [S+(S\cdot a)]\right|\subseteq$ A. Thus, $\langle a \rangle_{gq}$ is a generalized quasi ideal generated by "a".

Theorem 4.20. For any $a \in S$, the quasi ideal generated by "a", denoted by $\langle a \rangle_q$ is given by $\{na|n \in \mathbb{Z}^+\} \cup \{a^m|m \in \mathbb{Z}^+\} \cup [(a \cdot S) \cap (S \cdot a)] \cup [(a + S) \cap (S + a)] \cup [[(a \cdot S) + S] \cap [S + (S \cdot a)]]$.

Proof. By Theorem 4.19, $\{a\} \cup [(a \cdot S) \cap (S \cdot a)] \cup [(a + S) \cap (S + a)] \cup [[(a \cdot S) + S] \cap [S + (S \cdot a)]]$ is a generalized quasi ideal of *S*. Now,

 $\left[\left(\{na|n \in \mathbb{Z}^+\} + S\right) \cap \left(S + \{na|n \in \mathbb{Z}^+\}\right)\right] \subseteq \left[(a+S) \cap \left(S + a\right)\right]$ and $\left[\left(\{a^m|m \in \mathbb{Z}^+\} \cdot S\right) \cap \left(S \cdot \{a^m|m \in \mathbb{Z}^+\}\right)\right] \subseteq \left[(a \cdot S) \cap \left(S \cdot a\right)\right].$

By Theorem 3.13 and 4.13, $Q = \{na|n \in \mathbb{Z}^+\} \cup \{a^m | m \in \mathbb{Z}^+\} \cup [(a \cdot S) \cap (S \cdot a)] \cup [(a + S) \cap (S + a)] \cup [[(a \cdot S) + S] \cap (S + a)] \cup ((a \cdot S) + S] \cap (S + a)] \cup ((a \cdot S) + S] \cap ((a \cdot S)$

 $[S + (S \cdot a)]$, $\{na|n \in \mathbb{Z}^+\} \cup [(a \cdot S) \cap (S \cdot a)]$ and $\{a^m | m \in \mathbb{Z}^+\} \cup [(a + S) \cap (S + a)]$ are generalized quasi-ideal and sub *b*-semirings of *S* respectively.

Now, $\{na|n \in \mathbb{Z}^+\} + \{a^m|m \in \mathbb{Z}^+\} \subseteq [(a+S) \cap (S+a)] \subseteq Q$ and $\{a^m|m \in \mathbb{Z}^+\} + \{na|n \in \mathbb{Z}^+\} \subseteq [(a+S) \cap (S+a)] \subseteq Q$ and $\{na|n \in \mathbb{Z}^+\} \cdot \{a^m|m \in \mathbb{Z}^+\} \subseteq [(a \cdot S) \cap (S \cdot a)] \subseteq Q$ and $\{a^m|m \in \mathbb{Z}^+\} \cdot \{na|n \in \mathbb{Z}^+\} \subseteq [(a \cdot S) \cap (S \cdot a)] \subseteq Q$.

Let $x \in \{na|n \in \mathbb{Z}^+\}$ and $y \in [(a+S) \cap (S+a)]$. Then $x+y = na + (a+s_1) = (n+1)a + s_1 = a + (na+s_1) \in a+S$ and $x+y = na + (s_2+a) = (na+s_2) + a \in S + a$ imply $\{na|n \in \mathbb{Z}^+\} + [(a+S) \cap (S+a)] \subseteq [(a+S) \cap (S+a)] \subseteq Q$. Similarly, $[(a+S) \cap (S+a)] + \{na|n \in \mathbb{Z}^+\} \subseteq [(a+S) \cap (S+a)] \subseteq Q$. Now, $x \cdot y = na \cdot (a+s_1) = [a \cdot (a+s_1)] + [(n-1)a \cdot (a+s_1)] \in [(a \cdot S) + S]$ and $x \cdot y = na \cdot (s_2+a) = (na \cdot s_2) + (na \cdot a) \in [S + (S \cdot a)]$ imply $\{na|n \in \mathbb{Z}^+\} \cdot [(a+S) \cap (S+a)] \subseteq [[(a \cdot S) + a)]$

On various quasi ideals in *b*-semirings — 26/27

 $[S] (S) + S \cap [S + (S \cdot a)] \subseteq Q$ and $[(a + S) \cap (S + a)] \cdot \{na | n \in S\}$ $\mathbb{Z}^+\} \subseteq \left[\left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right] \subseteq Q.$ Let $x \in \{na | n \in \mathbb{Z}^+\}$ and $y \in \left| [(a \cdot S) + S] \cap [S + (S \cdot a)] \right|$. Then $x + y = na + [(a \cdot s_1) + s_2] = [(n+1)a \cdot (na + s_1)] + s_2 \in$ $[(a \cdot S) + S]$ and $x + y = (na + s_3) + (s_4 \cdot a) \in [S + (S \cdot a)]$ imply $x + y \in |[(a \cdot S) + S] \cap [S + (S \cdot a)]| \subseteq Q$. Now, $x \cdot y =$ $na \cdot [(a \cdot s_1) + s_2] = \left| (a \cdot n(a \cdot s_1)) + (na \cdot s_2) \right| \in [(a \cdot S) + S]$ and $x \cdot y = na \cdot [s_3 + (s_4 \cdot a)] = |(na \cdot s_3) + ((na \cdot s_4) \cdot a)| \in$ $[S + (S \cdot a)] \text{ imply } x \cdot y \in \left[[(a \cdot S) + S] \cap [S + (S \cdot a)] \right] \subseteq Q.$ Similarly, y + x and $y \cdot x \in [[(a \cdot S) + S] \cap [S + (S \cdot a)]] \subseteq Q$. Let $x \in \{a^m | m \in \mathbb{Z}^+\}$ and $y \in [(a \cdot S) \cap (S \cdot a)]$. Then, x + y = $a^{m} + (a \cdot s_{1}) = (a \cdot a^{m-1}) + (a \cdot s_{1}) = [a + (a \cdot s_{1})] \cdot [a^{m-1} + (a \cdot s_{1})$ $(a \cdot s_1) \in [(a \cdot S) + S]$ and $x + y = a^m + (s_3 \cdot a) = (a^m + s_3)$. $(a^{m}+a) = [(a^{m}+s_{3}) \cdot a^{m}] + [(a^{m}+s_{3}) \cdot a] \in [S+(S \cdot a)]$ imply $x + y \in \left| \left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right| \subseteq Q.$ Now $x \cdot y = a^m \cdot (a \cdot s_1) \in a \cdot S$ and $\overline{x} \cdot y = a^m \cdot (s_2 \cdot a) = (a^m \cdot s_2) \cdot c_3$ $a \in S \cdot a$ imply $x \cdot y \in [(a \cdot S) \cap (S \cdot a)] \subseteq Q$. Similarly, $y + x \in Q$ $\left[[(a \cdot S) + S] \cap [S + (S \cdot a)] \right] \subseteq Q \text{ and } y \cdot x \in [(a \cdot S) \cap (S \cdot a)] \subseteq Q.$ Let $x \in \{a^m | m \in \mathbb{Z}^+\}$ and $y \in \left[[(a \cdot S) + S] \cap [S + (S \cdot a)] \right]$. Now, $x + y = a^m + [(a \cdot s_1) + s_2] = (a \cdot a^{m-1}) + [(a \cdot s_1) + s_2] =$ $[a + [(a \cdot s_1) + s_2]] \cdot [a^{m-1} + [(a \cdot s_1) + s_2]] \in [(a \cdot S) + S]$ and $x + y = (a^m + s_4) + (s_5 \cdot a)] \in [S + (S \cdot a)] \text{ imply } x + y \in \big| [(a \cdot a)] \big| (a \cdot a) \big| (a$ $S(S) + S[\cap [S + (S \cdot a)]] \subseteq Q$. Now, $x \cdot y = a^m \cdot [(a \cdot s_1) + s_2] =$ $a \cdot [a^{m-1} \cdot (a \cdot s_1)] + (a^m \cdot s_2) \in [(a \cdot S) + S]$ and $x \cdot y = a^m \cdot (a \cdot S) + S$ $[s_4 + (s_5 \cdot a)] = (a^m \cdot s_4) + [(a^m \cdot s_5) \cdot a)] \in [S + (S \cdot a)]$ imply $x \cdot y \in \left| \left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right| \subseteq Q$. Similarly, y + x and $y \cdot x \in \left| \left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right| \subseteq Q.$ Now, $(a \cdot S) + (a + S) \subseteq (a \cdot S) + S$ and $(S \cdot a) + (S + a) =$ $[S + (S + a)] \cdot [(a + S) + a] \subseteq S \cdot (S + a) \text{ imply } |[(a \cdot S) \cap (S \cdot A)]| = 0$ $a)] + [(a+S) \cap (S+a)]] \subseteq \left[[(a \cdot S) + S] \cap [S + (S \cdot a)] \right] \subseteq Q$ and $\left[[(a+S) \cap (S+a)] + [(a \cdot S) \cap (S \cdot a)] \right] \subseteq \left[[(a \cdot S) + S] \cap (S \cdot a)] \right]$ $\left[S + (S \cdot a)\right] \subseteq Q.$ Now, $(a \cdot \vec{S}) \cdot (a + S) = [(a \cdot S) \cdot a] + [(a \cdot S) \cdot S] \subseteq (a \cdot S) + S$ and $(S \cdot a) \cdot (S + a) = [(S \cdot a) \cdot S] + [(S \cdot a) \cdot a] \subseteq S \cdot (S + a)$ imply $\left| \left[(a \cdot S) \cap (S \cdot a) \right] \cdot \left[(a + S) \cap (S + a) \right] \right| \subseteq \left| \left[(a \cdot S) + S \right] \cap (S + a) \right|$ $[S + (S \cdot a)] \subseteq Q \text{ and } \left[[(a + S) \cap (S + a)] \cdot [(a \cdot S) \cap (S \cdot a)] \right] \subseteq$ $\left| \left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right| \subseteq Q.$ Now, $(a \cdot S) + [(a \cdot S) + S] \subseteq [(a \cdot S) + S]$ and $(S \cdot a) + [S + (S \cdot S) + S]$ $[a] \subseteq [S + (S \cdot a)] \text{ imply } |(a \cdot S) \cap (S \cdot a)| + |[(a \cdot S) + S] \cap [S + S]| |(a \cdot S) + S|| |(a \cdot S) + S||$ $(S \cdot a)$ $\Big| \subseteq \Big| [(a \cdot S) + S] \cap [S + (S \cdot a)] \Big| \subseteq Q$. Similarly, $\Big| [(a \cdot S) + S] \cap [S + (S \cdot a)] \Big| \subseteq Q$. $[S] + S] \cap [S + (S \cdot a)] + [(a \cdot S) \cap (S \cdot a)] \subseteq [[(a \cdot S) + S] \cap [S + a]]$

 $(S \cdot a)] \subseteq Q.$ Now, $(a \cdot S) \cdot [(a \cdot S) + S] \subseteq [(a \cdot S) + S]$ and $(S \cdot a) \cdot [S + (S \cdot a)] =$ $[(S \cdot a) \cdot S] + [(S \cdot a) \cdot (S \cdot a)] \subseteq [S + (S \cdot a)] \text{ imply } |(a \cdot S) \cap (S \cdot a)|$ $a)\Big]\cdot\Big[[(a\cdot S)+S]\cap[S+(S\cdot a)]\Big]\subseteq\Big[[(a\cdot S)+S]\cap[S+(S\cdot$ $[a)] \subseteq Q.$ Similarly, $\left[[(a \cdot S) + S] \cap [S + (S \cdot a)] \right] \cdot \left[(a \cdot S) \cap (S \cdot a) \right]$ $|a\rangle \subseteq |[(a \cdot S) + S] \cap [S + (S \cdot a)]| \subseteq Q.$ Now, $[a+S) + [(a \cdot S) + S] \subseteq [a+S) + [(a+S) \cdot S] = [(a+S) + (a+S)] \cdot [(a+S) + S] \subseteq (a+S) \cdot S = [(a \cdot S) + S]$ and $(S+a) + [S+(S \cdot a)] \subseteq [S+(S \cdot a)] \text{ imply } |(a+S) \cap (S+a)| +$ $\left[\left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right] \subseteq \left[\left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right] \subseteq Q.$ Similarly, $\left| \left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right| + \left| (a + S) \cap (S + a) \right| \subseteq$ $\left[[(a \cdot S) + S] \cap [S + (S \cdot a)] \right] \subseteq Q. \text{ Now, } (a + S) \cdot [(a \cdot S) + S] \subseteq$ $[(a+S) \cdot S] = [(a \cdot S) + S]$ and $(S+a) \cdot [S+(S \cdot a)] \subseteq [(S+a) \cdot S]$ S] + [(S + a) · (S · a)] \subseteq [S + (S · a)] imply $|(a + S) \cap (S + a)|$ · $\left[\left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right] \subseteq \left[\left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right] \subseteq Q.$ Similarly, $\left[\left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right] \cdot \left[(a + S) \cap (S + a) \right] \subseteq$ $\left| \left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right| \subseteq Q.$ Now, $[(a \cdot S) + S] + [(a \cdot S) + S] \subseteq [(a \cdot S) + S]$ and $[S + (S \cdot a)] + S$ $[S + (S \cdot a)] \subseteq [S + (S \cdot a)] \text{ imply } \left| [(a \cdot S) + S] \cap [S + (S \cdot a)] \right| + C$ $\left| \left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right| \subseteq \left| \left[(a \cdot S) + S \right] \cap \left[S + (S \cdot a) \right] \right| \subseteq Q.$ Now, $[(a \cdot S) + S] \cdot [(a \cdot S) + S] \subseteq [(a \cdot S) + S] \cdot S \subseteq [(a \cdot \vec{S}) + S]$ and $[S + (S \cdot a)] \cdot [S + (S \cdot a)] \subseteq S \cdot [S + (S \cdot a)] \subseteq [S + (S \cdot a)]$ imply $\left| [(a \cdot S) + S] \cap [S + (S \cdot a)] \right| \cdot \left| [(a \cdot S) + S] \cap [S + (S \cdot a)] \right|$ $[a] \subseteq [[(a \cdot S) + S] \cap [S + (S \cdot a)]] \subseteq Q$. Thus, Q is a quasi ideal in S. If A is a quasi ideal in S such that $a \in A$, then (S+a)] \cup $|[(a \cdot S) + S] \cap [S + (S \cdot a)]| \subseteq A$. Thus, $\langle a \rangle_a$ is the quasi ideal generated by "a".

Acknowledgment

The research of the second author is partially supported by "UGC-BSR grant : F.25-1/2014-15(BSR)/7 -254/2009(BSR) dated 20-01-2015" in India.

References

- [1] G. Mohanraj, M.Palanikumar, Characterization of regular b-semirings, *Mathematical Sciences International Research Journal*, 7(2018), 117–123.
- [2] G.Mohanraj, M.Palanikumar, Characterization of Various k -Regular in b-Semirings, *AIP Conference Proceedings*, 2112(2019), 020021–1–020021–6.
- [3] G.Mohanraj, M.Palanikumar, On various classes of one sided ideals in b-semirings, Submitted.

[4] Ronnason Chinram, An introduction to b-semirings, *Int. J. Contemp. Math. Science*, 4(13)(2009), 649–657.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******