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Mod difference labeling of some classes of digraphs
B Sooryanarayana1* and Sunita Priya D Silva2

Abstract
A graph is a difference graph if there is a bijection f from V to a set of positive integers S such that xy ∈ E if and
only if | f (x)− f (y)| ∈ S. A digraph D = (V,E) is a mod difference digraph if there exist a positive integer m and
labeling L : V →{1,2, ...,m−1} such that (x,y) ∈ E if and only if L(y)−L(x)≡ L(w)(mod m) for some w ∈V. In this
paper, we prove that the complete bipartite digraphs, oriented binary trees, ladder graphs and fan graphs are
mod difference digraphs.
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1. Introduction
In this paper, we consider only finite simple graphs. Let

S be a finite multiset of real numbers, i.e. a finite collection
of real numbers in which repetitions is permitted but order is
irrelevant. The difference graph with signature S is a finite
digraph G with vertices labelled bijectively by f from a vertex
labelled x to a vertex labelled y exactly when x− y ∈ S. In [4]
Harary introduced the concept of difference graphs similar to
sum graphs and similar works we refer [8, 9]. Some classes
of difference graphs (paths, trees, cycles, special wheels, com-
plete graphs, complete bipartite graphs etc.) were investigated
by Bloom, Burr, Eggleton, Gervacio, Hell and Taylor in the
undirected [2, 3, 12] as well as in the directed case [1].

The concept of mod difference digraph was introduced by
S.M.Hegde and Vasudeva [6]. For the recent works we refer
[7, 10, 11].

Definition 1.1. A graph is a difference graph if there is a
bijection f from V to a set of positive integers S such that

xy ∈ E if and only if | f (x)− f (y)| ∈ S. A digraph D = (V,E)
is a mod difference digraph if there exist a positive integer m
and labeling L : V → {1,2, ...,m−1} such that (x,y) ∈ E if
and only if L(y)−L(x)≡ L(w)(mod m) for some w ∈V.

They have shown some of the structural properties of mod
difference digraphs in [5]. It is also proved that complete sym-
metric digraphs, unipaths and unicycles are mod difference
digraphs [6].

2. Mod difference labeling of some
classes of digraphs

In this section we present some results on mod difference
labeling of some classes of digraphs.

Lemma 2.1. If S is a proper signature of
←→
K n,n then S is

partitioned into two disjoint sets V1 and V2 as follows:

V1 = {vi = 3i−2,1≤ i≤ n}
V2 = {vi = 3i−1,1≤ i≤ n}

Proof. Consider an edge x = uv in
←→
K n,n. Assume that both

u,v ∈ V1 (or V2.) Without the loss of generality, let u,v ∈ V1
then u−v∈ S for some 1≤ i1, i2≤ n i.e (3i1−2)−(3i2−2)∈
S, for some 1 ≤ i1, i2 ≤ n i.e 3(i1− i2) ∈ S, but 3(i1− i2) ≡
0(mod3), a contradiction. HenceV1 and V2 form the partition
of
←→
K n,n.
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Lemma 2.2. Let V1 and V2 be the bipartite vertex sets of←→
K n,n as defined in the above lemma. If vi ∈ V1 and v j ∈ V2

with vi < v j,1≤ i, j ≤ n then vi− v j ∈ V1.

Proof. If x = viv j with vi < v j is an edge in
←→
K n,n, then by

Lemma 2.1, vi = 3k1 − 2 and v j = 3k2 − 1, for some 1 ≤
k1,k2 ≤ n. Therefore, v j−vi = (3k2−1)−(3k1−2) = 3(k2−
k1)+1. Hence 0≤ k1,k2 ≤ (n−1).

Taking,

k2− k1 = 0,we get, v j− vi = 1 = 3(1)−2 ∈V1

k2− k1 = 1,we get, v j− vi = 4 = 3(2)−2 ∈V1

...
k2− k1 = n−1,we get, v j− vi = 1 = 3(n−1)+1 ∈V1

Hence the proof.

Theorem 2.3. If the labeling L given by L(vi) = ai,∀i, i =
1,2, ...,2n is a mod difference labeling of

←→
K n,n, then there

exits an integer a such that ai = (3ni−k)a for k = 2, ni =
i+1

2 ,

when i is odd and k = 1, ni =
i
2 , when i is even and m = 3na.

Proof. Without the loss of generality we take a1 < a2 < · · ·<
a2n. Set a1 = a = (3(1)− 2)a. Since L is a mod difference
labeling, consider a2−a1 = al for some l. Since a1 < a2,we
must have al = a1.Then a2 = a1 + a1 = 2a = (3(1)− 1)a.
Consider a3−a2 = am for some m. Again a2 < a3, we must
have am = a1 or a2. If am = a1, then a3 = a1+a2⇒ a3−a1 =
a2 ⇒ there is an edge a1a3 in

←→
K n,n, a contradiction to the

Lemma 2.1. Therefore, am = a2 and hence a3 = a2 + a2 =
4a = [3(2)−2]a.

We have proved the theorem is true for n = 1,2,3. We
assume the theorem is true for all n < k. Without the loss of
generality consider k to be even. Consider ak− al = a j for
some j, with al < ak. Also a j < ak We have observed that
a j = ak−l ∈V1.

If k is even ,then l is odd. By Lemma 2.2, j is also odd.
By induction assumption, we have al = [3li− 2]a and a j =
[3 ji−2]a, for some 1≤ li, ji ≤ k. Therefore,

ak = [3 ji−2]a+[3li−2]a

=

[
3
[

j+1
2

]
−2
]

a+
[

3
[

l +1
2

]
−2
]

a

=

{
3
[

j+ l +2
2

]
−4
}

a

= 3
{[

k− l + l +2
2

]
−4
}

a

= 3
{[

k+2
2

]
−4
}

a

= 3
{[

k
2

]
−1
}

a

= [3ki−1]a

Therefore, the result is true for k. Hence by induction it is true
for all positive n.

Also consider a1 − a2n ≡ a j(modm) for some j, since
a1 ∈V1 and a2n ∈V2. Hence

m=

[
(3n−1)−1+3

(
j
2

)
−1
]

a=
[

3n−3+3
(

j
2

)]
a.

In the above j 6= 2n− 1, and 1 ≤ j ≤ n. If j > 2, then m =
3(n+ 1)a, which contradicts labeling condition. Therefore,
j = 2 which implies m = 3na. Hence the proof.

Corollary 2.4. Any complete bipartite digraph
←→
K n,n is a

mod difference digraph.

Proof. Label the vertices v1,v2, . . . ,v2n of
←→
k n,n, using the

labeling f (vi) = ia, for 1≤ i≤ 3n−1, with i 6≡ 0(mod3) and a
is a positive integer. We prove that f is mod difference labeling
of
←→
K n,n with m = 3na. Now, for all i, j, i 6= j, ia− ja ≡ ka

(mod m), where

k =
{

i− j, if i > j
3n+(i− j), if i < j.

In both the cases k ≤ 2n. Therefore, there exits k ≤ 2n such
that f (vi)− f (v j) ≡ f (vk)(mod m), for all i, j with i 6= j.
Hence f is a mod difference digraph.

             

             

             

             

             

             

             

             

             

 

 

 

 

 

 

Figure 1. A mod difference labeling of the bi-directional
digraph of K3,3 with m = 18 and a = 2.

Definition 2.5. An m-ary tree (m ≥ 2) is a rooted tree in
which each vertex has less than or equal to m children. When
m = 2, the rooted tree is called the binary tree.

Definition 2.6. An oriented binary tree
−→
Tn with n vertices is

said to be inspoken if all the parents in each level has indegree
two.

Theorem 2.7. A oriented binary tree
−→
Tn whose internal ver-

tices have indegree 2 and outdegree 1 is a mod difference
digraph.

Proof. Let
−→
Tn = (V,E) be the oriented binary tree and v be the

root vertex. Let v1,v2, . . . ,vp be the end vertices in
−→
Tn . First

label all the p leaves h as l(v1) = a and l(vi) = 2l(vi−1)+1,
2 ≤ i ≤ p. Then label all the internal vertices in the h− 1
level by adding the labels of its children. Continuing the same
procedure of labeling to all the non-pendent vertices in the
previous level and so on., we finally reach the root v.

Now, for the vertices u,v in
−→
T with l(u > l(v), it is easy

to observe that if uv ∈ E with l(u)> l(v), then u is a parent

33



Mod difference labeling of some classes of digraphs — 34/36

of v, so l(u) = l(v) + l(w) for some child w of u. Hence
l(u)− l(v)≡ l(w) whenever uv ∈ E.

Further, the label of ith pendent vertex vi is l(vi) = 2i(a+
1)− 1 and the level of the internal vertices is l(ui) = (2i1 +
2i2 + · · ·+2i2k )(a+1)−2k for some k ∈ Z+.

if ui and u j be any two non-adjacent vertices of
−→
T , then

we have the following cases
CASE 1: ui and u j are pendent vertices
In this case l(ui)− l(u j) = l(vi)− l(v j) = [2i(a+1)−1]−

[2 j(a+1)−1] = (2i−2 j)(a+1) /∈ l(S)⇒ uiu j /∈ E.
CASE 2: ui is a pendent and u j is an internal vertex.
In this case l(u j)− l(ui) = (2i1 +2i2 + · · ·+2i2k )(a+1)−

2k − (2i)(a+ 1) + 1 = (2i1 + 2i2 + · · ·+ 2i2k + 2i)(a+ 1)−
(2k−1) /∈ l(S)⇒ uiu j /∈ E

CASE 3: ui and u j are internal vertices
In this case l(u j)− l(ui)= (2 j1 +2 j2 + · · ·+2 j2k )(a+1)−

2k − (2i1 + 2i2 + · · ·+ 2i2l )(a + 1)− 2l = (2 j1 + 2 j2 + · · ·+
2 j2k −2i1−2i2−·· ·−2i2l )(a+1)−(2k+2l) /∈ l(S)⇒ uiu j /∈
E whenever k 6= l (i.e ui 6= u j).

Hence
−→
T is a mod difference digraph.

A mod difference digraph of complete oriented binary tree−→
T7

39

7 32

2 5 11 21

Figure 2. A binary tree with a = 2 and m = 40.

Definition 2.8. A fan graph Fm,n is defined as the graph join
Km +Pn, where K is the empty graph on m vertices and Pn is
the path graph of n vertices. The case m = 1,corresponds to
the usual fan graphs, while m = 2 corresponds to the double
fan graphs etc.

Definition 2.9. An oriented fan graph
−→
F1,n is said to be an

unipath fan, if the path of the fan is unidirectional.

Definition 2.10. An oriented fan graph
−→
F1,n with n+ 1 ver-

tices is called outspoken(inspoken), if indegree (outdegree) of
the apex vertex is 0.

Theorem 2.11. An unipath fan
−→
F1,n with n+1 vertices is mod

difference digraph, if indegree of the apex vertex is one.

Proof. Let
−→
F1,n =(V,E) be an unipath fan. Let V = {v0, v1, v2,

. . ., vn} and E = {v0vi : 1≤ i≤ n}
⋃
{vivi+1 : 1≤ i≤ n−1},

where v0 is the apex vertex.

Label the apex vertex v0 by 2 and label each vertex vi of
the path by 2i− 1, i = 1,2, . . . ,n. With modular value m =

2(n+1), this labeling scheme generates the signature for
−→
F1,n.

For vi− v0 = (2i− 1)− 2 = 2(i− 1)− 1 = vi−1, for all
i = 2,3,4, . . . ,n.

For i = 1, we have v0− v1 = 2−1 = 1 ∈V .
Also for 1≤ i, j ≤ n, i = j+1,

vi− v j = (2i−1)− (2 j−1) = 2(i− j) = 2 = v0.

Since for every i, j ∈ {1,2, . . . ,n}, we have vi− v j is an
even number greater than 2 and is not in V under modulo
m. Hence the labeling does not induces any additional edges.
Hence

−→
F1,n is mod difference digraph.

1 753 119

2

Figure 3. A mod difference labeling of an Unipath Fan with
m = 14.

If the signature of the mod difference digraph contains
0 integer, then such a digraph is named as mod∗ difference
digraph. S.M Hegde and Vasudeva [5] introduced mod∗ dif-
ference digraph and defined as follows:

Definition 2.12. A simple digraph D is called a mod∗ dif-
ference digraph if there exists a positive integer m and a
labeling f of the vertices of D with distinct elements of f =
{0,1,2, . . . ,m− 1} such that for the vertices u and v there
exists an arc from u to v (denoted as u→ v) if and only if there
is a vertex w such that ( f (v)− f (u)) ≡ f (w)(modm). The
function f is called a mod∗ difference labeling of digraph D.

Theorem 2.13. An unipath outspoken fan
−→
F1,n with n+1 ver-

tices is a mod∗ difference digraph.

Proof. Consider the signature S= {0,1,2, . . . ,2n−1} and mod-
ular value m = 2n. We prove that if S is the signature of an
unipath outspoken fan. Let {v0,v1, . . . ,vn} be the vertices of
unipath outspoken fan where v0 is the apex vertex.

Let v0 = 0,vi = 2i−1 for i= 1,2,3, . . . ,n. Now, vi−v0 = vi
for i = 1,2, . . . ,n. For the vertices on the path and i 6= j, we
have vi− v j = 2i−1−2 j−1 ∈ S if and only if i = j+1. Hence
the proof.

Definition 2.14. An oriented Ladder graph
−→
Ln =

−→
Pn ×

−→
P2 is

said to be oriented unipath ladder if the path Pn is unidirec-
tional.
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1 842 16

0

Figure 4. A mod difference labeling of an unipath outspoken
Fan with m = 32.

Theorem 2.15. An oriented unipath Ladder
−→
Ln is a mod dif-

ference digraph.

Proof. Let
−→
Ln =

−→
Pn ×

−→
P2 be an oriented unipath ladder. We

label the vertices of
−→
Ln as v1,v2, . . . ,v2n. A ladder contains

two paths, one path contains the vertices of the form v2i−1,
1≤ i≤ n−1 and the other path contains the vertices of the
form v2i,1≤ i≤ n. The edge set contains the edges of the
form :
{v2iv2i+2,v2i−1v2i+1,v2iv2i−1,1≤ i≤ n}.

We define the labeling function f as:

f (v2i) = 2i,1≤ i≤ n

f (v2i−1) = 2i+1−3,1≤ i≤ (n−1)

We prove that f is a mod difference labeling of
−→
Ln with m =

2(2n+1−3). That is, we show that f (vi)− f (v j)≡ f (vk) (mod
m), for some k,1≤ k ≤ 2n if and only if v jvi is an edge in

−→
Ln.

For an edge v2iv2i+2,1≤ i≤ (n−1), we have,

f (v2i+2)− f (v2i) = 2i+1−2i

= 2i(2−1)
= 2i

= f (v2i)(mod m)

For an edge v2i−1v2i+1,1≤ i≤ (n−1) we have,

f (v2i+1)− f (v2i−1) = [2(i+1)+1−3]− [2i+1−3]
= 2.2i+1−2i+1

= 2i+1

= f (v2(i+1))(mod m)

For an edge v2iv2i−1, for i > 1, we have,

f (v2i)− f (v2i−1) = 2i− [2i+1−3]
= 2.2i−2i−3
= 2i−3
= f (v2(i−1)−1)

= f (v2i−3)(mod m)

Finally, for i=1, f (v2)− f (v1)= 2−1= 1 (mod m). Hence
−→
Ln is a mod difference graph.

1 29135 12561

2 1684 6432

Figure 5. A mod difference labeling of an oriented unipath
Ladder with m = 251.

3. Conclusion
Cayley graphs are known to be excellent model for in-

terconnection network due to their various properties like
vertex transitivity, regularity, connectivity etc., Cayley graph
Cayg(A,S) is connected if and only if S generates the group A.
In particular, if S = A−{e}, where e is the identity of A, then
Cay(A,S) turns out to be a complete graph, which is a mod
difference graph whenever the group operation is the usual
addition. The Subgraph of a Cayley graph induced by S is a
problem of our interest. A graph G that is a mod difference
graph is a subgraph of certain Cayley graphs of a group of
superset of V (G).

The investigations made in this paper may enlighten a new
direction for further development of a good interconnection
networks which are subgraphs of Cayley Networks. The
links are specific and can be identified as difference of the
addresses. So, one can easily develop a routing algorithm to
communicate between two nodes with the list of addresses of
the nodes. .
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