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Induced magic labeling of some graphs

K.B. Libeeshkumar'* and V. Anil Kumar?

Abstract

Let G= (V,E) be a graph and let (A,+) be an Abelian group with identity element0. Let f: V — A be a vertex
labeling and f* : E — A be the induced labeling of f, defined by f*(viv2) = f(vi) + f(v2) for all viv, € E. Then
f* again induces a labeling say f** : V — A defined by f**(v) = Z f*(vy). A graph G= (V,E) is said to be an
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Induced A-Magic Graph (IAMG) if there exists a non zero labeling f: V — A such that f = f**. The function f,
so obtained is called an Induced A-Magic Labeling (IAML) of G and a graph which has no such Induced Magic
Labeling is called a Non-induced magic graph. In this paper we discuss the existence of Induced Magic Labeling

of some special graphs like P, C,, K, and K, ,.
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1. Introduction

This paper deals with only finite, un directed simple and
connected graphs. We refer [3] for the phrasing and stan-
dard notations related to graph theory. A graph is a pair
G = (V,E), where V, E are the vertex set and edge set respec-
tively. The degree of a vertex v in G is the number of edges
incident at v and it is denoted as deg(v). Let (A4,+) be an
Abelian group with identity element0. Let f : V — A be a
vertex labeling and f* : E — A be the induced edge labeling
of f, defined by f*(vivz) = f(v1) + f(v2) for all viv, € E.
Then f* again induces a vertex labeling say f**:V — A de-
fined by f**(v) = Y f*(wi). A graph G = (V,E) is said

wieE
to be an an Induced 1A-Magic Graph (IAMG) if there exists
a non zero labeling f : V — A such that f = f**. The func-
tion f, so obtained is called an Induced A-Magic Labeling
(IAML) of G and a graph which has no such Induced Magic
Labeling is called a Non-induced magic graph. If an induced
magic labeling f where f(v) =k for all verex v in G,then f

is called k-induced magic labeling of G and G,a k-induced
magic graph.This paper discuss some special Induced magic
graphs that belongs to the following sets:

(i) T'(A) := Set of all induced A-magic graphs.

(ii) I'(A, f) :=Set of all induced A-magic graphs with IAML
I

(iii) T'x(A) := Set of all induced A-magic graphs with k-
induced magic labeling.

2. Main Results

Lemma 2.1. Let G = (V,E) be a graph and f is an IAML
of G. If vi € V is a pendant vertex adjacent to v € V, then

f(vl) = O.

Proof. Let f be an IAML of a graph G and v be a pendant
vertex adjacent to v. Then f*(vvi) = f(v) + f(v1) and v; is
a pendant vertex implies that f**(v;) = f(v) + f(v1). Also
f is an induced magic labeling of G implies that f(v;) =

£ (1) = F(v) + £(v1). Thus £(v) = 0. 0

Corollary 2.2. If G has a pendant vertex, then G ¢ T'y(A) for
any Abelian group A.

Proof. Proof is indisputable from the lemma 2.1. O



Lemma 2.3. Let f be an IAML of a graph G and wuvz be
a path in G with w and 7z are pendant vertices in G, then

S (uv)=0.

Proof. Suppose f is an IAML of a graph G = (V, E) and wuvz
is any path in G with w and z are pendant vertices. Then by the
lemma 2.1, we have f(u) =0= f(v). Hence f*(uv) =0. O

Theorem 2.4. Let f be a vertex labeling of a graph G. Then f
is an IAML of G, if and only if [deg(u) — 1]f (u) + ¥ f(v) =0,
Sor any vertex u € V(G), where the summation is taken over
all the vertices v which are adjacent to u.

Proof. Let f be an IAML of G and u be a vertex in G with
deg(u) = m. Let v,v2,v3,...,vy, be those vertices adjacent
to u in G. Now f is an IAML if and only if f(u) = f**(u) =
FHvr)+ () + F (0vs) 4+ £ (wv) =mf () + (1)
+fv2) +f(v3)+- 4 f(Vm)-

That is if and only if (m—1)f(u) + ¥ f(v) =0, where v is
adjacent to u. O

Theorem 2.5. P, € I'(A) if and only if n is a multiple of 3.

Proof. Suppose n = 3m, for some integer m. Let P, be the
path with vertex set V = {v{,v2,v3,...,v4_1,Vs}. For any a #
0in A, define f:V — A as:

a if i=1,4,7,---,3m—2
fvi)=4 0 if i=2,5,8,---,3m—1
a*l lf i:3,679’...’3m.

Then, f is an IAML of B,. Conversely suppose n is not a
multiple of 3, then n = 3m+-1 or n = 3m+2 for some positive
integer m. Let f : V — A be a vertex labeling function with f =
f**.Then for 1 <k <n—3and any path vivg;1Vii2Vis3 in Py,
we have f(vii1) = f™(vi+1) implies that f(ve) + f(ver1) +
J(Vei2) =0. Also f(vii2) = f** (vis2) implies that f(vii1) +
f(ks2) + f(ver3) = 0.Therefore we should have f(vg) =
F(viy3). Let us deal with the following cases:

Casel: n=3m+1

In this context, from the above discussion we have,
0=f(v2)=f(vs)=f(vs) ="+-=f(vam—1)=f(va2)
and 0= f(vy—1) = f(va—a) == f(ve) = f(v3) =0.
Thus f(v3) =0 and f(vi)+ f(v3) = O implies that
f(v1) =0, which again implies that 0 = f(v{) = f(v4) =
fv7)=---= f(vam+1) = f(vn.) Hencef = 0, There-
fore f is not an [AML.

Case2: n=3m+2

In this context from the above discussion we have, 0 =
f(VZ) = f(VS) = f(VS) == f(V3m+2) = f(vn) and
0= f(va—1) = f(vu—4) = -+ = f(va) = f(v1). Thus
f(vi)=0and f(vi)+ f(v3) = 0 implies that f(v3) =
0, which implies 0 = f(v3) = f(vg) = f(v9) = ---
S (v3m) = f(vn—2.) Hence f = 0. Therefore, f is not an
IAML.
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Hence if n is not a multiple of a 3, then P, ¢ T'(A) O

Theorem 2.6. Let {vi,va,v3---,vy_1,Vy = Vo } be the vertex
set of Cy. Then for any path vi—1ViV (ki 1ymod n» [ is an IAML of
Gy if and only iff(kal)—"_f(vk) +f(v(k+1)modn) =0, where
1 <k < n. Moreover any IAML f of C, satisfies f(v) =
f(v(k+3)modn)f0r 1 <k<n.

Proof. Fork=1,2,3,--- n, consider the path v;_;v
V(k+1)mod n 1 Gy Observe that f is an IAML of G, if and only
if f(vi) = f**(vx), which holds if and only if f(vi_1)+ f(vk)
+f(v(k+l)mod n) =0.

Also for any 0 < k <n-— 1 5 let ViVik+1 V[(k+2) mod n]v[(k+3) mod n)»
is a path in Cy,, we have f(Vk) +f(vk+l) +f(v(k+2) mod n) =0
and f(vk+1) + f(v(k+2) mod n) + f(v(k+3) mod n) =0.
Thus f(vk) = f(v(k+3)mod n)'

Corollary 2.7. C, € T'+(A) if and only if O(k) = 3, where
O(k) denotes the order of k in A.

O

Proof. Consider C, withV(C,) ={vi,va, -+ ,Vy_1,Vn =V0.}.
Suppose C, € T'x(A),that is there exist an IAML f of C,
with f(v;) =k for i = 1,2,3,...,n.Then by theorem 2.6 we
have 3k = 0 in A,which implies O(k) = 3.Conversely sup-
pose O(k) = 3. Then consider the vertex label f(v;) = k for
i=1,2,3,--- ,n. Since f(v;) = k for all i and O(k) = 3, we
have, f*(v;viy1) = 2k for all i, and which implies f**(v;) =
Fvivig1) + f*(vic1vi) =4k =k = f(v;), for all i. Thus f is
an IJAML of G, that is G, € I'x(A). Hence the proof. O

Corollary 2.8. C, has a non-constant IAML if and only if n
is a multiple of 3.

Proof. Consider C, with vertex set {v,va,...,Vy_1,Vy = V0. }.
Suppose n = 3k, for some integer k. Let a,b,c be any three
distinct elements in A, such that a + b + ¢ = 0, then define
f:V(C,) — A as follows:

a if i=1,4,7,---,3k—2
fv)=< b if =258, 3k-1
c if i=3,6,9,---,3k.

Then clearly f is a non constant IAML of C,. Conversely
assume that 7 is not a multiple of 3. Then either n = 3k +1
or 3k + 2 for some integer k. Let f be an IAML of C, and

fv) =w.
Casel: n=3k+1

In this context, by the theorem 2.6 we have:
w=fv1)=f(va)=f(v7) =" =f(v3rr1) = f(vu
fv3)=fve) = fvo) =+ = fvsk) = f(v2) = f(
=f(vs) == f(v3k-1).

Thus f(v;) =w, fori=1,2,3,--- ,n.

)
vs)
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Case2: n=3k+2

In this context, by the theorem 2.6 we have:
w=fvi)=fva)=f(v7) == Ff(v3rr1) =f(n2
fvs)=f(vg) == f(vak—1) = f(vai2) = f(va



fvo) = f(v3) = f(vs) = f(vo) = -~ f(v3r)-

Thus in this case also f(v;) =w, fori=1,2,3,-- n.

Thus in either case, we have f(v;) =w fori=1,2,3,--- ,n.
Thus if n # 0(mod 3) then every IAML of C, is a constant
IAML of C,,. O

Theorem 2.9. The complete graph K,, € T'(A, f) if and only
if(n=3)f(vi)=(n=3)f(v2) =(n—=3)f(v3) =
(n=3)f(vn) =—=[f(v1) + f(v2) + f(v3) + -+ f(va)] where

V1,V2,V3...,Vy, are the vertices of K,,.

Proof. For 1 <i,j<n,wehave f(v;) = f**(v;) holds if and
only if f(vi)+f(v2) +f(v3) + -+ f(vie1) + (n = 2)f(vi) +
fWig1)+ -+ f(va) =0, similarly the condition f(v;) =
f**(v;) is equivalent to the condition f(vi)+ f(v2) + f(v3) +
o fim) +(n=2)f(v;) + f(vjs1) + -+ f(va) = 0. Thus
we have f is an IAML if and only if (n—3)f(v;)
(n=3)f(v;)=—=[f(v1)) + f(v2) + f(v3) +- -+ f(va)], for

1 <, j < n. Hence the proof. O

Corollary 2.10. K, € T+ (A) if and only if O(k) divides 2n—3,
where O(k) denotes the order of kin A.

Proof. Let K, be the complete graph with vertex set {v;,v2,v3
-+, v, }. We have K, € T';(A), means there exist an [AML f
with f(v) =k, for all v € V(K,). Also by the theorem 2.9,
we have f is an IAML of K, if and only if (n—3)f(v) =
—[f )+ f(v2) + f(v3) 4+ f(va)], forall v € V(K,).

Thus K, € I'y(A) if and only if (n — 3)k = —nk, that is if and
only if (2n—3)k = 0, that is if and only if O(k) divides 2n—3
in A. Completes the proof. O

Theorem 2.11. K,, , € I't(A) if and only if O(k) divides 2m —
1 and O(k) divides 2n — 1,where O(k) denotes the order of k
inA.

Proof. Let V(K ) = {v1,v2,V3, -+ , Vi, U1, U2, U3, -+ ,Up }

with each (viu;) € E(Ky,), for 1 <i<m,1 < j<n. Sup-
pose K, » € ['x(A), then we have there exist an IAML f with
fiuj) =k, for1 <i<m,1 < j<nNow fis an JAML of
Kin,n implies k = f(vi) = f**(v1) = 2nk, since f*(viu;) =2k
for 1 < j <mn, that is (2n— 1)k = 0 in A, which implies
O(k) divides 2n — 1. similarly by considering the equation
flu) = f*(u1) we get k = f(uy) = f**(u1) = 2mk, that
is (2m — 1)k =0 in A, which implies O(k) divides 2m — 1.
Conversely suppose that O(k) divides 2m — 1 and O(k) di-
vides 2n — 1. Consider the vertex label f(v;) =k = f(u;), for
Vi,Uj € V(Kmn),1 <i<m,1<j<n.Then f*(vi,uj) =2k
for1 <i<m,1<j<n.Therefori=1,2,3,--- m, f*(v)
X0 f*(viuj) = 2nk = k, since O(k) divides 2n— 1. Thus we
have f**(v;) = f(vi) =k fori=1,2,3,--- ,m. In a similar way,
we have f**(u;) = f(u;) =k for j=1,2,3,--- ,n. Hence we
have f = f**, Thus we get K, , € I'x(A). This concludes the
proof. O
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