

https://doi.org/10.26637/MJM0801/0011

Induced magic labeling of some graphs

K.B. Libeeshkumar^{1*} and V. Anil Kumar²

Abstract

Let G = (V, E) be a graph and let (A, +) be an Abelian group with identity element0. Let $f : V \to A$ be a vertex labeling and $f^* : E \to A$ be the induced labeling of f, defined by $f^*(v_1v_2) = f(v_1) + f(v_2)$ for all $v_1v_2 \in E$. Then f^* again induces a labeling say $f^{**} : V \to A$ defined by $f^{**}(v) = \sum_{vv_1 \in E} f^*(vv_1)$. A graph G = (V, E) is said to be an

Induced *A*-Magic Graph (IAMG) if there exists a non zero labeling $f: V \to A$ such that $f \equiv f^{**}$. The function f, so obtained is called an Induced *A*-Magic Labeling (IAML) of *G* and a graph which has no such Induced Magic Labeling is called a Non-induced magic graph. In this paper we discuss the existence of Induced Magic Labeling of some special graphs like P_n , C_n , K_n and $K_{m,n}$.

Keywords

Induced A-Magic Labeling of Graphs, Induced A-Magic graphs.

AMS Subject Classification

05C78, 05C25.

^{1,2} Department of Mathematics University of Calicut, Malappuram, Kerala-670007, India.
 *Corresponding author: ¹ libeesh123@gmail.com; ²anil@uoc.ac.in
 Article History: Received 11 October 2019; Accepted 27 December 2020

©2020 MJM.

Contents

1. Introduction

This paper deals with only finite, un directed simple and connected graphs. We refer [3] for the phrasing and standard notations related to graph theory. A *graph* is a pair G = (V, E), where V, E are the vertex set and edge set respectively. The *degree* of a vertex v in G is the number of edges incident at v and it is denoted as deg(v). Let (A, +) be an Abelian group with identity element0. Let $f : V \to A$ be a vertex labeling and $f^* : E \to A$ be the induced edge labeling of f, defined by $f^*(v_1v_2) = f(v_1) + f(v_2)$ for all $v_1v_2 \in E$. Then f^* again induces a vertex labeling say $f^{**} : V \to A$ defined by $f^{**}(v) = \sum_{vv_1 \in E} f^*(vv_1)$. A graph G = (V, E) is said to be an an Induced A-Magic Graph (IAMG) if there exists

to be an an induced A-Magic Graph (IAMG) if there exists a non zero labeling $f: V \to A$ such that $f \equiv f^{**}$. The function f, so obtained is called an Induced A-Magic Labeling (IAML) of G and a graph which has no such Induced Magic Labeling is called a Non-induced magic graph. If an induced magic labeling f where f(v) = k for all verex v in G, then f is called *k*-induced magic labeling of G and G, a *k*-induced magic graph. This paper discuss some special Induced magic graphs that belongs to the following sets:

- (i) $\Gamma(A) :=$ Set of all induced *A*-magic graphs.
- (ii) $\Gamma(A, f) :=$ Set of all induced *A*-magic graphs with IAML f.
- (iii) $\Gamma_k(A) :=$ Set of all induced A-magic graphs with k-induced magic labeling.

2. Main Results

Lemma 2.1. Let G = (V, E) be a graph and f is an IAML of G. If $v_1 \in V$ is a pendant vertex adjacent to $v \in V$, then $f(v_1) = 0$.

Proof. Let f be an IAML of a graph G and v_1 be a pendant vertex adjacent to v. Then $f^*(vv_1) = f(v) + f(v_1)$ and v_1 is a pendant vertex implies that $f^{**}(v_1) = f(v) + f(v_1)$. Also f is an induced magic labeling of G implies that $f(v_1) = f^{**}(v_1) = f(v) + f(v_1)$. Thus f(v) = 0.

Corollary 2.2. If G has a pendant vertex, then $G \notin \Gamma_k(A)$ for any Abelian group A.

Proof. Proof is indisputable from the lemma 2.1. \Box

Lemma 2.3. Let *f* be an IAML of a graph *G* and wuvz be a path in *G* with *w* and *z* are pendant vertices in *G*, then $f^*(uv) = 0$.

Proof. Suppose *f* is an IAML of a graph G = (V, E) and *wuvz* is any path in *G* with *w* and *z* are pendant vertices. Then by the lemma 2.1, we have f(u) = 0 = f(v). Hence $f^*(uv) = 0$. \Box

Theorem 2.4. Let f be a vertex labeling of a graph G. Then f is an IAML of G, if and only if $[deg(u) - 1]f(u) + \sum f(v) = 0$, for any vertex $u \in V(G)$, where the summation is taken over all the vertices v which are adjacent to u.

Proof. Let f be an IAML of G and u be a vertex in G with deg(u) = m. Let $v_1, v_2, v_3, \ldots, v_m$ be those vertices adjacent to u in G. Now f is an IAML if and only if $f(u) = f^{**}(u) = f^*(uv_1) + f^*(uv_2) + f^*(uv_3) + \cdots + f^*(uv_m) = mf(u) + f(v_1) + f(v_2) + f(v_3) + \cdots + f(v_m)$.

That is if and only if $(m-1)f(u) + \sum f(v) = 0$, where v is adjacent to u.

Theorem 2.5. $P_n \in \Gamma(A)$ if and only if *n* is a multiple of 3.

Proof. Suppose n = 3m, for some integer m. Let P_n be the path with vertex set $V = \{v_1, v_2, v_3, \dots, v_{n-1}, v_n\}$. For any $a \neq 0$ in A, define $f : V \rightarrow A$ as :

$$f(v_i) = \begin{cases} a & \text{if} \quad i = 1, 4, 7, \cdots, 3m - 2\\ 0 & \text{if} \quad i = 2, 5, 8, \cdots, 3m - 1\\ a^{-1} & \text{if} \quad i = 3, 6, 9, \cdots, 3m. \end{cases}$$

Then, *f* is an IAML of *P_n*. Conversely suppose *n* is not a multiple of 3, then n = 3m + 1 or n = 3m + 2 for some positive integer *m*. Let $f: V \to A$ be a vertex labeling function with $f \equiv f^{**}$. Then for $1 \le k \le n-3$ and any path $v_k v_{k+1} v_{k+2} v_{k+3}$ in *P_n*, we have $f(v_{k+1}) = f^{**}(v_{k+1})$ implies that $f(v_k) + f(v_{k+1}) + f(v_{k+2}) = 0$. Also $f(v_{k+2}) = f^{**}(v_{k+2})$ implies that $f(v_{k+1}) + f(v_{k+2}) + f(v_{k+3}) = 0$. Therefore we should have $f(v_k) = f(v_{k+3})$. Let us deal with the following cases:

Case 1 : n = 3m + 1

In this context, from the above discussion we have, $0 = f(v_2) = f(v_5) = f(v_8) = \cdots = f(v_{3m-1}) = f(v_{n-2})$ and $0 = f(v_{n-1}) = f(v_{n-4}) = \cdots = f(v_6) = f(v_3) = 0$. Thus $f(v_3) = 0$ and $f(v_1) + f(v_3) = 0$ implies that $f(v_1) = 0$, which again implies that $0 = f(v_1) = f(v_4) = f(v_7) = \cdots = f(v_{3m+1}) = f(v_n)$. Hence $f \equiv 0$, Therefore *f* is not an IAML.

Case 2 : n = 3m + 2

In this context from the above discussion we have, $0 = f(v_2) = f(v_5) = f(v_8) = \cdots = f(v_{3m+2}) = f(v_n)$ and $0 = f(v_{n-1}) = f(v_{n-4}) = \cdots = f(v_4) = f(v_1)$. Thus $f(v_1) = 0$ and $f(v_1) + f(v_3) = 0$ implies that $f(v_3) = 0$, which implies $0 = f(v_3) = f(v_6) = f(v_9) = \cdots = f(v_{3m}) = f(v_{n-2})$. Hence $f \equiv 0$. Therefore, f is not an IAML.

Hence if *n* is not a multiple of a 3, then $P_n \notin \Gamma(A)$

Theorem 2.6. Let $\{v_1, v_2, v_3 \cdots, v_{n-1}, v_n = v_0\}$ be the vertex set of C_n . Then for any path $v_{k-1}v_kv_{(k+1)mod n}$, f is an IAML of C_n if and only if $f(v_{k-1}) + f(v_k) + f(v_{(k+1)mod n}) = 0$, where $1 \le k \le n$. Moreover any IAML f of C_n satisfies $f(v_k) =$ $f(v_{(k+3)mod n})$ for $1 \le k \le n$.

Proof. For $k = 1, 2, 3, \dots, n$, consider the path $v_{k-1}v_k$ $v_{(k+1)mod n}$ in C_n . Observe that f is an IAML of C_n if and only if $f(v_k) = f^{**}(v_k)$, which holds if and only if $f(v_{k-1}) + f(v_k) + f(v_{(k+1)mod n}) = 0$.

Also for any $0 \le k \le n-1$, let $v_k v_{k+1} v_{[(k+2) \mod n]} v_{[(k+3) \mod n]}$, is a path in C_n , we have $f(v_k) + f(v_{k+1}) + f(v_{(k+2) \mod n}) = 0$ and $f(v_{k+1}) + f(v_{(k+2) \mod n}) + f(v_{(k+3) \mod n}) = 0$. Thus $f(v_k) = f(v_{(k+3) \mod n})$.

Corollary 2.7. $C_n \in \Gamma_k(A)$ if and only if O(k) = 3, where O(k) denotes the order of k in A.

Proof. Consider C_n with $V(C_n) = \{v_1, v_2, \dots, v_{n-1}, v_n = v_0\}$. Suppose $C_n \in \Gamma_k(A)$, that is there exist an IAML f of C_n with $f(v_i) = k$ for $i = 1, 2, 3, \dots, n$. Then by theorem 2.6 we have 3k = 0 in A, which implies O(k) = 3. Conversely suppose O(k) = 3. Then consider the vertex label $f(v_i) = k$ for $i = 1, 2, 3, \dots, n$. Since $f(v_i) = k$ for all i and O(k) = 3, we have, $f^*(v_iv_{i+1}) = 2k$ for all i, and which implies $f^{**}(v_i) = f^*(v_iv_{i+1}) + f^*(v_{i-1}v_i) = 4k = k = f(v_i)$, for all i. Thus f is an IAML of C_n , that is $C_n \in \Gamma_k(A)$. Hence the proof. □

Corollary 2.8. C_n has a non-constant IAML if and only if n is a multiple of 3.

Proof. Consider C_n with vertex set $\{v_1, v_2, ..., v_{n-1}, v_n = v_0.\}$. Suppose n = 3k, for some integer k. Let a, b, c be any three distinct elements in A, such that a + b + c = 0, then define $f : V(C_n) \to A$ as follows:

$$f(v_i) = \begin{cases} a & \text{if} \quad i = 1, 4, 7, \cdots, 3k - 2\\ b & \text{if} \quad i = 2, 5, 8, \cdots, 3k - 1\\ c & \text{if} \quad i = 3, 6, 9, \cdots, 3k. \end{cases}$$

Then clearly *f* is a non constant IAML of C_n . Conversely assume that *n* is not a multiple of 3. Then either n = 3k + 1 or 3k + 2 for some integer *k*. Let *f* be an IAML of C_n and $f(v_1) = w$.

Case 1: n = 3k + 1

In this context, by the theorem 2.6 we have: $w = f(v_1) = f(v_4) = f(v_7) = \dots = f(v_{3k+1}) = f(v_n) = f(v_3) = f(v_6) = f(v_9) = \dots = f(v_{3k}) = f(v_2) = f(v_5) = f(v_8) = \dots = f(v_{3k-1}).$ Thus $f(v_i) = w$, for $i = 1, 2, 3, \dots, n$.

Case 2: n = 3k + 2

In this context, by the theorem 2.6 we have:

$$w = f(v_1) = f(v_4) = f(v_7) = \dots = f(v_{3k+1}) = f(v_2) = f(v_5) = f(v_8) = \dots = f(v_{3k-1}) = f(v_{3k+2}) = f(v_n) = f(v_3) = \dots = f(v_3) =$$

$$f(v_0) = f(v_3) = f(v_6) = f(v_9) = \cdots f(v_{3k}).$$

Thus in this case also $f(v_i) = w$, for $i = 1, 2, 3, \cdots, n$.

Thus in either case, we have $f(v_i) = w$ for $i = 1, 2, 3, \dots, n$. Thus if $n \neq 0 \pmod{3}$ then every IAML of C_n is a constant IAML of C_n .

Theorem 2.9. The complete graph $K_n \in \Gamma(A, f)$ if and only if $(n-3)f(v_1) = (n-3)f(v_2) = (n-3)f(v_3) = \cdots =$ $(n-3)f(v_n) = -[f(v_1) + f(v_2) + f(v_3) + \cdots + f(v_n)]$ where $v_1, v_2, v_3 \dots, v_n$ are the vertices of K_n .

Proof. For $1 \le i, j \le n$, we have $f(v_i) = f^{**}(v_i)$ holds if and only if $f(v_1) + f(v_2) + f(v_3) + \cdots + f(v_{i-1}) + (n-2)f(v_i) + f(v_{i+1}) + \cdots + f(v_n) = 0$, similarly the condition $f(v_j) = f^{**}(v_j)$ is equivalent to the condition $f(v_1) + f(v_2) + f(v_3) + \cdots + f(v_{j-1}) + (n-2)f(v_j) + f(v_{j+1}) + \cdots + f(v_n) = 0$. Thus we have f is an IAML if and only if $(n-3)f(v_i) = (n-3)f(v_j) = -[f(v_1) + f(v_2) + f(v_3) + \cdots + f(v_n)]$, for $1 \le i, j \le n$. Hence the proof.

Corollary 2.10. $K_n \in \Gamma_k(A)$ if and only if O(k) divides 2n-3, where O(k) denotes the order of k in A.

Proof. Let K_n be the complete graph with vertex set $\{v_1, v_2, v_3 \\ \dots, v_n\}$. We have $K_n \in \Gamma_k(A)$, means there exist an IAML f with f(v) = k, for all $v \in V(K_n)$. Also by the theorem 2.9, we have f is an IAML of K_n if and only if $(n-3)f(v) = -[f(v_1) + f(v_2) + f(v_3) + \dots + f(v_n)]$, for all $v \in V(K_n)$. Thus $K_n \in \Gamma_k(A)$ if and only if (n-3)k = -nk, that is if and only if (2n-3)k = 0, that is if and only if O(k) divides 2n-3 in A. Completes the proof.

Theorem 2.11. $K_{m,n} \in \Gamma_k(A)$ if and only if O(k) divides 2m - 1 and O(k) divides 2n - 1, where O(k) denotes the order of k in A.

Proof. Let $V(K_{m,n}) = \{v_1, v_2, v_3, \cdots, v_m, u_1, u_2, u_3, \cdots, u_n\}$ with each $(v_i u_i) \in E(K_{m,n})$, for $1 \le i \le m, 1 \le j \le n$. Suppose $K_{m,n} \in \Gamma_k(A)$, then we have there exist an IAML f with $f(v_i u_j) = k$, for $1 \le i \le m, 1 \le j \le n$.Now f is an IAML of $K_{m,n}$ implies $k = f(v_1) = f^{**}(v_1) = 2nk$, since $f^*(v_1u_j) = 2k$ for $1 \le j \le n$, that is (2n-1)k = 0 in A, which implies O(k) divides 2n - 1. similarly by considering the equation $f(u_1) = f^{**}(u_1)$ we get $k = f(u_1) = f^{**}(u_1) = 2mk$, that is (2m-1)k = 0 in A, which implies O(k) divides 2m-1. Conversely suppose that O(k) divides 2m-1 and O(k) divides 2n - 1. Consider the vertex label $f(v_i) = k = f(u_i)$, for $v_i, u_j \in V(K_{m,n}), 1 \le i \le m, 1 \le j \le n$. Then $f^*(v_i, u_j) = 2k$ for $1 \le i \le m, 1 \le j \le n$. There for $i = 1, 2, 3, \dots, m, f^{**}(v_i) =$ $\sum_{i=1}^{n} f^*(v_i u_j) = 2nk = k$, since O(k) divides 2n - 1. Thus we have $f^{**}(v_i) = f(v_i) = k$ for $i = 1, 2, 3, \dots, m$. In a similar way, we have $f^{**}(u_j) = f(u_j) = k$ for $j = 1, 2, 3, \dots, n$. Hence we have $f = f^{**}$, Thus we get $K_{m,n} \in \Gamma_k(A)$. This concludes the proof.

References

- ^[1] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Springer, 2012.
- [2] F. Harary, *Graph Theory*, Addison-Wesley, Reading, MA,1972.
- ^[3] Chartrand G, Zhang P, *Introduction to Graph Theory*, McGraw-Hill, Boston; 2005.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

