
Malaya Journal of Matematik, Vol. 8, No. 1, 59-61, 2020

https://doi.org/10.26637/MJM0801/0011

Induced magic labeling of some graphs
K.B. Libeeshkumar1* and V. Anil Kumar2

Abstract
Let G = (V,E) be a graph and let (A,+) be an Abelian group with identity element0. Let f : V → A be a vertex
labeling and f ∗ : E → A be the induced labeling of f , defined by f ∗(v1v2) = f (v1)+ f (v2) for all v1v2 ∈ E. Then
f ∗ again induces a labeling say f ∗∗ : V → A defined by f ∗∗(v) = ∑

vv1∈E
f ∗(vv1). A graph G = (V,E) is said to be an

Induced A-Magic Graph (IAMG) if there exists a non zero labeling f : V → A such that f ≡ f ∗∗. The function f ,
so obtained is called an Induced A-Magic Labeling (IAML) of G and a graph which has no such Induced Magic
Labeling is called a Non-induced magic graph. In this paper we discuss the existence of Induced Magic Labeling
of some special graphs like Pn, Cn, Kn and Km,n.
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1. Introduction
This paper deals with only finite, un directed simple and

connected graphs. We refer [3] for the phrasing and stan-
dard notations related to graph theory. A graph is a pair
G = (V,E), where V,E are the vertex set and edge set respec-
tively. The degree of a vertex v in G is the number of edges
incident at v and it is denoted as deg(v). Let (A,+) be an
Abelian group with identity element0. Let f : V → A be a
vertex labeling and f ∗ : E→ A be the induced edge labeling
of f , defined by f ∗(v1v2) = f (v1)+ f (v2) for all v1v2 ∈ E.
Then f ∗ again induces a vertex labeling say f ∗∗ : V → A de-
fined by f ∗∗(v) = ∑

vv1∈E
f ∗(vv1). A graph G = (V,E) is said

to be an an Induced A-Magic Graph (IAMG) if there exists
a non zero labeling f : V → A such that f ≡ f ∗∗. The func-
tion f , so obtained is called an Induced A-Magic Labeling
(IAML) of G and a graph which has no such Induced Magic
Labeling is called a Non-induced magic graph. If an induced
magic labeling f where f (v) = k for all verex v in G,then f

is called k-induced magic labeling of G and G,a k-induced
magic graph.This paper discuss some special Induced magic
graphs that belongs to the following sets:

(i) Γ(A) := Set of all induced A-magic graphs.

(ii) Γ(A, f ) :=Set of all induced A-magic graphs with IAML
f .

(iii) Γk(A) := Set of all induced A-magic graphs with k-
induced magic labeling.

2. Main Results
Lemma 2.1. Let G = (V,E) be a graph and f is an IAML
of G. If v1 ∈ V is a pendant vertex adjacent to v ∈ V, then
f (v1) = 0.

Proof. Let f be an IAML of a graph G and v1 be a pendant
vertex adjacent to v. Then f ∗(vv1) = f (v)+ f (v1) and v1 is
a pendant vertex implies that f ∗∗(v1) = f (v)+ f (v1). Also
f is an induced magic labeling of G implies that f (v1) =
f ∗∗(v1) = f (v)+ f (v1). Thus f (v) = 0.

Corollary 2.2. If G has a pendant vertex, then G /∈ Γk(A) for
any Abelian group A.

Proof. Proof is indisputable from the lemma 2.1.
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Lemma 2.3. Let f be an IAML of a graph G and wuvz be
a path in G with w and z are pendant vertices in G, then
f ∗(uv) = 0.

Proof. Suppose f is an IAML of a graph G= (V,E) and wuvz
is any path in G with w and z are pendant vertices. Then by the
lemma 2.1, we have f (u) = 0 = f (v). Hence f ∗(uv) = 0.

Theorem 2.4. Let f be a vertex labeling of a graph G. Then f
is an IAML of G, if and only if [deg(u)−1] f (u)+∑ f (v) = 0,
for any vertex u ∈V (G), where the summation is taken over
all the vertices v which are adjacent to u.

Proof. Let f be an IAML of G and u be a vertex in G with
deg(u) = m. Let v1,v2,v3, . . . ,vm be those vertices adjacent
to u in G. Now f is an IAML if and only if f (u) = f ∗∗(u) =
f ∗(uv1)+ f ∗(uv2)+ f ∗(uv3)+· · ·+ f ∗(uvm)=m f (u)+ f (v1)
+ f (v2)+ f (v3)+ · · ·+ f (vm).
That is if and only if (m− 1) f (u)+∑ f (v) = 0, where v is
adjacent to u.

Theorem 2.5. Pn ∈ Γ(A) if and only if n is a multiple of 3.

Proof. Suppose n = 3m, for some integer m. Let Pn be the
path with vertex set V = {v1,v2,v3, . . . ,vn−1,vn}. For any a 6=
0 in A, define f : V → A as :

f (vi) =


a if i = 1,4,7, · · · ,3m−2
0 if i = 2,5,8, · · · ,3m−1
a−1 if i = 3,6,9, · · · ,3m.

Then, f is an IAML of Pn. Conversely suppose n is not a
multiple of 3, then n = 3m+1 or n = 3m+2 for some positive
integer m. Let f :V→A be a vertex labeling function with f ≡
f ∗∗.Then for 1≤ k≤ n−3 and any path vkvk+1vk+2vk+3 in Pn,
we have f (vk+1) = f ∗∗(vk+1) implies that f (vk)+ f (vk+1)+
f (vk+2) = 0. Also f (vk+2) = f ∗∗(vk+2) implies that f (vk+1)+
f (vk+2) + f (vk+3) = 0.Therefore we should have f (vk) =
f (vk+3). Let us deal with the following cases:

Case 1 : n = 3m+1

In this context, from the above discussion we have,
0= f (v2)= f (v5)= f (v8)= · · ·= f (v3m−1)= f (vn−2)
and 0 = f (vn−1) = f (vn−4) = · · ·= f (v6) = f (v3) = 0.
Thus f (v3) = 0 and f (v1) + f (v3) = 0 implies that
f (v1)= 0, which again implies that 0= f (v1)= f (v4)=
f (v7) = · · · = f (v3m+1) = f (vn.) Hence f ≡ 0, There-
fore f is not an IAML.

Case 2 : n = 3m+2

In this context from the above discussion we have, 0 =
f (v2) = f (v5) = f (v8) = · · · = f (v3m+2) = f (vn) and
0 = f (vn−1) = f (vn−4) = · · · = f (v4) = f (v1). Thus
f (v1) = 0 and f (v1)+ f (v3) = 0 implies that f (v3) =
0, which implies 0 = f (v3) = f (v6) = f (v9) = · · · =
f (v3m) = f (vn−2.) Hence f ≡ 0. Therefore, f is not an
IAML.

Hence if n is not a multiple of a 3, then Pn /∈ Γ(A)

Theorem 2.6. Let {v1,v2,v3 · · · ,vn−1,vn = v0} be the vertex
set of Cn. Then for any path vk−1vkv(k+1)mod n, f is an IAML of
Cn if and only if f (vk−1)+ f (vk)+ f (v(k+1)mod n) = 0, where
1 ≤ k ≤ n. Moreover any IAML f of Cn satisfies f (vk) =
f (v(k+3)mod n) for 1≤ k ≤ n.

Proof. For k = 1,2,3, · · · ,n, consider the path vk−1vk
v(k+1)mod n in Cn. Observe that f is an IAML of Cn if and only
if f (vk) = f ∗∗(vk), which holds if and only if f (vk−1)+ f (vk)
+ f (v(k+1)mod n) = 0.
Also for any 0≤ k≤ n−1, let vkvk+1v[(k+2) mod n]v[(k+3) mod n],
is a path in Cn, we have f (vk)+ f (vk+1)+ f (v(k+2) mod n) = 0
and f (vk+1)+ f (v(k+2) mod n)+ f (v(k+3) mod n) = 0.
Thus f (vk) = f (v(k+3)mod n).

Corollary 2.7. Cn ∈ Γk(A) if and only if O(k) = 3, where
O(k) denotes the order of k in A.

Proof. Consider Cn with V (Cn)= {v1,v2, · · · ,vn−1,vn = v0.}.
Suppose Cn ∈ Γk(A),that is there exist an IAML f of Cn
with f (vi) = k for i = 1,2,3, . . . ,n.Then by theorem 2.6 we
have 3k = 0 in A,which implies O(k) = 3.Conversely sup-
pose O(k) = 3. Then consider the vertex label f (vi) = k for
i = 1,2,3, · · · ,n. Since f (vi) = k for all i and O(k) = 3, we
have, f ∗(vivi+1) = 2k for all i, and which implies f ∗∗(vi) =
f ∗(vivi+1)+ f ∗(vi−1vi) = 4k = k = f (vi), for all i. Thus f is
an IAML of Cn, that is Cn ∈ Γk(A). Hence the proof.

Corollary 2.8. Cn has a non-constant IAML if and only if n
is a multiple of 3.

Proof. Consider Cn with vertex set {v1,v2, . . . ,vn−1,vn = v0.}.
Suppose n = 3k, for some integer k. Let a,b,c be any three
distinct elements in A, such that a+ b+ c = 0, then define
f : V (Cn)→ A as follows:

f (vi) =

 a if i = 1,4,7, · · · ,3k−2
b if i = 2,5,8, · · · ,3k−1
c if i = 3,6,9, · · · ,3k.

Then clearly f is a non constant IAML of Cn. Conversely
assume that n is not a multiple of 3. Then either n = 3k+1
or 3k+ 2 for some integer k. Let f be an IAML of Cn and
f (v1) = w.

Case 1: n = 3k+1

In this context, by the theorem 2.6 we have:
w= f (v1)= f (v4)= f (v7)= · · ·= f (v3k+1)= f (vn)=
f (v3) = f (v6) = f (v9) = · · ·= f (v3k) = f (v2) = f (v5)
= f (v8) = · · ·= f (v3k−1).
Thus f (vi) = w, for i = 1,2,3, · · · ,n.

Case 2: n = 3k+2

In this context, by the theorem 2.6 we have:
w= f (v1)= f (v4)= f (v7)= · · ·= f (v3k+1)= f (v2)=
f (v5) = f (v8) = · · ·= f (v3k−1) = f (v3k+2) = f (vn) =
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f (v0) = f (v3) = f (v6) = f (v9) = · · · f (v3k).
Thus in this case also f (vi) = w, for i = 1,2,3, · · · ,n.

Thus in either case, we have f (vi) = w for i = 1,2,3, · · · ,n.
Thus if n 6≡ 0(mod 3) then every IAML of Cn is a constant
IAML of Cn.

Theorem 2.9. The complete graph Kn ∈ Γ(A, f ) if and only
if (n−3) f (v1) = (n−3) f (v2) = (n−3) f (v3) = · · ·=
(n−3) f (vn) =− [ f (v1)+ f (v2)+ f (v3)+ · · ·+ f (vn)] where
v1,v2,v3 . . . ,vn are the vertices of Kn.

Proof. For 1≤ i, j ≤ n, we have f (vi) = f ∗∗(vi) holds if and
only if f (v1) + f (v2) + f (v3) + · · · f (vi−1) + (n− 2) f (vi) +
f (vi+1) + · · ·+ f (vn) = 0, similarly the condition f (v j) =
f ∗∗(v j) is equivalent to the condition f (v1)+ f (v2)+ f (v3)+
· · · f (v j−1)+(n−2) f (v j)+ f (v j+1)+ · · ·+ f (vn) = 0. Thus
we have f is an IAML if and only if (n−3) f (vi) =
(n−3) f (v j) =− [ f (v1)+ f (v2)+ f (v3)+ · · ·+ f (vn)] , for
1≤ i, j ≤ n. Hence the proof.

Corollary 2.10. Kn ∈Γk(A) if and only if O(k) divides 2n−3,
where O(k) denotes the order of k in A.

Proof. Let Kn be the complete graph with vertex set {v1,v2,v3
· · · ,vn}. We have Kn ∈ Γk(A), means there exist an IAML f
with f (v) = k, for all v ∈ V (Kn). Also by the theorem 2.9,
we have f is an IAML of Kn if and only if (n− 3) f (v) =
− [ f (v1)+ f (v2)+ f (v3)+ · · ·+ f (vn)] , for all v ∈V (Kn).
Thus Kn ∈ Γk(A) if and only if (n−3)k =−nk, that is if and
only if (2n−3)k = 0, that is if and only if O(k) divides 2n−3
in A. Completes the proof.

Theorem 2.11. Km,n ∈ Γk(A) if and only if O(k) divides 2m−
1 and O(k) divides 2n−1,where O(k) denotes the order of k
in A.

Proof. Let V (Km,n) = {v1,v2,v3, · · · ,vm,u1,u2,u3, · · · ,un}
with each (viu j) ∈ E(Km,n), for 1 ≤ i ≤ m,1 ≤ j ≤ n. Sup-
pose Km,n ∈ Γk(A), then we have there exist an IAML f with
f (viu j) = k, for 1 ≤ i ≤ m,1 ≤ j ≤ n.Now f is an IAML of
Km,n implies k = f (v1) = f ∗∗(v1) = 2nk, since f ∗(v1u j) = 2k
for 1 ≤ j ≤ n, that is (2n− 1)k = 0 in A, which implies
O(k) divides 2n− 1. similarly by considering the equation
f (u1) = f ∗∗(u1) we get k = f (u1) = f ∗∗(u1) = 2mk, that
is (2m− 1)k = 0 in A, which implies O(k) divides 2m− 1.
Conversely suppose that O(k) divides 2m− 1 and O(k) di-
vides 2n−1. Consider the vertex label f (vi) = k = f (u j), for
vi,u j ∈ V (Km,n),1 ≤ i ≤ m,1 ≤ j ≤ n. Then f ∗(vi,u j) = 2k
for 1≤ i≤m,1≤ j≤ n. There for i= 1,2,3, · · · ,m, f ∗∗(vi) =
Σn

j=1 f ∗(viu j) = 2nk = k, since O(k) divides 2n−1. Thus we
have f ∗∗(vi)= f (vi)= k for i= 1,2,3, · · · ,m. In a similar way,
we have f ∗∗(u j) = f (u j) = k for j = 1,2,3, · · · ,n. Hence we
have f = f ∗∗, Thus we get Km,n ∈ Γk(A). This concludes the
proof.
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