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Diffraction problem due to water wave loads on a
cylinder over a coaxial bottom-mounted barrier in a
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Abstract
In this work, we used the channel multipoles, eigenfunction expansion and separation of variables method to
determine the diffracted potential of the wave for a floating solid cylinder in the free surface of the water over
a coaxial bottom-mounted cylindrical barrier in a channel. Also, the mathematical formulation of the proposed
model based on the linearized water wave theory. The forces due to diffraction acting on the floating cylinder are
described here based on the Bernoulli’s equation of fluid flow. The effect of various parameters of that composite
structure on the exciting force and overturning moment of the floating cylinder is investigated. The result shows
that a significant influence of forces acting on the floating cylinder in the presence of a bottom-mounted barrier in
the channel which gives an accuracy of the analytical results.
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1. Introduction
The investigation of the diffraction and radiation problem

on ocean structures can give fundamental data of hydrody-
namic properties of forces due to diffraction and radiation of
the structure which can likewise be utilized as the premise to
examine the problem of fluid-structure interaction. For the
examination of structure in a channel, the main difficulties
arise from the boundary conditions that occur at the walls of
the channel. Therefore, the solution of the problem gener-
ally shown in literature which can be obtained by using the
channel multipoles method. In [1] considered the diffraction
problem of a couple of cylinders in a channel and solved
the problem by using the method of image and green’s func-
tion method. In [2] formulated the diffraction problem of a
couple of cylinders in a channel and derived the first-order
force on the cylinders in the presence of channel walls. In [3]
gave the fundamental information diffraction and radiation
of water waves by a cylinder in the water of finite depth. In
[4, 5] studied wave generated by an array of cylinders in a
channel and they used the multipoles method to compute the
analytical solution. In [6, 7] presented the wave diffraction
problem generated by a pair of a cylinder in water and ana-
lyzed the effect of hydrodynamics properties on the cylinders
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for various parameters. In [8] derived second-order forces for
the wave generated by an offshore structure in a channel. In
[9, 10], introduced the channel multipoles method to solve the
scattering and radiation problem of water wave by a truncated
cylinder in a channel. Following the approach of [10], in [11]
presented modified the scattering problem of water waves by
axisymmetric bodies in a channel. In [12, 13] analysed the
importance of the reflection and transmission coefficients due
to the diffraction of water waves by a cylinder in a channel and
compared both theoretical and experimental results. In [14]
gave a fundamental analytical solution of three-dimensional
incident potential due to incident waves on a cylinder in the
water. In [15, 16] studied the hydrodynamic effect on a float-
ing cylinder in the presence of a bottom obstacle. In [17]
presented the wave generated by the cylinder in a channel and
by using the method of image, they solved both diffraction and
radiation problem due to floating buoy which is placed above
a bottom-mounted cylinder. In the present paper, the separa-
tion of variables method is used to evaluate the hydrodynamic
properties due to wave interaction with the cylinder under the
assumption of the linearized theory of water waves i.e. we
assumed the fluid is inviscid, homogenous and incompressible.
Numerical results are presented with graphical representation
for a range of wave number and various parameters of the
proposed device.

2. Preliminaries
2.1 Formulation

Let us assume a linear water wave propagation in an ideal
fluid of depth H and the fluid bounded by infinitely long
channel walls of width d. Also, there is a composite struc-
ture consist of a solid cylinder which is floating in the free
surface of the water and under it is a bottom-mounted cylin-
drical barrier and both the cylinder situated on the centreline
of the walls. Let us consider the cartesian coordinate sys-
tem of the model O− xyz is defined with the origin O at
the floor of the sea as indicated in Fig. (1) and x−axis di-
rected along the propagation of wave and z−axis directed
vertically upward. The usual cylindrical coordinate O− rθzis
define with x = r cosθ and y = r sinθ . Hence the floating
solid cylinder having radius r1 occupies the space is given
by h1 +h2 ≤ z≤ h1 +h2 +h3, r ≤ r1, 0≤ θ ≤ 2π , after that
which is denoted by Cyl.1 and the bottom-mounted cylindri-
cal barrier having radius r2(≥ r1) occupies the space is given
by 0≤ z≤ h1, r ≤ r2, 0≤ θ ≤ 2π , after that it is denoted by
Cyl.2.
Since we assume that the fluid is homogeneous and irrota-
tional, hence based on the linearity of water wave, the velocity
potential Φ(x, y, z, t) can be expressed as follow:

Φ = Re[φ(x, y, z)e−itω ], (2.1)

where, t and ω define for the time and angular frequency, re-
spectively, i =

√
−1, Re denotes real part of complex quantity

and time independent velocity potential φ satisfies the three
dimensional Laplace’s equation.

With unit amplitude of the wave, the incident wave poten-
tial in the the fluid domain is given by (MacCamy and Fuchs
[14])

φi =−
igcosh(k.z)
ω cosh(k.H)

∞

∑
n=0

µnJn(kr)cosnθ , (2.2)

where k be wave number and it is determine from the fol-
lowing relation: ω2 = gk tanh(kh1), Jn(.) stands for Bessel
function of the first kind of order n, the gravitational accelera-
tion denoted by g and µn is given by

µn =

{
1, n = 0
2in, n = 1, 2, 3, ....

(2.3)

Therefore, if φs be the diffracted potential in the fluid domain,
then total potential φ can be expressed as follow:

φ = φi +φs. (2.4)

Also, the whole domain of the fluid can be separate by virtual
boundary into three numbers of sub-domain as shown in Fig.
(1). Let the sub-domains are denoted by Ω1, Ω2 and Ω3
and there diffracted potential are define by φ 1

s , φ 2
s and φ 3

s ,
respectively.

Figure 1. Structural model.

3. Diffraction problem

3.1 Boundary-value problem of diffraction
The diffracted potential φs is governed by the following gov-
erning equation with boundary conditions:

∇
2
φs = 0, (0 < z < H,−∞ < x < ∞,−d

2
< y <

d
2
),

(3.1)

∂φs

∂ z
− ω2

g
φs = 0; (z = H), (3.2)

∂φs

∂ z
= 0; (z = 0, r ≥ r2; z = h1, r ≤ r2), (3.3)
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∂ (φi +φs)

∂ r
= 0; (h1 +h2 < z < h1 +h2 +h3, r = r1;

0 < z < h1, r = r2),
(3.4)

∂φs

∂y
= 0; (y =±d

2
), (3.5)

lim
r→∞

√
r
(

∂φs

∂ r
− ikφs

)
= 0. (3.6)

Therefore, we will derived the diffracted wave potential for
each subregions as indicated in structural model by using the
above boundary-value problem.

3.2 Vertical eigenfunctions
The vertical eigenfunction i.e. z−functions can be deter-

mined by applying separation of variable method and these
are define by

fm(z) = cos(λm.z), for Ω1, (3.7)
gm(z) = cos[αm.(z−h1)], for Ω2, (3.8)
hm(z) = cos[βm.(z−h1)], for Ω3, (3.9)

where the eigenvalues λm, αm and βm can be determined by
applying the free surface condition given by the equation (3.2)
and it will deduce the following dispersion relations:

λ1 =−i.k, ω2

g = g tanh(k.H) for m = 1,
ω2

g =−λm tan(λm.H) for m = 2,3, . . . ,

α1 =−ike,
ω2

g = ke tanh[ke.(H−h1)] for m = 1,
ω2

g =−αm tan[αm.(H−h1)], m = 2,3, . . . ,

βm =
(m−1).π

h2
, m = 1,2,3, . . . ,

(3.10)

where ke be the wave number in the sub-domain Ω2. Hence
we deduced the Helmholtz equation by applying the diffracted
wave potential φ 1

s in equation (3.1) for the sub-domain Ω1
and it is given by

∂ 2φ 1
s

∂x2 +
∂ 2φ 1

s

∂y2 −λ
2
mφ

1
s = 0. (3.11)

3.3 Diffraction potentials
In this section, we derived the analytical solution of the

above boundary-value problem given by equations (3.1)-(3.6)
based on the method of channel multipoles and separation of
variables. In the sub-region Ω1, we apply the channel multi-
poles method which is developed by Linton and Evnas [10]
and for the other sub-regions, we solved the problem by using
separation of variables method. Therefore, the numerical so-
lutions of diffracted potentials for each sub-regions are given
as follow:

• Region Ω1:

φ
1
s =

∞

∑
n=0

∞

∑
m=1

∞

∑
q=0

fm(z)aq,m
[
Un(λmr)δqn +E(n,q;m)Vn(λmr)

]
×

cosnθ .(3.12)

• Region Ω2:

φ
2
s =−φi +

∞

∑
n=0

∞

∑
m=1

[bn,mSn(αmr)+ cn,mTn(αmr)]×

gm(z)cosnθ . (3.13)

• Region Ω3:

φ
3
s =−φi +

∞

∑
n=0

[
dn,1rn +

∞

∑
m=2

dn,mIn(βmr)hm(z)

]
×

cosnθ . (3.14)

where an,m, bn,m, cn,m and dn,m are unknown constants and the
parameter E(n,q;m) is define by

E(2n+1,2q+1;m) =



−4i
π

∫
∞

0
e−(kζ d)/2B2n+1(z)B2q+1(z)

ζ sinh kζ d
2

dz+

2
kd
2

∑
j
l=0 µlz−1

l B2n+1(zl)B2q+1(zl), m = 1

2
∫

∞

1
e−(λmzd)/2A2n+1(z)A2q+1(z)

ζ sinh λmzd
2

dz, m≥ 2

(3.15)

E(2n,2q;m) =



−2iµn

π

∫
∞

0
e−(kζ d)/2A2n(z)A2n(z)

ζ
sinh kζ d

2 dz+
µn
kd
2

∑
j
l=0 µlz−1

l A2n(zl)A2q(zl), m = 1

µn
∫

∞

1
e−(λmzd)/2A2n(z)A2q(z)

ζ sinh λmzd
2

dz, m≥ 2

(3.16)

and

E(2n1,2q;m) = E(2n,2q+1;m) = 0, m = 1,2,3, . . . ,
(3.17)

with

A2q+1(z) =

{
cos(2q+1)sin−1 z, z≤ 1
i(−1)q sinh[(2q+1)cosh−1 z], z > 1,

(3.18)

A2q(z) =

{
cos(2qsin−1 z), z≤ 1
(−1)q cosh(2qcosh−1 z), z > 1,

(3.19)

B2q+1(z) =

{
sin[(2q+1)sin−1 z], z≤ 1
(−1)q cosh[(2q+1)cosh−1 z], z > 1,

(3.20)

ζ (z) =

{
−i(1− z)1/2, z≤ 1

(z2−1)1/2
, z > 1

(3.21)

and the integral values of equations given by (3.16) and
(3.15) for m= 0 are taken only the principal value of integral at
their singularities and the principal integral value will satisfies
the Helmholtz equation (3.11). Since the integrand of the
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integral considered as a complex valued function in z which
has simple poles at z =±zl , l = 0, 1, 2, ..., where

zl = (1− (2lπ/kd)2)
1/2

, l = 0,1,2, ..., j

zl = i((2lπ/kd)2−1)
1/2

, l ≥ j+1

with 2 jπ < kd < 2( j+1)π . Also the radial functions Un(.),
Vn(.), Sn(.) and Tn(.) appeared in velocity potentials expres-
sion are given by



Un(λ1r) = H(1)
n (iα1r) = H(1)

n (kr), for m = 1
Un(λmr) = Kn(λmr), for m = 2,3, . . .
Vn(λ1r)(r) = Jn(λ1r) = Jn(kr), for m = 1
Vn(λmr) = In(λmr) for m = 2,3, . . .
Sn(α1r) = H(1)

n (α1r) = H(1)
n (ker), for m = 1

Sn(αmr) = Kn(αmr), for m = 2,3, . . .
Tn(α1r) = H(2)

n (α1r) = H(2)
n (ker), for m = 1

Tn(αmr) = In(αmr), for m = 2,3, . . . ,

(3.22)

where H(1)
n (.) stands for the first kind of Hankel function of

order n, In(.) and Kn(.) are the first kind and second kind of
modified Bessel function of order n and H(2)

n (.) is define for
second kind of Hankel function of order n.

4. Main Results
4.1 Hydrodynamic forces and moment

The hydrodynamic forces, namely horizontal and vertical
force acting on the floating cylinder i. e. Cyl.1 and overturning
moment of the Cyl.1 concerning for the centroid of the bottom
face of the cylinder are calculated by integrating the dynamic
pressure which is given by Bernoulli’s equation of continuity
and it can be express in term of velocity potential as follow:

P = −ρ
∂Φ(r, θ , z, t)

∂ t
, (4.1)

where ρ denoted the density of the fluid Hence the time-
independent dynamic pressure p based on water wave theory
can be written as:

p = −iωφ(r,θ ,z). (4.2)

Let Fs1, Fv1 and Mx be the horizontal force, vertical force
and overturning moment due to wave loads on Cyl.1 and the
expression are obtained as follow:

Fs1 = −iωr1ρ

∫ 2π

0

∫ h1+h2+h3

h1+h2

[φi(r1,θ ,z)+φ
2
s (r1,θ ,z)]×

cosθdzdθ

= −iωr1ρπ

∞

∑
m=1

[b1,mS1(αmr1)+C1,mT1(αmr1)]×

sinαm(h2 +h3)− sinαmh2

αm
, (4.3)

Fv1 = iωρ

∫ r1

0

∫ 2π

0
[φi(r,θ ,h1 +h2).r cosθdθdr, (4.4)

= 2iωπρ

[
d0,1r2

1
2

+
∞

∑
m=2

[d0,mr1I1(βmr1)hm(h1)]

]
, (4.5)

Mx =− iωρ

∫ 2π

0

∫ h1+h2+h3

h1+h2

[φi(r1,θ ,z)+φ
2
s (r1,θ ,z)]×

(z−h1−h2)r1 cosθdzdθ − iωρ×∫ 2π

0

∫ r1

0
[φi(r,θ ,h1 +h2)+φ

3
s (r,θ ,h1 +h2)].r2 cosθdrdθ ,

=− iωρπr2
1

∞

∑
m=1

[b1,mS1(αmr1)+ c1,mT1(αmr1)]×(
cosαm(h2 +h3)

α2
m

− h3 sinαm(h2 +h3)

αm

)
−

iωρπ

[
d1,1r4

1
4

+
∞

∑
m=2

d1,mr2
1 cos(βmh2)

βm
.I2(βmr1)

]
. (4.6)

And the respectively non-dimensional forces and moment are
express as follow:

Fs1

u0
= − iω

gr1

∞

∑
m=1

[b1,mS1(αmr1)+C1,mT1(αmr1)]×

sinαm(h2 +h3)− sinαmh2

αm
. (4.7)

Fv1

u0
=

2iω
gr1

[
d0,1r2

1
2

+
∞

∑
m=2

[d0,mr1I1(βmr1)hm(h1)]

]
, (4.8)

Mx

u0r1
= − iω

gr1

∞

∑
m=1

[b1,mS1(αmr1)+ c1,mT1(αmr1)]×(
cosαm(h2 +h3)

α2
m

− h3 sinαm(h2 +h3)

αm

)
−

iωρπ

[
d1,1r4

1
4

+
∞

∑
m=2

d1,mr2
1 cos(βmh2)

βm
.I2(βmr1)

]
,(4.9)

where u0 = gρπr2
1.

4.2 Continuity conditions
Continuity conditions are also known as matching condi-

tions and these conditions are arises between the physical and
virtual boundary to preserved the flow of continuity. There-
fore along the boundary r = r1 as in indicated Fig.(1), we
get

φ
1
s = φ

2
s (h1 ≤ z≤ h1 +h2 +h3), (4.10)

∂φ 1
s

∂ r
=

{
− ∂φi

∂ r (0≤ z≤ h1),
∂φ2

s
∂ r (h1 ≤ z≤ h1 +h2 +h3).

(4.11)

Along r = r1, we have

φ
2
s = φ

3
s (h1 ≤ z≤ h1 +h2), (4.12)

∂φ 2
s

∂ r
=

{
∂φ3

s
∂ r (h1 ≤ z≤ h1 +h2),

− ∂φi
∂ r (h1 +h2 ≤ z≤ h1 +h2 +h3).

(4.13)

Applying the velocity potential given by equations (3.12)-
(3.13) into the continuity equations (4.10)-(4.13), we can
calculated the unknown constant an,m, bn,m, cn,m and dn,m ap-
pearing in the the expression of velocity potential as well as
in hydrodynamic properties.
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4.3 Numerical result
Now we investigate the hydrodynamic effects of the ra-

dius of the bottom-mounted barrier i.e. Cyl.2 by taking
r2 = 0.2H, 0.3H, 0.4H, 0.5H, 0.6H with fixed H = 3 m (in
meters). Fig. (2) illustrate the variation of non-dimensional
horizontal force Fs1/u0 versus the non-dimensional wave num-
ber kr1 with r1 = 0.2H and d = 0.8H. From the figure, we
have seen that the curves of forces oscillating for the lower
value of r2 (for example, r2 ≤ 0.5d), but the maximum value
of the horizontal force occurs for the maximum value of r2.
Therefore, we have seen that same behavior as given in Borah
and Hassan [2] which gives the validation of our analytical
result. Also, it is clear from the curves that the oscillating
is occurs only at lower values of frequency as well as wave
number and for maximum values of frequency, the forces
almost vanish. Fig. (3) demonstrated the variation of non-
dimensional vertical force Fv1/u0 versus the non-dimensional
wave number kr1 with r1 = 0.2H and d = 0.8H. From the fig-
ure, we observed that there is no distinct variation of tends of
the force for all values of r2. But due to the effect of channel
walls, the incident wave will excite near trapping. Therefore,
we have seen that a small spike behavior of the curves near
trapping (Challan et al. [5]).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F s
1/u

0

kr1

 r2=0.2H
 r2=0.3H
 r2=0.4H
 r2=0.5H
 r2

Figure 2. Variation of horizontal force against wave number
for various radius of the barrier r2.

Fig. (4) show the variation of overturning moment Mx/(u0r1)
versus the non-dimensional wave number kr1 with r1 = 0.2H
and d = 0.8H. From the figure, we observed that the moment
is less affected by the barrier than the vertical force. Also,
in the first three values of r2 (for example, r2 ≤ 0.5d), the
curve of the moment have more than one flex point, as well
as a small spike, occurs and for the last two situations, the
curves show that no obvious oscillation occurs. But from the
Figs.(2)-(4), we observed a significant effect on the forces and
overturning moment in the presence of a barrier inside the
channel.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F v
1/u

0

kr1

 r2=0.2H
 r2=0.3H
 r2=0.4H
 r2=0.5H
 r2

Figure 3. Variation of vertical force against wave number for
various radius of the barrier r2.

Now if we make a comparison between our present result
and result given by Borah and Hassan [2], then we have seen
that same observation in both results in the case of horizontal
force. The difference between these two outcomes might be
credited to the way that our work contains a solid cylinder in
place of a hollow cylinder considered by Borah and Hassan
[2]. The significant difference in our results that we observed
in peak values of horizontal force for the different radius of
the barrier.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
x/(
u 0
r 1)

kr1

 r2=0.2H
 r2=0.3H
 r2=0.4H
 r2=0.5H

Figure 4. Variation of overturning moment against wave
number for various radius of the barrier r2.

5. Conclusion
In this work, the problem of water wave diffraction by a

composite structure of a vertical solid cylinder coaxial over
a cylindrical barrier in a channel is developed. First formu-
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lated the boundary-value problem under the assumption of
inviscid, ideal and homogeneous fluid. Consideration of ir-
rotational motion allows us to present the velocity potential
which satisfies Laplace’s equation. To solve the boundary-
value problem, we apply the method of channel multipoles
as well as the separation of variables and we obtained the
velocity potential in terms of Bessel’s function. Analytical so-
lution of velocity potential allows us to obtained wave forces
and overturning moment due to diffraction. Numerical results
for the forces and moment for various radii of the barrier are
presented graphically. From the graph, we conclude that the
horizontal force acting on the floating cylinder is less affected
by the barrier inside the walls. Also, we observed in all three
cases of the forces and moment, the curves are oscillating
within the lower values of frequency and for the higher value
of frequency, the curves almost tend to zero.
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