
Malaya J. Mat. 2(2)(2014) 91–102
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Abstract

In the present investigation, we introduce a new class of meromorphic parabolic starlike functions with a
fixed point defined in the punctured unit disk ∆∗ := {z ∈ C : 0 < |z| < 1} by making use of the Srivastava-
Attiya Operator J s

b . We obtained Coefficient inequalities, growth and distortion inequalities, as well as closure
results for functions f ∈ Ms

b(λ, β, γ). We further established some results concerning convolution and the
partial sums.
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1 Introduction

Let ξ be a fixed point in the unit disc := {z ∈ C : |z| < 1}. Denote by H() the class of functions which are
regular and

A(ξ) = { f ∈ H() : f (ξ) = f ′(ξ)− 1 = 0}.

Also denote by
Sξ = { f ∈ A(ξ) : f is univalent in },

the subclass of A(ξ) consist of the functions of the form

f (z) = (z− ξ) +
∞

∑
n=2

an(z− ξ)n, (1.1)

that are analytic in the open unit disc . Note that S0 = S be a subclass ofA consisting of univalent functions in .
By S∗ξ (γ) and Kξ(γ), respectively, we mean the classes of analytic functions that satisfy the analytic conditions

<
(

(z− ξ) f ′(z)
f (z)

)
> γ,<

(
1 +

(z− ξ) f ′′(z)
f ′(z)

)
> γ

and z ∈ for 0 ≤ γ < 1, introduced and studied by Kanas and Ronning [11]. The class S∗ξ (0) is defined by
geometric property that the image of any circular arc centered at ξ is starlike with respect to f (ξ) and the
corresponding class Kξ(0) is defined by the property that the image of any circular arc centered at ξ is convex.
We observe that the definitions are somewhat similar to the ones introduced by Goodman in [8] and [9] for
uniformly starlike and convex functions, except that in this case the point ξ is fixed. In particular, K0 = K(0)
and S∗0 = S∗(0) respectively, are the well-known standard class of convex and starlike functions(see [21]).
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Let Σ denote the class of meromorphic functions f of the form

f (z) =
1
z

+
∞

∑
n=1

anzn, (1.2)

defined on the punctured unit disk ∆∗ := {z ∈ C : 0 < |z| < 1}.
Denote by Σξ be the subclass of A(ξ) consist of the functions of the form

f (z) =
1

z− ξ
+

∞

∑
n=1

an(z− ξ)n, an ≥ 0; z 6= ξ. (1.3)

A function f of the form (1.3) is in the class of meromorphic starlike of order γ (0 ≤ γ < 1) denoted by Σ∗ξ(γ),
if

−<
(

(z− ξ) f ′(z)
f (z)

)
> γ, z− ξ ∈ ∆ := ∆∗ ∪ {0} (1.4)

and is in the class of meromorphic convex of order γ (0 ≤ γ < 1) denoted by ΣK
ξ (γ), if

−<
(

1 +
(z− ξ) f ′′(z)

f ′(z)

)
> γ, z− ξ ∈ ∆ := ∆∗ ∪ {0}.

For functions f (z) given by (1.3) and g(z) = 1
(z−ξ) + ∑∞

n=1 bn(z − ξ)n, (bn ≥ 0) we define the Hadamard
product or convolution of f and g by

( f ∗ g)(z) :=
1

z− ξ
+

∞

∑
n=1

an bn(z− ξ)n.

The study of operators plays a vital role in the geometric function theory and its associated fields. Many
differential and integral operators can be written in terms of convolution of certain analytic functions. It is ob-
served that this formalism brings an ease in further mathematical investigation and also helps to understand
the geometric properties of such operators better.

We recall a general Hurwitz-Lerch Zeta function Φ(z, s, a) defined by (see [24])

Φ(z, s, a) :=
∞

∑
n=0

zn

(n + a)s (1.5)

(a ∈ C \ {Z−
0 }; s ∈ C, R(s) > 1 and |z| = 1)

where, as usual, Z−
0 := Z \ {N} (Z := {0,±1,±2,±3, ...}; N := {1, 2, 3, ...}). Several interesting properties

and characteristics of the Hurwitz-Lerch Zeta function Φ(z, s, a) can be found in the recent investigations by
Choi and Srivastava [5], Lin and Srivastava [12], Lin et al. [13], and see the references stated therein.

For the class of analytic functions denote by A consisting of functions of the form

f (z) = z +
∞

∑
n=2

anzn, (z ∈ )

Srivastava and Attiya [23] introduced and investigated the linear operator:

Js,b : A → A

defined in terms of the Hadamard product (or convolution) by

Js,b f (z) = Gb,s ∗ f (z) (1.6)

where, for convenience,
Gb,s(z) := (1 + b)s[Φ(z, s, b)− b−s] (1.7)

(z ∈ ; b ∈ C \ {Z−
0 }; s ∈ C; f ∈ A). For f ∈ A it is easy to observe from (1.6) and (1.7) that

Js,b f (z) = z +
∞

∑
n=2

(
1 + b
n + b

)s
anzn, (z ∈ .) (1.8)
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It is well known that the Srivastava-Attiya operator Js,b contains, among its special cases, the integral opera-
tors introduced and investigated earlier by (for example) Alexander [1], Libera [14], Bernardi [4], and Jung et
al. [10].

Motivated essentially by the above mentioned Srivastava-Attiya operator, in this paper we define a new
linear operator

J s
b : Σξ → Σξ

in terms of Hadamard product given by

J s
b f (z) = Gs

b,p ∗ f (z) (1.9)

(z− ξ ∈ ∆ := ∆∗ ∪ {0}; b ∈ C \ {Z−
0 }; s ∈ C; f ∈ Σξ),

where, for convenience
Gs

b,p(z) := (1 + b)s[Φp(z, s, b)− b−s] (1.10)

and

Φp(z, s, b) =
1
bs +

(z− ξ)−1

(1 + b)s +
(z− ξ)
(2 + b)s + ... .

For f ∈ Σξ , it is easy to observe from the above equations (1.9) and (1.10) that

J s
b f (z) =

1
z− ξ

+
∞

∑
n=1

Cs
b(n)an(z− ξ)n, (z− ξ ∈ ∆ := ∆∗ ∪ {0}) (1.11)

where

Cs
b(n) =

∣∣∣∣( 1 + b
n + 1 + b

)s∣∣∣∣ (1.12)

and (throughout this paper unless otherwise mentioned) the parameters s, b are constrained as b ∈ C \
{Z−

0 }; s ∈ C.
Motivated by earlier works on meromorphic functions by function theorists(see [2, 3, 7, 15, 16, 17, 18, 19,

20, 25]), we define the following new subclass of functions in Σξ by making use of the generalized operator
J s

b .
For 0 ≤ γ < 1 and 0 ≤ λ < 1/2, we let Ms

b(λ, β, γ) denote a subclass of Σξ consisting functions of the
form (1.3) satisfying the condition that

− <

(
(z− ξ)(J s

b f (z))′ + λ(z− ξ)2(J s
b f (z))′′

(1− λ)J s
b f (z) + λ(z− ξ)(J s

b f (z))′

)
(1.13)

> β

∣∣∣∣∣ (z− ξ)(J s
b f (z))′ + λ(z− ξ)2(J s

b f (z))′′

(1− λ)J s
b f (z) + λ(z− ξ)(J s

b f (z))′
+ 1

∣∣∣∣∣+ γ

where J s
b f is given by (1.11).

Further shortly we can state this condition by

−<
(

(z− ξ)G′(z)
G(z)

)
> β

∣∣∣∣ (z− ξ)G′(z)
G(z)

+ 1
∣∣∣∣+ γ, (1.14)

where

G(z) = (1− λ)J s
b f (z) + λ(z− ξ)(J s

b f (z))′ =
1− 2λ

z− ξ
+

∞

∑
n=1

(nλ− λ + 1)Cs
b(n)an(z− ξ)n, an ≥ 0. (1.15)

It is of interest to note that, on specializing the parameters λ, β and s, b we can define various new sub-
classes of Σξ . We illustrate two important subclasses in the following examples.

Example 1.1. For λ = 0, we let Ms
b(0, β, γ) = Ms

b(β, γ) denote a subclass of Σξ consisting functions of the form
(1.3) satisfying the condition that

−<
(

(z− ξ)(J s
b f (z))′

J s
b f (z)

)
> β

∣∣∣∣ (z− ξ)(J s
b f (z))′

J s
b f (z)

+ 1
∣∣∣∣+ γ (1.16)

where J s
b f (z) is given by (1.11).



94 G. Murugusundaramoorthy et al. / Meromorphic parabolic starlike functions...

Example 1.2. For λ = 0, β = 0 we let Ms
b(0, 0, γ) = Ms

b(γ) denote a subclass of Σξ consisting functions of the form
(1.3) satisfying the condition that

−<
(

(z− ξ)(J s
b f (z))′

J s
b f (z)

)
> γ (1.17)

where J s
b f (z) is given by (1.11).

In this paper, we obtain the coefficient inequalities, growth and distortion inequalities, as well as closure
results for the function classMs

b(λ, β, γ). Properties of certain integral operator and convolution properties of
the new class Ms

b(λ, β, γ) are also discussed.

2 Coefficients Inequalities

In order to obtain the necessary and sufficient condition for a function f ∈ Ms
b(λ, β, γ), we recall the

following lemmas.

Lemma 2.1. If γ is a real number and w is a complex number, then < (w) ≥ γ ⇔ |w + (1− γ)| − |w− (1 + γ)| ≥ 0.

Lemma 2.2. If w is a complex number and γ, k are real numbers, then

< (w) ≥ k|w− 1|+ γ ⇔ <{w(1 + keiθ)− keiθ} ≥ γ, −π ≤ θ ≤ π.

Analogous to the lemma proved by Dziok et.al [7], we state the following lemma without proof.

Lemma 2.3. Suppose that γ ∈ [0, 1), r ∈ (0, 1] and the function H ∈ Σξ(γ) is of the form H(z) = 1
z−ξ + ∑∞

n=1 bn(z−
ξ)n, 0 < |z− ξ| < r, with bn ≥ 0 then

∞

∑
n=1

(n + γ)bnrn+1 ≤ 1− γ. (2.1)

Theorem 2.1. Let f ∈ Σξ be given by (1.3). Then f ∈ Ms
b(λ, β, γ) if and only if

∞

∑
n=1

[n(1 + β) + (γ + β)](nλ− λ + 1) Cs
b(n)an ≤ (1− 2λ)(1− γ). (2.2)

Proof. If f ∈ Ms
b(λ, β, γ), then by (1.14) we have,

−<
(

(z− ξ)G′(z)
G(z)

)
> β

∣∣∣∣ (z− ξ)G′(z)
G(z)

+ 1
∣∣∣∣+ γ.

Making use of Lemma 2.2

−<

(
(z− ξ)(1 + βeiθ)G′(z) + βeiθG(z)

G(z)

)
> γ,

where G(z) is given by (1.15). Substituting for G(z), G′(z) and letting |z− ξ| < r → 1−, we have{
(1− 2λ)(1− γ)−∑∞

n=1[n(1 + β) + (γ + β)](nλ− λ + 1)Cs
b(n)an

(1− 2λ)−∑∞
n=1(nλ− λ + 1)Cs

b(n)an

}
> 0.

This shows that (2.2) holds.
Conversely, assume that (2.2) holds. Since−<(w) > γ, if and only if |w + 1| < |w− (1− 2γ)|, it is sufficient

to show that ∣∣∣∣ w + 1
w− (1− 2γ)

∣∣∣∣ < 1 and |w− (1− 2γ)| 6= 0 for |z− ξ| < r ≤ 1, (z− ξ) ∈ ∆.

Using (2.2) and taking w(z) = (z−ξ)(1+βeiθ)G′(z)+βeiθ G(z)
G(z) we get∣∣∣∣ w + 1

w− (1− 2γ)

∣∣∣∣ ≤ ∑∞
n=1(nλ− λ + 1)[(n + 1)(1 + β)]Cs

b(n)an

2(1− γ)(1− 2λ)−∑∞
n=1(nλ− λ + 1)[n(1 + β) + (β + 2γ− 1)]Cs

b(n)an
≤ 1.

Thus we have f ∈ Ms
b(λ, β, γ).
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For the sake of brevity throughout this paper we let

dn(λ, β, γ) := [n(1 + β) + (γ + β)](nλ− λ + 1) (2.3)

d1(λ, β, γ) = (1 + γ + 2β)

unless otherwise stated.
Our next result gives the coefficient estimates for functions in Ms

b(λ, β, γ).

Theorem 2.2. If f ∈ Ms
b(λ, β, γ), then

an ≤
(1− γ)(1− 2λ)
dn(λ, β, γ)Cs

b(n)
, n = 1, 2, 3, . . . .

The result is sharp for the functions fn(z) given by

fn(z) =
1

z− ξ
+

1− γ

dn(λ, β, γ)Cs
b(n)

(z− ξ)n, n = 1, 2, 3, . . . .

Proof. If f ∈ Ms
b(λ, β, γ), then we have, for each n,

dn(λ, β, γ)Cs
b(n)an ≤

∞

∑
n=1

dn(λ, β, γ)Cs
b(n)an ≤ (1− γ)(1− 2λ).

Therefore we have

an ≤
(1− γ)(1− 2λ)
dn(λ, β, γ)Cs

b(n)
.

Since

fn(z) =
1

z− ξ
+

(1− γ)(1− 2λ)
dn(λ, β, γ)Cs

b(n)
(z− ξ)n

satisfies the conditions of Theorem 2.1, fn(z) ∈ Ms
b(λ, β, γ) and the equality is attained for this function.

Theorem 2.3. Suppose that there exists a positive number ν

ν = inf
n∈N

{
dn(λ, β, γ)Cs

b(n)
}

. (2.4)

If f ∈ Ms
b(λ, β, γ), then∣∣∣∣1r − (1− γ)(1− 2λ)

ν
r
∣∣∣∣ ≤ | f (z)| ≤ 1

r
+

(1− γ)(1− 2λ)
ν

r, (|z− ξ| = r)

and ∣∣∣∣ 1
r2 −

(1− γ)(1− 2λ)
ν

∣∣∣∣ ≤ | f ′(z)| ≤ 1
r2 +

(1− γ)(1− 2λ)
ν

(|z− ξ| = r).

If ν = d1(λ, β, γ)Cs
b(1) = (1 + γ + 2β)Cs

b(1), then the result is sharp for

f (z) =
1

z− ξ
+

(1− γ)(1− 2λ)
(1 + γ + 2β)Cs

b(1)
(z− ξ). (2.5)

Proof. Let the function f given by (1.3) we have

| f (z)| ≤ 1
r

+
∞

∑
n=1

anrn ≤ 1
r

+ r
∞

∑
n=1

an.

Since,
∞

∑
n=1

an ≤
(1− γ)(1− 2λ)

ν
.

Using this, we have

| f (z)| ≤ 1
r

+
(1− γ)(1− 2λ)

ν
r.

Similarly

| f (z)| ≥
∣∣∣∣1r − (1− γ)(1− 2λ)

ν
r
∣∣∣∣ .

The result is sharp for function (2.5) with ν = d1(λ, β, γ)Cs
b(1) = (1 + γ + 2β)Cs

b(1).
Similarly we can prove the other inequality | f ′(z)|.
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3 Radius of starlikeness

In the following theorem we obtain the radius of starlikeness for the class Ms
b(λ, β, γ). We say that f given

by (1.3) is meromorphically starlike of order ρ, (0 ≤ ρ < 1), in |z− ξ| < r when it satisfies the condition (1.4)
in |z− ξ| < r.

Theorem 3.1. Let the function f given by (1.3) be in the class Ms
b(λ, β, γ). Then, if there exists

r1(λ, γ, ρ) = inf
n≥1

[
(1− ρ)dn(λ, β, γ)Cs

b(n)
(n + ρ)(1− γ)(1− 2λ)

] 1
n+1

(3.1)

and it is positive, then f is meromorphically starlike of order ρ in |z− ξ| < r ≤ r1(λ, γ, ρ).

Proof. Let the function f ∈ Ms
b(λ, β, γ) be of the form (1.3). If 0 < r ≤ r1(λ, γ, ρ), then by (3.1)

rn+1 ≤
(1− ρ)dn(λ, β, γ)Cs

b(n)
(n + ρ)(1− γ)(1− 2λ)

(3.2)

for all n ∈ N. From (3.2) we get
n + ρ

1− ρ
rn+1 ≤

dn(λ, β, γ)Cs
b(n)

(1− γ)(1− 2λ)

for all n ∈ N, thus
∞

∑
n=1

n + ρ

1− ρ
anrn+1 ≤

∞

∑
n=1

dn(λ, β, γ)Cs
b(n)

(1− γ)(1− 2λ)
an ≤ 1 (3.3)

because of (2.2). Hence, from (3.3) and (2.1), f is meromorphically starlike of order ρ in |z− ξ| < r ≤ r1(λ, γ, ρ).

Suppose that there exists a number r̃, r̃ > r1(λ, γ, ρ) such that each f ∈ Ms
b(λ, β, γ) is meromorphically

starlike of order ρ in |z− ξ| < r̃ ≤ 1. The function

f (z) =
1

z− ξ
+

(1− γ)(1− 2λ)
dn(λ, β, γ)Cs

b(n)
(z− ξ)n

is in the class Ms
b(λ, β, γ), thus it should satisfy (2.1) with r̃ :

∞

∑
n=1

(n + ρ)an r̃n+1 ≤ 1− ρ, (3.4)

while the left–hand side of (3.4) becomes

(n + ρ)
(1− γ)(1− 2λ)
dn(λ, β, γ)Cs

b(n)
r̃n+1 > (n + ρ)

(1− γ)(1− 2λ)
dn(λ, β, γ)Cs

b(n)
(1− ρ)dn(λ, β, γ)Cs

b(n)
(n + ρ)(1− γ)(1− 2λ)

= 1− ρ

which contradicts with (3.4). Therefore the number r1(λ, γ, ρ) in Theorem 3.1, cannot be replaced with a
greater number. This means that r1(λ, γ, ρ) is called radius of meromorphically starlikness of order ρ for the
class Ms

b(λ, β, γ).

4 Results Involving Modified Hadamard Products

For functions

f j(z) =
1

z− ξ
+

∞

∑
n=1

an,j(z− ξ)n, an,j ≥ 0 (4.5)

we define the Hadamard product or convolution of f1 and f2 by

( f1 ∗ f2)(z) :=
1

z− ξ
+

∞

∑
n=1

an,1an,2(z− ξ)n.

Let

Ψ(n, λ) =
(nλ− λ + 1)

(1− 2λ)
Cs

b(n). (4.6)
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Theorem 4.2. For functions f j(j = 1, 2) defined by (4.5), let f1 ∈ Ms
b(λ, β, γ) and f2 ∈ Ms

b(λ, β, δ). Then f1 ∗ f2 ∈
Ms

b(λ, β, η) where

η = 1− (1− γ)(1− δ)(3 + β)
(1 + γ + 2β)(1 + δ + 2β)Ψ(1, λ)− 2(1− γ)(1− δ)

(4.7)

and Ψ(1, λ) = Cs
b(1)

1−2λ . The results is the best possible for

f1(z) =
1

z− ξ
+

1− γ

(1 + γ + 2β)Ψ(1, λ)
(z− ξ),

f2(z) =
1

z− ξ
+

1− δ

(1 + δ + 2β)Ψ(1, λ)
(z− ξ)

where Ψ(1, λ) = Cs
b(1)

1−2λ .

Proof. In the view of Theorem 2.1, it suffices to prove that

∞

∑
n=1

[n(1 + β) + (η + β)]
(1− η)

Ψ(n, λ)an,1an,2 ≤ 1

where η is defined by (4.7) under the hypothesis. It follows from (2.2) and the Cauchy’s-Schwarz inequality
that

∞

∑
n=1

[n(1 + β) + (γ + β)]1/2[n(1 + β) + (δ + β)]1/2√
(1− γ)(1− δ)

Ψ(n, λ)
√

an,1an,2 ≤ 1. (4.8)

Thus we need to find largest η such that

∞

∑
n=1

[n(1 + β) + (η + β)]
(1− η)

Ψ(n, λ)an,1an,2

≤
∞

∑
n=1

[n(1 + β) + (γ + β)]1/2[n(1 + β) + (δ + β)]1/2√
(1− γ)(1− δ)

Ψ(n, λ)
√

an,1an,2

≤ 1.

By virtue of (4.8) it is sufficient to find the largest η, such that√
(1− γ)(1− δ)

[n(1 + β) + (γ + β)]1/2[n(1 + β) + (δ + β)]1/2Ψ(n, λ)

≤ [n(1 + β) + (γ + β)]1/2[n(1 + β) + (δ + β)]1/2√
(1− γ)(1− δ)

1− η

[n(1 + β) + (η + β)]
,

which yields

η ≤ 1− (1− γ)(1− δ)(2n + 1 + β)
[n(1 + β) + (γ + β)][n(1 + β) + (δ + β)]Ψ(n, λ)− (1− γ)(1− δ)(n + 1)

for n ≥ 1 where Ψ(n, λ) is given by (4.6) and since Ψ(n, λ) is a decreasing function of n (n ≥ 1), we have

η = 1− (1− γ)(1− δ)(3 + β)
(1 + γ + 2β)(1 + δ + 2β)Ψ(1, λ)− 2(1− γ)(1− δ)

and Ψ(1, λ) = Cs
b(1)

1−2λ , which completes the proof.

Theorem 4.3. Let the functions f j, (j = 1, 2) defined by (4.5) be in the class Ms
b(λ, β, γ). Then ( f1 ∗ f2)(z) ∈

Ms
b(λ, β, η) where

η = 1− (1− γ)2(3 + β)
(1 + γ + 2β)2Ψ(1, λ)− 2(1− γ)2

with Ψ(1, λ) = Cs
b(1)

1−2λ .

Proof. By taking δ = γ in the above theorem, the results follows.
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For functions in the class Ms
b(λ, β, γ) we can prove the following inclusion property.

Theorem 4.4. Let the functions f j(j = 1, 2) defined by (4.5) be in the class Ms
b(λ, β, γ). Then the function h defined

by

h(z) =
1

z− ξ
+

∞

∑
n=1

(a2
n,1 + a2

n,2)(z− ξ)n

is in the class Ms
b(λ, β, δ) where

δ ≤ 1− 4(1− γ)2(1 + β)
[1 + γ + 2β]2Ψ(1, λ) + 2(1− γ)2 , (4.9)

and Ψ(1, λ) = Cs
b(1)

1−2λ .

Proof. In view of Theorem 2.1, it is sufficient to prove that

∞

∑
n=2

Ψ(n, λ)
[n(1 + β) + (δ + β)]

(1− δ)
(a2

n,1 + a2
n,2) ≤ 1 (4.10)

where f j ∈ Ms
b(λ, β, γ) (j = 1, 2), we find from (4.5) and Theorem 2.1, that

∞
∑

n=1

[
Ψ(n, λ) [n(1+β)+(γ+β)]

1−γ

]2
a2

n,j ≤
∞
∑

n=1

[
Ψ(n, λ) [n(1+β)+(γ+β)]

1−γ an,j

]2
≤ 1, (4.11)

which would yields

∞

∑
n=2

1
2

[
Ψ(n, λ)

[n(1 + β) + (γ + β)]
1− γ

]2
(a2

n,1 + a2
n,2) ≤ 1. (4.12)

On comparing (4.10) and (4.12) it can be seen that inequality (4.9) will be satisfied if

Ψ(n, λ)
[n(1 + β) + (δ + β)]

1− δ
(a2

n,1 + a2
n,2) ≤

1
2

[
Ψ(n, λ)

[n(1 + β) + (γ + β)]
1− γ

]2
(a2

n,1 + a2
n,2).

That is, if

δ ≤ 1− 2(1− γ)2[(n + 1)(1 + β)]
[n(1 + β) + (γ + β)]2Ψ(n, λ) + 2(1− γ)2 (4.13)

where Ψ(n, λ) is given by (4.6) and Ψ(n, λ) is a decreasing function of n (n ≥ 1), we get (4.9), which completes
the proof.

5 Closure Theorems

We state the following closure theorems for f ∈ Ms
b(λ, β, γ) without proof ( see [7, 16, 18]).

Theorem 5.5. Let the function fk(z) = 1
z−ξ + ∑∞

n=1 an,k(z− ξ)n be in the class Ms
b(λ, β, γ) for every k = 1, 2, ..., m.

Then the function f defined by

f (z) =
1

z− ξ
+

∞

∑
n=1

an,k(z− ξ)n, (an,k ≥ 0)

belongs to the class Ms
b(λ, β, γ), where an,k = 1

m ∑m
k=1 an,k, (n = 1, 2, ..).

Theorem 5.6. Let f0(z) = 1
z−ξ and fn(z) = 1

z−ξ + (1−γ)(1−2λ)
dn(λ,β,γ)Cs

b(n) (z− ξ)n for n = 1, 2, . . .. Then f ∈ Ms
b(λ, β, γ) if

and only if f can be expressed in the form f (z) = ∑∞
n=0 ηn fn(z) where ηn ≥ 0 and ∑∞

n=0 ηn = 1.

Theorem 5.7. The class Ms
b(λ, β, γ) is closed under convex linear combination.

Now, we prove that the class isMs
b(λ, β, γ) closed under integral transforms .
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Theorem 5.8. Let the function f (z) given by (1.3) be in Ms
b(λ, β, γ). Then the integral operator

F(z) = c
∫ 1

0
uc f (uz)du (0 < u ≤ 1, 0 < c < ∞)

is in Ms
b(λ, β, δ), where

δ ≤ n2(1 + β) + n[(γ + β) + (1 + β)(1 + cγ)] + (c + 1)(γ + β) + cβ(1− γ)
n2(1 + β) + n[(γ + β) + (1 + c)(1 + β)] + (1 + c)(γ + β) + c(1− γ)

.

The result is sharp for the function f (z) = 1
z−ξ + (1−γ)(1−2λ)

(1+γ+2β)Cs
b(1) (z− ξ).

Proof. Let f (z) ∈ Ms
b(λ, β, γ). Then

F(z) = c
∫ 1

0
uc f (uz)du =

1
z− w

+
∞

∑
n=1

c
c + n + 1

an(z− ξ)n.

It is sufficient to show that
∞

∑
n=1

c dn(λ, β, δ)Cs
b(n)

(c + n + 1)(1− δ)
an ≤ 1. (5.14)

Since f ∈ Ms
b(λ, β, γ), we have

∞

∑
n=1

dn(λ, β, γ)Cs
b(n)

(1− γ)(1− 2λ)
an ≤ 1.

Note that (5.14) is satisfied if
c dn(λ, β, δ)Cs

b(n)
(c + n + 1)(1− δ)

≤
dn(λ, β, γ)Cs

b(n)
(1− γ)(1− 2λ)

.

Solving for δ, we have

δ ≤ n2(1 + β) + n[(γ + β) + (1 + β)(1 + cγ)] + (c + 1)(γ + β) + cβ(1− γ)
n2(1 + β) + n[(γ + β) + (1 + c)(1 + β)] + (1 + c)(γ + β) + c(1− γ)

= Φ(n).

A simple computation will show that Φ(n) is increasing and Φ(n) ≥ Φ(1). Using this, the results follows.

6 Partial Sums

Silverman [22] determined sharp lower bounds on the real part of the quotients between the normalized
starlike or convex functions and their sequences of partial sums. As a natural extension, one is interested to
search results analogous to those of Silverman for meromorphic univalent functions. In this section, motivated
essentially by the work of Silverman [22] and Cho and Owa [6] we will investigate the ratio of a function of
the form (1.3) to its sequence of partial sums

fk(z) =
1

z− ξ
+

k

∑
n=1

an(z− ξ)n (6.15)

when the coefficients are sufficiently small to satisfy the condition analogous to

∞

∑
n=1

dn(λ, β, γ)Cs
b(n) an ≤ (1− γ)(1− 2λ).

More precisely we will determine sharp lower bounds for <
(

f (z)
fk(z

)
and <

(
fk(z)
f (z

)
. In this connection we make

use of the well known results that <
(

1+w(z)
1−w(z)

)
> 0, (z− ξ ∈ ∆) if and only if w(z) =

∞
∑

n=1
cn(z− ξ)n satisfies

the inequality |w(z)| ≤ |z− ξ|.
Unless otherwise stated, we will assume that f is of the form (1.3) and its sequence of partial sums is

denoted by (6.15).
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Theorem 6.9. Let f (z) ∈ Ms
b(λ, β, γ) be given by (1.3) satisfies condition, (2.2) and suppose that all of its partial

sums (6.15) don’t vanish in ∆. Moreover, suppose that

2− 2
k

∑
n=1

|an| −
dk+1(λ, β, γ)Cs

b(k + 1)
(1− γ)(1− 2λ)

∞

∑
n=k+1

|an| > 0, f or all k ∈ N. (6.16)

Then,

<
(

f (z)
fk(z)

)
≥ 1− (1− γ)(1− 2λ)

dk+1(λ, β, γ)Cs
b(k + 1)

(z− ξ ∈ ∆) (6.17)

where

dn(λ, β, γ) ≥
{

(1− γ)(1− 2λ), i f n = 1, 2, 3, . . . , k
dk+1(λ, β, γ)Cs

b(k + 1), i f n = k + 1, k + 2, . . . .
(6.18)

The result (6.17) is sharp with the function given by

f (z) =
1

z− ξ
+

(1− γ)(1− 2λ)
dk+1(λ, β, γ)Cs

b(k + 1)
(z− ξ)k+1. (6.19)

Proof. Define the function w(z) by

w(z) =
dk+1(λ, β, γ)Cs

b(k + 1)
(1− γ)(1− 2λ)

[
f (z)
fk(z)

−
(

1− (1− γ)(1− 2λ)
dk+1(λ, β, γ)Cs

b(k + 1)

)]

= 1 +

dk+1(λ,β,γ)Cs
b(k+1)

(1−γ)(1−2λ)

∞
∑

n=k+1
an(z− ξ)n+1

1 +
k
∑

n=1
an(z− ξ)n+1

. (6.20)

It suffices to show that <(w(z)) > 0, hence we find that

∣∣∣∣1 + w(z)
1− w(z)

∣∣∣∣ ≤
dk+1(λ,β,γ)Cs

b(k+1)
(1−γ)(1−2λ)

∞
∑

n=k+1
|an|

2− 2
k
∑

n=1
|an| −

dk+1(λ,β,γ)Cs
b(k+1)

(1−γ)(1−2λ)

∞
∑

n=k+1
|an|

≤ 1

From the condition (2.2),it readily yields the assertion (6.17) of Theorem 6.9.
To see that the function given by (6.19) gives the sharp result, we observe that for z = reiπ/(k+2)

f (z)
fk(z)

= 1 +
(1− γ)(1− 2λ)

dk+1(λ, β, γ)Cs
b(k + 1)

(z− ξ)n → 1− (1− γ)(1− 2λ)
dk+1(λ, β, γ)Cs

b(k + 1)

when r → 1− which shows the bound (6.17) is the best possible for each k ∈ N.

We next determine bounds for fk(z)/ f (z).

Theorem 6.10. Under the assumptions of Theorem 6.9, we have

<
(

fk(z)
f (z)

)
≥

dk+1(λ, β, γ)Cs
b(k + 1)

dk+1(λ, β, γ)Cs
b(k + 1) + (1− γ)(1− 2λ)

(z− w ∈ ∆), (6.21)

The result (6.21) is sharp with the function given by (6.19).

Proof. By setting

w(z) =
(

1 +
dk+1(λ, β, γ)Cs

b(k + 1)
(1− γ)(1− 2λ)

) fk(z)
f (z)

−
dk+1(λ,β,γ)Cs

b(k+1)
(1−γ)(1−2λ)

1 +
dk+1(λ,β,γ)Cs

b(k+1)
(1−γ)(1−2λ)


proceeding as in Theorem 6.9, we get the desired result and so we omit the details.

Remark 6.1. We observe that, if we specialize the parameters λ and β as mentioned in Examples 1 and 2 , we obtain the
analogous results for the classesMs

b(β, γ) andMs
b(γ). Further specializing the parameters s, b various other interesting

results (as in Theorems 2.1 to 6.10 ) can be derived easily for the function class based on interesting integral operators.
Further by taking |ξ| = d and |z− ξ| = r + d < 1, one can easily prove analogous results as in Theorems 2.1 to 6.10.
The details involved may be left as an exercise for the interested reader.
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