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Invariant solutions of Barlett and Whitaker’s equations
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Abstract

Lie symmetry group method is applied to study the Barlett and Whitaker’s equations. The symmetry
group and its optimal system are given,and group invariant solutions associated to the symmetries are ob-
tained. Finally the structure of the Lie algebra symmetries is determined.
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1 Introduction

Enzymes electrodes are powerful tools for understanding the mechanism and kinetics of fast reactions.
Owing to their specicity and sensitivity, enzyme elec-trodes including various amplication, schemes have
been developed for many applications such as electrochemical immunoassays, [1, 2] water pollutant detection,
[3, 4, 5, 6, 7] and monitoring of biological metabolities [8, 9, 10, 11]. The sensitivity of enzyme electrodes is very
often increased by incorporation of a substrate-recycling scheme and several strategies including chemical,
enzymatic, or electrochemical recycling have been developed. In the view of numerous application of such
bio-sensor with amplied response,we are interested in investigating the concentration s and p in order to
improve the metrological characteristics further.

In addition, this theoretical approach is of practical interest since this kind of bio-sensor can be used for
the determination of phenolic compounds and catecholamine neurotransmitters in the field of environmental
control and clinical analysis [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. Such a theoretical and kinetic analysis is
a powerful approach to rationalize functions of biosensors. Desprez and Labbe [23] obtained the analytical
expression concentration and current for the limiting cases only. The purpose of this communication is to
derive a simple accurate polynomial expressions of concentrations generated at a enzyme electrode using Lie
Symmetries.

2 Lie Symmetry of the System

We consider the BWEs (Barlett and Whitaker’s equations) [24], Desprez and Labbe [23], describing the
concentrations of s and p at steady state as follows (with one independent and two dependent):

BWEs :
d2s
dx2 −

γs
αs + 1

= 0,
d2 p
dx2 +

γs
αs + 1

= 0, (2.1)

where

γ =
1

Λ2 , α =
1

Ks
, Λ =

√
mKs

KcEt
, (2.2)
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x is varible, s and p are functions, and γ, Λ, α, Ks, m, Kc, and Et are constants. Let

v = ξ(x, s, p)∂x + τ(x, s, p)∂s + ϕ(x, s, p)∂p, (2.3)

be a general vector field on the space of independent and dependent variables. we need the second prolonga-
tion:

Pr(2)v = v + τx∂sx + ϕx∂px + τxx∂sxx + ϕxx∂pxx , (2.4)

of v, with the coefficients

τx = τx + τp px + τssx − sxξx − sxξp px − ξss2
x,

ϕx = ϕx + ϕp px + ϕssx − pxξx − ξp p2
x − pxξssx,

τxx = 2τxp px + 2τxssx − sxξxx − 2ξxss2
x + τpp p2

x + pxxτp + τsss2
x − ξsss3

x + sxxτs

−2sxxξx − 2sxξxp px + 2pxτspsx − sxξpp p2
x − 2pxξsps2

x − pxxξpsx (2.5)

−3sxxξssx − 2sxxξp px + τxx,

ϕxx = 2ϕxp px + 2ϕxssx − pxξxx − 2ξxp p2
x + ϕpp p2

x − ξpp p3
x + pxx ϕp − 2pxxξx + ϕsss2

x

+sxx ϕs − 2pxξxssx + 2px ϕspsx − 2sxξsp p2
x − 3pxxξp px − 2pxxξssx

−pxξsss2
x − sxxξs px + ϕxx.

Applying Pr(2)v to equations (2.1), we find the infinitesimal criterion system. determining equations
yields:

ϕss = τp,p = ξss = ξp,p = ξsp = 0,

τsp − ξxp = τss − 2ξxs = 2ξxp − ϕp,p = ξxs − ϕsp = 0,

−2sKcEtξp + 2τxpmKs + 2τxpms = 2sKcEtξs + 2ϕxsmKs + 2ϕxsms = 0,

2τxsmKs + 2τxsms− 3sKcEtξs − ξxxmKs − ξxxms + KcEtsξp = 0,

3sKcEtξp − sKcEtξs + 2ϕxpmKs + 2ϕxpms− ξxxmKs − ξxxms = 0, (2.6)

−τKcEtKs − 2KcEtsξxKs − 2KcEts2ξx − KcEtsτpKs

−KcEts2τp + τxxmK2
s + 2τxxmKss + τxxms2 + KcEtsτsKs + KcEts2τs = 0,

τKcEtKs − KcEtsϕpKs − KcEts2 ϕp + 2KcEtsξxKs + 2KcEts2ξx

+KcEtsϕsKs + KcEts2 ϕs + ϕxxmK2
s + 2ϕxxmKss + ϕxxms2 = 0.

The solution of the above system gives the following coefficients of the vector field v:

ϕ = C2 x + C4 (s + p) + C3, τ = 0, ξ = C1, (2.7)

where C1, · · · , C4 are arbitrary constants; Thus the Lie algebra G of the electoenzymatic processes involved in
a PPO-rotating-disk-bioelectrode equation is spanned by the four vector fields

v1 = ∂x, v2 = x∂p, v3 = ∂p, v4 = (s + p)∂p. (2.8)

The commutator table of G is

Table 1. Commutation relations satisfied by infinitesimal generators

[ , ] v1 v2 v3 v4

v1 0 v3 0 0
v2 −v3 0 0 v2
v3 0 0 0 v3
v4 0 −v2 −v3 0

Thus, G is a solvabel algebra with derived series G ≥ G(1) ≥ {0}, where G(1) = Span{v2, v3} ∼= R2, and
G/G(1) ∼= R2 are abelian, thus G is semidirect product of R2 by itself.
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The one-parameter groups Gi generated by the base of G are given in the following table.

G1 : (x, s, p) 7−→ (x + ε, s, p),

G2 : (x, s, p) 7−→ (x, s, xε + p),

G3 : (x, s, p) 7−→ (x, s, p + ε), (2.9)

G4 : (x, s, p) 7−→ (x, s,−s + eε(s + p)).

Since each group Gi is a symmetry group and if s = S(x), p = P(x) are solutions of the equations (2.1), so are
the functions

1) s = S(x − ε), p = P(x − ε),
2) s = S(x), p = P(x) + xε,
3) s = S(x), p = P(x) + ε,
4) s = S(x), p = eε(S(x) + P(x))− S(x),

(2.10)

where ε is a real number.

3 Optimal system of (2.1)

As is well known, the theoretical Lie group method plays an important role in finding exact solutions
and performing symmetry reductions of differential equations. Since any linear combination of infinitesimal
generators is also an infinitesimal generator, there are always infinitely many different symmetry subgroups
for the differential equation. So, a mean of determining which subgroups would give essentially different
types of solutions is necessary and significant for a complete understanding of the invariant solutions. As any
transformation in the full symmetry group maps a solution to another solution, it is sufficient to find invariant
solutions which are not related by transformations in the full symmetry group, this has led to the concept of
an optimal system. The problem of finding an optimal system of subgroups is equivalent to that of finding
an optimal system of subalgebras. For one-dimensional subalgebras, this classification problem is essentially
the same as the problem of classifying the orbits of the adjoint representation. This problem is attacked by
the naive approach of taking a general element in the Lie algebra and subjecting it to various adjoint trans-
formations so as to simplify it as much as possible. One of the applications of the adjoint representation is
classifying group-invariant solutions.

The adjoint action is given by the Lie series

Ad(exp(εvi)vj) = vj − ε[vi, vj] +
ε2

2
[vi, [vi, vj]]− · · · (3.1)

where [vi, vj] is a commutator for the Lie algebra, ε is a parameter, and i, j = 1, · · · , 4. The adjoint table

Table 2. Adjoint relations satisfied by infinitesimal generators

[ , ] v1 v2 v3 v4

v1 v1 v2 − εv3 v3 v4
v2 v1 + εv3 v2 v3 v4 − εv2
v3 v1 v2 v3 v4 − εv3
v4 v1 eεv2 eεv3 v4

with (i, j)-th entry indicating Ad(exp(εvi)vj) and ε is a real number. Here we can find the general group
of the symmetries by considering a general linear combination c1v1 + · · · + c4v4 of the given vector fields.
In particular if g is the action of the symmetry group near the identity, it can be represented in the form
g = exp(c1v1) ◦ · · · ◦ exp(c4v4).

Let Fε
i : G −→ G defined by v −→ Ad(exp(εvi)v) is a linear map, for i = 1, ..., 4. The matrices Mε

i of Fε
i ,

i = 1, · · · , 4, with respect to basis {v1, · · · , v4} are
1 0 0 0
0 1 −ε 0
0 0 1 0
0 0 0 1

 ,


1 0 ε 0
0 1 0 0
0 0 1 0
0 −ε 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −ε 1

 ,


1 0 0 0
0 eε 0 0
0 0 eε 0
0 0 0 1

 , (3.2)
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respectively, by acting these matrices on a vector field v alternatively we can show that a one-dimensional
optimal system of G is given by

1) v1, 2) v3, 3) v1 + v2, 4) v1 − v2, 5) v1 + av2, a ∈ R. (3.3)

4 Conclusion

In this article group classification of (2.1) and the algebraic structure of the symmetry group is considered.
Classification of one-dimensional subalgebra is determined by constructing one-dimensional optimal system.
The structure of Lie algebra symmetries is analyzed.
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