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Abstract
Degree square sum matrix DSS(G) of a graph G is a square matrix of order equal to the order of a graph G
with its (i, j)th entry as di

2 +d j
2 if i 6= j and zero otherwise, where di is the degree of the ith vertex of G. In this

paper, we study degree square sum hyperenergetic, degree square sum borderenergetic and degree square
sum equienergetic graphs.
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1. Introduction
Let G be a nontrivial, simple, finite, undirected graph with

n vertices and m edges. Let V (G) be the vertex set and E(G)
be an edge set of G. The degree dG(v) of a vertex v ∈V (G)
is the number of edges incident to it in G. The graph G is
r-regular if the degree of each vertex in G is r. Let v1, v2,..., vn
be the vertices of G and let di = dG(vi). For undefined graph
theoretic terminologies, refer to [17] or [23].

In quantum chemistry the skeleton of certain unsaturated
hydrocarbons are represented by graphs. Energy levels of
electrons in such a molecule are, infact, the eigenvalues of
the corresponding graph. The stability of the molecules as
well as other chemically relevant facts are closely connected
with graph spectrum and the corresponding eigenvectors. For
more information on chemical application of graph theory
see [1, 14, 31]. Motivated by this connection of electron en-
ergy and eigenvalues of the corresponding graph, in 1978,

Gutman [13] introduced the concept of graph energy as the
sum of the absolute values of the eigenvalues of the adjacency
matrix of G and the graph spectra as the collection of eigen-
values. The introduction of the graph energy concept resulted
in the discovery of numerous novel results, some of which
had chemical relevance too.

The adjacency matrix of a graph G is a square matrix
A(G) = [ai j] of order in which ai j = 1, if the vertex vi is ad-
jacent to vertex v j and ai j = 0, otherwise. The characteristic
polynomial of A(G) denoted by φ(G : λ )=det(λ I−A(G)),
where I is an identity matrix of order n. The roots of an equa-
tion φ(G : λ ) = 0 are called the eigenvalues of G and they are
labeled as λ1,λ2, ...,λn. Their collection is called the spectrum
of G denoted by Spec(G), refer to [9]. The two nonisomor-
phic graphs are cospectral if they have the same spectra. The
details can be found in [9]. The energy ε(G)[13] of a graph G

with n vertices is defined as ε(G) =
n
∑

i=1
|λi|. McClelland [26]

showed that for molecular graphs of conjugated hydrocarbons,
ε(G) ≈ a

√
2mn, where a ≈ 0.9. According to this, ε(G) is

monotonically increasing function of m and n. In view of this
observation, Gutman [13] conjectured among all graphs with
n vertices the complete graph has maximum energy. That is,
for any graph G of order n, ε(G) ≤ ε(Kn) ≤ 2(n− 1). This
conjecture is not true [10]. There are graphs whose energy
exceeds the energy of Kn, became motivation for the introduc-
tion of concept of hyperenergetic graphs [15]. A graph G is
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said to be hyperenergetic[15] if ε(G)> 2(n−1) and is said
to be nonhyperenergetic if ε(G)< 2(n−1). A noncomplete
graph whose energy is equal to 2(n− 1) is called borderen-
ergetic [12]. Two graphs G1 and G2 are equienergetic [1, 4]
if ε(G1) = ε(G2). One can refer to [4, 5, 11, 14, 16, 18–
22, 24, 25, 27–30, 32–35] for more details on the the concept
of graph energy.

We have defined a graph matrix called degree square sum
matrix in [2]. It is an n× n matrix denoted by DSS(G) =
[dssi j] and whose elements are defined as

dssi j =

{
di

2 +d j
2, i f i 6= j,

0, otherwise.

The degree square sum polynomial of a graph G is defined as
PDSS(G)(µ) = det(µI−DSS(G)), where I is an identity matrix
and J is a matrix whose all entries are equal to 1. The degree
square sum eigenvalues of G are given as µ1,µ2, ...,µn and
their collection is called the degree square sum spectra of G.

The degree square sum energy is given by EDSS(G) =
n
∑

i=1
|µi|.

The details can be found in [2, 3].

2. Preliminaries

Lemma 2.1. [2] If G is an r-regular graph, then

DSS(G) = 2r2J−2r2I.

Theorem 2.2. [2] If G is an r-regular graph of order n, then

PDSS(G)(µ) =

(
µ−2r2(n−1)

)(
µ +2r2

)n−1

.

Theorem 2.3. [2] If G is an r-regular graph of order n,
then −2r2 and 2r2(n− 1) are degree square sum eigenval-
ues of G with respective multiplicities (n−1) and 1 and hence
EDSS(G) = 4r2(n−1).

Definition 2.4. [17] The complement G of a graph G is a
graph with vertex set V (G) and two vertices of G are adjacent
if and only if they are nonadjacent in G.
If G is an (n,m)-graph, then G is (n,

(n
2

)
−m)-graph.

Definition 2.5. [17] The line graph L(G) of a graph G is a
graph with vertex set as E(G) where the two vertices of L(G)
are adjacent if and only if they correspond to two adjacent
edges of G.

If G is an (n,m)-graph, then L(G) is
(

m,−m+ 1
2

n
∑

i=1
dG(vi)

2
)

-

graph.

Theorem 2.6. [2] Let G be an r-regular graph of order n,then
the degree square sum polynomial of L(G) is

PDSS(L(G))(µ)=

(
µ−4(r−1)2(nr−2)

)(
µ+8(r−1)2

) nr−2
2
.

Definition 2.7. [6, 7, 17] The kth iterated line graph of G is
defined as Lk(G) = L(Lk−1(G)), k = 1,2, ..., where L0(G)∼=
G and L1(G)∼= L(G).

Theorem 2.8. [2] If G is an r-regular graph of order n and nk
be the order of Lk(G), then the degree square sum polynomial
of Lk(G), k = 1,2, ... is

PDSS(Lk(G))(µ) =

(
µ +2(2kr−2k+1 +2)2

)nk−1

(
µ−2(nk−1)(2kr−2k+1 +2)2

)
,

where nk =
n
2k ∏

k−1
i=0 (2

ir−2i+1 +2) and rk = 2kr−2k+1 +2.

Definition 2.9. [8] The jump graph J(G) of a graph G is a
graph with vertex set as E(G) where the two vertices of J(G)
are adjacent if ans only if they correspond to two nonadjacent
edges of G.
If G is an (n,m)-graph, then J(G) is(

m,
m(m+1)

2
− 1

2

n

∑
i=1

dG(vi)
2

)

- graph.

Definition 2.10. [17] The total graph T (G) of a graph G is
the graph whose vertex set is V (G)∪E(G) and two vertices of
T (G) are adjacent if and only if the corresponding elements
of G are either adjacent or incident.
If G is an (n,m)-graph, then T (G) is(

n+m,2m+
1
2

n

∑
i=1

dG(vi)
2

)

-graph.

We now define following definitions which are key words
of this paper.

Definition 2.11. A graph G of order n is said to be degree
square sum hyperenergetic if EDSS(G)> 4(n−1)3.

Definition 2.12. A graph G of order n is said to be degree
square sum nonhyperenergetic if EDSS(G)< 4(n−1)3.

Definition 2.13. A noncomplete graph of order n whose en-
ergy is equal to 4(n− 1)3 is called degree square sum bor-
derenergetic.

Definition 2.14. Two graphs G1 and G2 are said to be degree
square sum equienergetic if they have same degree square
sum energy. That is, EDSS(G1) = EDSS(G2).

3. Main results
Theorem 3.1. If G is an r-regular graph of order n, then G is
(i) degree square sum borderenergetic for r = 0,
(ii) degree square sum nonhyperenergetic for r ≥ 1.
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Proof. The graph G is (n−1− r)-regular graph. The degree
square sum eigenvalues of G are 2(n−1)(n−1−r)2,−2(n−
1− r)2

(
n−1 times

)
. Therefore,

EDSS(G) =
∣∣∣2(n−1)(n−1− r)2

∣∣∣+ ∣∣∣−2(n−1− r)2
∣∣∣(n−1)

= 4(n−1)(n−1− r)2.

From Definition 2.11, the graph G is degree square sum hy-
perenergetic if E(G)> 4(n−1)3.
That is, if 4(n− 1)(n− 1− r)2 > 4(n− 1)3. This inequality
does not hold for any value of r, whereas the two quantities are
equal when r = 0. Hence, G is degree square sum borderener-
getic for r = 0 and degree square sum nonhyperenergetic for
r ≥ 1.

Theorem 3.2. The graph L(Kn) is degree square sum bor-
derenergetic for n = 2,3, and degree square sum nonhyperen-
ergetic for n≥ 4.

Proof. The graph Kn is (n−1)-regular graph of order n. By
Theorem 2.2, the degree square sum polynomial of Kn is given

by, PDSS(Kn)(µ) =

(
µ−2(n−1)3

)(
µ +2(n−1)2

)n−1

.

By Theorem 2.6,

PDSS(L(Kn))(µ) =

(
µ−4(n−2)2 (n(n−1)−2)

)
(

µ +8(n−2)2
) n(n−1)−2

2
.

The degree square sum eigenvalues of L(Kn) are

µ =


4(n−2)2

(
n(n−1)−2

)
, 1 time,

−2(n−2)2,

((n
2

)
−1
)

times.

Therefore,

EDSS(L(Kn)) =
∣∣4(n−2)2 (n(n−1)−2)

∣∣
+
∣∣−2(n−2)2∣∣((n

2

)
−1
)

= 8(n−2)2
(

n(n−1)−2
)
.

This is clearly equal to and less than

EDSS

(
K(n

2)

)
= 4
(

n(n−1)−2
2

)3

for n = 2,3 and n≥ 4 respec-

tively. Hence, L(K2) and L(K3) are degree square sum bor-
derenergetic and G ∼= L(Kn) (n ≥ 4) is degree square sum
nonhyperenergetic.

Theorem 3.3. If G(� K2,K3) is an r-regular graph of order
n, then L(G) is degree square sum nonhyperenergetic.

Proof. From Theorem 2.3, the degree square sum eigenvalues
of r-regular graph G of order n are 2r2(n−1),
−2r2(n− 1 times). The line graph L(G) is (2r− 2)-regular

graph. Hence, the degree square sum eigenvalues of L(G) are
4(r−1)2(nr−2), −8(r−1)2 ( nr

2 −1 times). Therefore,

EDSS(L(G)) =
∣∣4(r−1)2(nr−2)

∣∣
+
∣∣−8(r−1)2∣∣(nr

2
−1
)

= 8(r−1)2(nr−2).

From Definition 2.11, the graph L(G) is degree square sum
hyperenergetic if EDSS(L(G))> 4(m−1)3. That is, if
8(r−1)2(nr−2)> 4( nr

2 −1)3. This inequality does not hold
for for any value of r. Hence, L(G) is degree square sum
nonhyperenergetic.

Theorem 3.4. If G is an r-regular graph of order n, then

EDSS(L2(G)) = 8nr(r−1)(2r−3)2.

Proof. From Theorem 2.3, the degree square sum eigenvalues
of r-regular graph G of order n are 2r2(n− 1), −2r2(n− 1
times). Hence, the degree square sum eigenvalues of L2(G)
are 4nr(r−1)(2r−3)2, −8(2r−3)2 ( nr

2 (r−1) times).
Therefore,

EDSS(L2(G)) =
∣∣4nr(r−1)(2r−3)2∣∣
+
∣∣−8(2r−3)2∣∣(nr

2
(r−1)

)
= 8nr(r−1)(2r−3)2.

From the Theorem 3.4, we have the following results.

Corollary 3.5. If G1 and G2 are two regular graphs on n ver-
tices and of regularity r, then L2(G1) and L2(G2) are degree
square sum equienergetic.

Corollary 3.6. If G1 and G2 are two regular graphs on n
vertices and of regularity r, then Lk(G1) and Lk(G2) (for k ≥
1) are degree square sum equienergetic.

Theorem 3.7. If G is an r-regular graph of order n, then J(G)
is (i) degree square sum borderenergetic for r = 1,
(ii) degree square sum nonhyperenergetic for r ≥ 2.

Proof. The jump graph J(G) is
(

r(n−4)+2
2

)
-regular graph.

The degree square sum eigenvalues of J(G) are

1
4

(
r(n−4)+2

)2

(nr−2),− 1
2

(
r(n−4)+2

)2 (
nr
2 −1 times

)
.

Therefore,

EDSS(J(G)) =

∣∣∣∣14 (r(n−4)+2)2(nr−2)
∣∣∣∣

+

∣∣∣∣−1
2
(r(n−4)+2)2

∣∣∣∣(nr
2
−1
)

=
1
2

(
r(n−4)+2

)2

(nr−2).

From Definition 2.11, the graph J(G) is degree square sum
hyperenergetic if E(J(G))> 4(m−1)3. That is, if
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1
2

(
r(n−4)+2

)2

(nr−2)> 4
( nr

2 −1
)3
. This inequality does

not hold for any value of r, whereas the two quantities are
equal when r = 1. Hence, J(G) is degree square sum borderen-
ergetic for r = 1 and degree square sum nonhyperenergetic
for r ≥ 2.

Theorem 3.8. If G is an r-regular graph of order n, then
T (G) is degree square sum nonhyperenergetic.

Proof. The total graph T (G) is 2r-regular graph. The degree
square sum eigenvalues of T (G) are 4r2 (n(r+2)−2),

−8r2
(

n(r+2)−2
2 times

)
. Therefore,

EDSS(T (G)) =
∣∣4r2(n(r+2)−2)

∣∣
+
∣∣−8r2∣∣(n(r+2)−2

2

)
= 8r2

(
n(r+2)−2

)
.

The graph T (G) is degree square sum hyperenergetic if
EDSS(T (G))> 4(n+m−1)3, from Definition 2.11. That is,

if 8r2
(

n(r + 2)− 2
)

> 1
2

(
n(r + 2)− 2

)3

. This inequality

does not hold for any value of r. Hence, T (G) is degree square
sum nonhyperenergetic.

Theorem 3.9. If G is an r-regular graph of order n, then
T (G) is
(i) degree square sum hyperenergetic for G∼= K2,
(ii) degree square sum nonhyperenergetic for G � K2.

Proof. The graph T (G) is
(

n+ nr
2 −2r−1

)
-regular graph.

The degree square sum eigenvalues of T (G) are

2
(

n+ nr
2 −2r−1

)(
n+ nr

2 −1
)

,

−2
(

n+ nr
2 −2r−1

) (
n+ nr

2 −1 times
)
.

Therefore,

EDSS(T (G)) =

∣∣∣∣2(n+
nr
2
−2r−1

)(
n+

nr
2
−1
)∣∣∣∣

+

∣∣∣∣−2
(

n+
nr
2
−2r−1

)∣∣∣∣(n+
nr
2
−1
)

= 4
(

n
( r

2
+1
)
−1
)(

n
( r

2
+1
)
−2r−1

)
.

From Definition 2.11, the graph T (G) is degree square sum
hyperenergetic if E(T (G))> 4(n+ nr

2 −1)3. That is, if

4
(

n
( r

2 +1
)
−1
)(

n
( r

2 +1
)
−2r−1

)
> 4(n+ nr

2 −1)3. This

inequality holds for G ∼= K2. Hence, T (G) is degree square
sum hypererenergetic for G∼= K2 and degree square sum non-
hyperenergetic, otherwise.

4. Conclusion
In this paper, we have characterized degree square sum hyper-
energetic, borderenergetic and equienergetic transformation
graphs.
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