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Stability and optimal control analysis of Zika virus
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Abstract
Stability analysis of a non-linear mathematical model is studied and analyzed the transmission dynamics of
the Zika virus disease. In our model, the human to human sexual transmission of Zika virus is modeled by
considering the saturated incidence rate. This assumption is reasonable as it incorporates the behavioral change
of the susceptible individuals and the crowding effect of the infective individuals. The equilibria of the proposed
model are obtained and the basic reproduction number (R0) is computed. The model also exhibits backward
bifurcation where the stable disease-free equilibrium coexists with a stable endemic equilibrium, which suggests
that the R0 < 1 is not enough to eradicate the disease. The sensitivity analysis of the parameters of the basic
reproduction number of the model is presented. The sensitivity analysis is performed to distinguish the main
variables that affect the basic reproduction number, which can be regulated to control the transmission dynamics
of the Zika. Finally, the optimal control strategies are incorporated into the model and performed a numerical
simulation to support our analytical findings.
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1. Introduction

Zika virus (ZIKV) is a major public health challenge in
Brazil and Latin American countries recently. ZIKV is pri-
marily spread to the human population by the contact of an
infected Aedes genes species female mosquito [1]. Sexual
transmission and blood transfusion are also the main cause of
the spread of ZIKV [10]. In 2007 to 2018 Zika outbreak is
identified in the Island of Yap, Micronesia [3], France Poly-
nesia (42 GBS cases) [1], South Pacific, South American
countries, especially in Brazil and Colombia [8]. From Octo-
ber 2013 to April 2014 the largest outbreak was reported in
South Pacific, French Polynesia. In February, 2016 the World
Health Organization announced Zika outbreak [24] is a Pub-
lic Health Emergency of International Concern(PHEIC) as it
developed Guillain-Barre Syndrome (GBS) [17] and vertical
transmission, specifically microcephaly [5]. As a result of
GBS and vertical transmission, many people suffered neuro-
logical problems in 2016. The first sexual transmission of
Zika wears found in France (2016) [1]. During the 2015 out-

break, sexual transmission Zika has been investigated in many
countries. It was confirmed that in the year 2016 more than
1,40,000, people [10] have been affected by ZIKA. In Brazil,
from October 2015 to February 2016 many people suffered
ZIKV including 139 congenital microcephaly cases identified
[1]. The symptoms of the disease are very mild and there is no
particular medicine to treatment and vaccine for the disease.

Agusto F B et al. [2] proposed a deterministic model to
study the vertical transmission of ZIKV disease. Bonyah E
et al. [3] proposed and analysis a ZIKV model with simple
mass-action type incidence and used different types as a con-
trol strategy to reduce the disease. Daozhou G et al. [10]
developed a ZIKV epidemic model and computed the basic
reproduction number. Moreno V M et al. [14] presented a
multi-patch model to see the effect of the role of short-term
dispersal dynamics of ZIKV disease. Srivastav A K et al. [21]
constructed a new ZIKV model with media impact for the
human population and standard mass-action type incidence to
reduce the transmission.

In this paper, we have formulated a deterministic model
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for ZIKV considering the standard incident type of interaction
and saturated incidence rate for the human to human sexual
transmission. The study of ZIKV is certainly necessary as
at present more than 84 countries [24] people are suffering
the disease. This paper is organized as follows: Section 2
formulates the mathematical model; Section 3 analysis of the
model and existence of equilibrium; Section 4 discussed the
existence of bifurcation of the model; Section 5 present the
stability analysis of the model; Section 6 illustrates the numer-
ical simulation and results of the model; Section 7 discussed
sensitivity of the parameters of R0; section 8 demonstrate
the numerical simulation results and finally in Section 9 we
conclude our paper.

2. The Model
We have proposed a new model for the transmission dy-

namics of ZIKV with the saturated incidence rate. In the
formulation of the proposed model the human population has
been classified into four categories such as Susceptible is de-
noted by (Sh), Infected is denoted by (Ih) and recovered is
denoted by (Rh). Similarly, the mosquito population has been
classified into two categories such as susceptible is denoted
by (Sv) and infected is denoted by (Iv) mosquitoes. There
are three types of transmission are possible in the dynami-
cal system between human to human, human to mosquito
and mosquito to human. Here, we have incorporated a non-
linear incidence function for the human to human transmis-
sion, which consists of a saturated incidence type to reduce
the transmission. Also, we have incorporated three types
incidence rate [12] such as the bilinear incidence rate of
the form (β1ShIh), the saturated incidence rate of the form(

β1ShIh

1+ p1Sh

)
, where (p1) is a positive constant and another

one saturated incidence rate of the form
(

β1ShIh

1+ p2Ih

)
, where

(p2) is a positive constant. Some authors have studied in de-
tail this type of nonlinear incidence function [4, 14, 20, 25] in
their respective model. Based on the above assumptions we
have constructed the following system of model:

dSh

dt
= Λh−β1

(
Ih

1+ p1Sh + p2Ih

)
Sh−β2

(
Iv

Nh

)
Sh

−µhSh

dIh

dt
= β1

(
Ih

1+ p1Sh + p2Ih

)
Sh +β2

(
Iv

Nh

)
Sh

−(γh +µh +µ1)Ih

dRh

dt
= γhIh−µhRh (2.1)

dSv

dt
= Λv−βv

(
Ih

Nh

)
Sv−µvSv

dIv

dt
= βv

(
Ih

Nh

)
Sv−µvIv.

Here Λh is the recruitment rate of human population; Λv
is the recruitment of vector(mosquito) population; β1 is the

Figure 1. Transmission dynamics of the ZIKV model.

transmission rate between Sh and Ih; β2 is the transmission
rate between Sh and Iv; βv is the transmission rate between
Ih and Sv; µh is natural death rate of human population; µ1 is
the natural death rate of human population due to infection;
µv is the natural death rate of mosquito population; γh is the
recovery rate of symptomatic infective(human) population; Sh
is the susceptible individuals who can suffer the disease but
are not yet infective; Ih is the infected individuals one who is
suffering the disease and are carriers and Rh is the recovered
individuals who has been recovered or removed from the host
population by either permanent immunity and temporarily
immunity or isolated or dead;

2.1 Positivety and boundedness of the solutions
Consider a feasible region

{Ω = (Sh, Ih,Rh,Sv, Iv) ∈ R5
+ : 0≤ Nh ≤

Λh

µh
,0≤ Nv ≤

Λv

µv
}

Let Nh = Sh+ Ih+Rh and Nv = Sv+ Iv are the total population
sizes of human and mosquitoes. Then

dNh

dt
= Λh−µhNh−µ1Ih

dNv

dt
= Λv−µvNv.

Clearly, whenever Nh >
Λh

µh
, Nv >

Λv

µv
,

dNh

dt
< 0 and

dNv

dt
< 0.

Here,
dNh

dt
and

dNv

dt
are bounded by (Λ− µNh) and (Λv−

µvNv). By using the standard comparison theorem as de-
scribed in, [13], we get

0≤ Nh(t)≤
Λh

µh
(1− e−µt

)+Nh(0)e−µt

and

0≤ Nv(t)≤
Λv

µv
(1− e−µt

v)+Nv(0)e−µt
v
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Then

Nh(t)≤
Λh

µh
,Nv(t)≤

Λv

µv
i f Nh(0)≤

Λ

µ
,Nv(0)≤

Λv

µv

Hence the the biological feasible region

{Ω = (Sh, Ih,Rh,Sv, Iv) ∈ R5
+ : 0≤ Nh ≤

Λh

µh
,0≤ Nv ≤

Λv

µv
}

is positively invariant and bounded by (Λh−µhNh) and (Λv−
µvNv).

As Nh = Sh + Ih +Rh and Nv = Sv + Iv, we werite the sys-
tem of eqs. (2.1) in the following form for further analysis:

dNh

dt
= Λh−µhNh−µ1Ih

dIh

dt
=

β1(Nh− Ih−Rh)Ih

1+ p1(Nh− Ih−Rh)+ p2Ih
+

β2(Nh− Ih−Rh)Iv

Nh

−(γh +µh +µ1)Ih

dRh

dt
= γh−µhRh (2.2)

dSv

dt
= Λv−µvNv

dIv

dt
= βv

(Nv− Iv)Ih

Nh
−µvIv.

3. Existence of Equilibria

3.1 Disease-free equilibrium and The Basic Repro-
duction Number

The disease-free equilibrium point E0=(N0
h , I

0
h ,R

0
h,N

0
v , I

0
v ) =(

Λh

µh
,0,0,

Λv

µv
,0
)

for the model (2.2).

We find the basic reproduction number R0 by following the
next generation matrix method as described in [6, 9]. Follow-
ing the same notations as in [6, 9] we get:

F =


β1(Nh− Ih−Rh)Ih

1+ p1(Nh− Ih−Rh)+ p2Ih
+

β2(Nh− Ih−Rh)Iv

Nh

βv
(Nv− Iv)Ih

Nh


and

V =

(
(γh +µh +µ1)Ih

µvIv

)

F= Jacobian of F at E0 =


β1N0

h

1+ p1N0
h

β2

βvN0
v

N0
h

0


and V = Jacobian of V at E0 =

(
γh +µh +µ1 0

0 µv

)

and it follows that

FV−1 =


β1Nv

0

(1+ p1Nh
0 )(γh +µh +µ1)

β2

µv

βv
Nv

0
Nv

0(γh +µh +µ1)
0

 ,

The spectral radius of the matrix ρ(FV−1) is called the basic
reproduction number R0 and it follows that:

R0 =

β1N0
h d1

(1+ p1N0
h )

+

√
(

β1N0
h d1

(1+ p1N0
h )

)2 +
4β2βvN0

v d1

µvN0
h

2

=
R1 +

√
(R1)2 +4R2

2

where,

R1 =
β1N0

h d1

(1+ p1N0
h )

,R2 =
4β2βvN0

v d1

µvN0
h

,d1 =
1

γh +µh +µ1

Here R1 denotes the basic reproduction due to human to hu-
man transmission by ignoring the transmission due to vectors.
Similarly, R2 denotes the basic reproduction due to interac-
tions with vectors in the absence of human to human transmis-
sion. The reproduction number R0 gives the average number
of infected individuals generated by the one infected in a fully
susceptible population and for our model it is given by above
expression of R0.

3.2 The Endemic Equilibrium
For the system (2.2), we get the endemic equilibrium point as
E1 = (N∗h , I

∗
h ,R

∗
h,N

∗
v , I
∗
v ),

where
N∗h =

Λh−µ1Ih∗

µh
,

R∗h =
γhI∗h
µh

,

N∗v =
Λv

µv
,

I∗v =
ΛhµhβvI∗h

µhµvβvI∗h +µ2
v (Λv−µ1I∗h )

, provided
Λv

µv
> I∗h

For I∗h , we substituting the value of N∗h ,R
∗
h,N

∗
v , I
∗
v in the equi-

librium
dI∗h
dt

, we get the following equation

g(Ih) =
(Λh−A)β1(Λh−µ1Ih)

µh + p1Λh− p1AIh + p2µhIh

+
(Λh−A)β2µhµvΛv

β2µhµvIh +(Λh−µ1Ih)µ2
v

−(Λh−µ1Ih)(µ1 +µh + γh) = 0

g(0) =Λh

[
β1Λh

µh + p1Λh
+

β2µhµvΛv

Λhµ2
v

]
−Λh(µ1+µh+γh)> 0
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g
(

Λh

µ1

)
=−Λh

(
µh + γh

µ1

)(
β2µ1Λv

Λhµv

)
< 0

g
(

Λh

µ1 +µh + γh

)
=−Λh(µh + γh)< 0

Clearly, g(Ih) is negative in the interval
Λh

µ1 +µh + γh
< Ih <

Λh

µ1
. Therefore, in the interval

Λh

µ1 +µh + γh
< Ih <

Λh

µ1
there is

no root, as there is no sign change of g(Ih). Hence, there is one

or more root are possible in the interval 0 < Ih <
Λh

µ1 +µh + γh
of g(Ih) = 0

dg(Ih)

dIh
= −Bβ1µ1{µh + p1(Λh−AIh + p2µhIh)}

(µh + p1{(Λh−AIh + p2µhIh})2

− (Bp2(µ1 +µh + γh)+ p2µh

(µh + p1{(Λh−AIh + p2µhIh})2

−
[

BIhΛvβ2βvµh(µhµvβv−µ1β 2
v )

(µhµvβvIh +(Λh−µhIh)µ2
v )

2

]
− Aβ1(Λh−µ1Ih)

µh + p1{(Λh−AIh + p2µhIh}

− AΛvβ2βvµh

µhµvβvIh +(Λh−µhIh)µ2
v

−(µ1 +µh + γh)

where A = (µ1 +µh + γh),B = Λh−AIh

If µhµvβv > µ1β 2
v and Λh > µhIh then clearly

dg(Ih)

dIh
< 0. So

in the interval 0 < Ih <
Λh

µ1 +µh + γh
there exists a positive

root I∗h of
dg(Ih)

dIh
= 0. Also it is clear that if

dg(Ih)

dIn
< 0 at

Λh

µ1 +µh + γh
then it must be negative for all Ih in the interval

0 < Ih <
Λh

µ1 +µh + γh
. Hence we get the positive equilib-

rium point E1 = (N∗h , I
∗
h ,R

∗
h,N

∗
v , I
∗
v ) with respect to the above

conditions. But if
dg(Ih)

dIh
is not negative throughout the in-

terval 0 < Ih <
Λh

µ1 +µh + γh
, then there is a probability of

getting two or more roots the equation g(Ih) = 0. Hence the
phenomenon of backward bifurcation exist for any type of
mosquito-borne disease model with respect to the endemic
equilibrium points for R0 < 1.

4. Analysis of Backward Bifurcation
Let us consider the following change of variables Nh =

x1, Ih = x2,Rh = x3,Nv = x4, Iv = x5.Also further by using vec-
tor notation X = (x1,x2,x3,x4,x5)

T , our system (2.2) can be
formulated.

dX
dt

= F(x),whereF = ( f1, f2, f3, f4, f5)
T

x′1 = Λh−µhx1−µ1x2

x′2 =
β1(x1− x2− x3)x2

1+ p1(x1− x2− x3)+ p2x2
+β2(x1− x2− x3)

x5

x1

−(µ1 +µh + γh)x2

x′3 = γhx2−µhx3 (4.1)
x′4 = Λv−µvx4

x′5 = βv(x4− x5)
x2

x1
−µvx5

Consider the case R0 = 1. Suppose, further, that β1 = β ∗1 is
chosen as a bifurcation parameter. Solving for β1 = β ∗1 from
R0 = 1 gives

β
∗
1 =

(µh + p1Λh)(µ1 +µh + γh)

Λh

(
1− µhβ2βvΛv

µ2
v Λh(µ1 +µh + γh)

)

The Jacobian of the above system at disease-free equilibrium
point is given by

J(β1) =


−µh −µ1 0 0 0

0 m22 0 0 β2
0 γh −µh 0 0
0 0 0 −µv 0
0 βv

x4

x1
0 0 −µv


Where, x1 =

Λh

µh
,x4 =

Λv

µv
,m22

β2x1

1+ p1x1
− (µ1 +µh + γh).

According to Castillo-Chavez and Song [7], we use the center
manifold theory and analyze it, which is shown below

Theorem 4.1. Consider the following general system of ordi-
nary differential equations with a parameter φ ,

dx
dt

= f (x,φ),

f : Rn×R→ R.

and

f ∈ C2(Rn×R)

where 0 is the equilibrium point of the system (i.e. f (0,φ))≡
0 for all φ and

(i). A = Dx f (0,0) =
(

∂ fi

∂x j
(0,0)

)
is the linearization matrix

of the system around the equilibrium 0 with f evaluated at 0;
(ii). Zero is the simple eigenvalue of A and other eigenvalues
of A has negatives real parts;
(iii). Matrix A has a right eigenvector w and a left eigenvector
v corresponding to the zero eigenvalue.

Let fk be the kth component of f and

a1 =
n

∑
k,i, j=1

vkwiw j
∂ 2 fk

∂xi∂x j
(0,0)
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b1 =
n

∑
k,i=1

vkwi
∂ 2 fk

∂xi∂φ
(0,0)

then the local dynamics of the system around the equilibrium
point 0 is totally determined by the signs a1 and b1.
1. a1 > 0, b1 > 0. When φ < 0 with |φ | � 1, 0 is locally
asymptotically stable, and there exists a positive unstable
equilibrium; when 0 < φ � 0, 0 is unstable and there exists a
negative and locally asymptotically stable equilibrium;
2. a1 < 0, b1 < 0. When φ < 0 with |φ | � 1, 0 is unstable;
when 0 < φ � 0 , 0 is locally asymptotically stable, and there
exists a positive unstable equilibrium;
3. a1 > 0, b1 < 0. When φ < 0 with |φ | � 1 is unstable, and
there exists a locally asymptotically stable negative equilib-
rium; when 0 < φ � 0, 0 is stable, and a positive unstable
equilibrium appears;
4. a1 < 0, b1 > 0. When φ changes from negative to positive,
0 changes its stability from stable to unstable. Correspond-
ingly a negative unstable equilibrium becomes positive and
locally asymptotically stable.

4.1 Eigenvalues of Jβ ∗1
It can easily seen that the Jacobian with β1 = β ∗1 of the lin-
earized system has a simple zero eigenvalue and the other
eigenvalues have negative real parts. Hence, the center man-
ifold theorem can be used to analyze the dynamics of the
syster (4.1) near β1 = β ∗1 . For the case when R0 = 1, using the
technique in [7] it can shown taht the matrix Jβ ∗1

has a right
eigenvector (corresponding to the zero eigenvalue) given by
w = [w1,w2,w3,w4,w5]

T , where

w1 =−
µ1

µh
,w2 = 1,w3 =

γh

µh
,w4 = 0,w5 =

βvΛhΛv

µhµ2
v

Similarly, the matrix Jβ ∗1
has a left eigenvector (corresponding

to the zero eigenvalue), denoted by v = [v1,v2,v3,v4,v5]
T

,where

v1 = 0,v2 = 1,v3 = 0,v4 = 0,v5 =
β2

µv

4.2 Computation of a1

For the system (4.1), the associated non-zero partial deriva-
tives are given by

∂ 2 f2

∂x2
1

=
−2p1

(1+ p1x1)2 ;
∂ 2 f2

∂x1∂x2
=

β1

(1+ p1x1)2 ;

∂ 2 f2

∂x2
2

=
−2β1(1+ p1x2)

(1+ p1x1)2 ;
∂ 2 f5

∂x2∂x5
=
−βv

x1

∂ 2 f2

∂x2∂x3
=

−β1

(1+ p1x1)2 ;
∂ 2 f5

∂x1∂x2
=
−βvx4

x1

It follows from the above expressions that

a1 = v2

[
w2

1

(
−2p1

(1+ p1x1)2

)
+2w1w2

(
β1

(1+ p1x1)2

)]
− v2

[
2β1

(
w2

2(1+ p1x2)+w2w3

(1+ p1x1)2

)]
+ v5

[
2w1w2

(
−βvx4

x1

)
+2w2w5

(
−βv

x1

)]
=

2µh

(µh + p1Λh)
2

[
p1µ2

1
µh
−β1(µ1 +µh +Λh p2 +2γh)

]
+

2β2βvΛv

µ2
v

(
µ1−

βv

µv

)
4.3 Computation of b1
For the system (4.1), the associated non-zero partial deriva-
tives are given by

∂ 2 f2

∂x2∂β1
=

x1

1+ p1x1

It follows from the above expressions that

b1 = v2w2

(
x1

1+ p1x1

)
=

Λh

µh + p1Λh
> 0

Clearly, the coefficient b1 is positive and according to the
Theorem (4.1), the sign of the cofficient a1, which decides the
local dynamics of the model aroud the disease-free equilibrim
for β1 = β ∗1 .

5. Stability Analysis
Theorem 5.1. If R0 < 1, the disease-free equilibrium E0 is
locally asymptotically stable otherwise it is unstable.

The Jacobian matrix of the model (2.2) at disease-free
equilibrium point E0 = (N0

h ,0,0,N
0
v ,0) is given by:

J0 =



−µh −µ1 0 0 0
0 m22 0 0 β2
0 γh −µh 0 0
0 0 0 −µv 0

0 βv
N0

v

N0
h

0 0 −µv



where,

m22 = β1(
N0

h
1+ p1N0

v
)− (µ1 +µh + γh)

The three eigenvalues of the above matrix J0 are clearly ne-
garive, that is, −µh,−µh and −µv and the remaining two
eigenvalues are the roots of the following characteristics equa-
tion:

λ
2 +A1λ +A2 = 0
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Where,

A1 = µv−m22 = µv− (1−R1)(γh +µh +µ1) f or R1 < 1

A2 = −
(

µvm22 +β2βv
N0

v

N0
h

)
= −µv

[
β1(

N0
h

1+ p1N0
v
)− (µ1 +µh + γh)

]
−β2βv

N0
v

N0
h

= µv(µ1 +µh + γh) [1− (R1 +R2)] f or (R1 +R2)< 1

It is observed that R1 < 1 and (R1+R2)< 1. If A1 > 0,A2 > 0
then both the eigenvalues of the quadratic equation will have
negative real part. Hence our system (2.2) is stable if R0 < 1.
Hence the disease-free equilibrium E0 is locally asymptoti-
cally stable.

Theorem 5.2. The disease-free equilibrium E0 is globally
asymptotically stable under some restriction of parameters if
R0 < 1, otherwise it is unstable.

Proof. Using the comparison theorem [13], we proved the
theorem. The equations of exposed and infected compartment
of the system (2.1) we re-wrire as follows.

(
İh
İv

)
= (F1−V1)

(
Ih
Iv

)
−


(

β1Ih

K
+

β2Iv

Nh

)
(S0

h−Sh)

βv

(
Ih

Nh

)
(S0

v −Sv)


where, K = 1+ p1Sh + p2Ih,

F1 =


β1N0

h

1+ p1N0
h

β2

βvN0
v

N0
h

0

 and V1 =

(
A 0
0 µv

)

As S0
h > Sh and S0

v > Sv, we get(
İh
İv

)
≤ (F1−V1)

(
Ih
Iv

)
Here,

F1−V1 =

 β1(
N0

h
1+ p1N0

v
)− (µ1 +µh + γh) β2

βv
N0

v

N0
h

−µv


The associate characteristic equation of the matrix (F1−V1)
is obtain by

λ
2 +B1λ +B2 = 0

Where,

B1 = µv− (γh +µh +µ1)(1−R1)

B2 = µv(µ1 +µh + γh) [1− (R1 +R2)]

Here it is observed thatR1 < 1 and (R1 +R2) < 1 whenever
R0 < 1. If B1 > 0,B2 > 0 then both the eigenvalues of (F1−
V1) will have negative real part. Hence our model (2.2) is
stable if R0 < 1. So (Ih, Iv)→ (0,0) as t → ∞. According
to comparison theorem [13] it follows that (Ih, Iv)→ (0,0)
and N∗h →

Λh
µh

as t → ∞. Hence (Sh, Ih,Rh, Iv,Sv)→ E0 as
t→ ∞. Hence E0 is globally asymptotically stable for R0 < 1,
if B1 > 0,B2 > 0

Theorem 5.3. When R0 > 1, then endemic equilibrium (E1)
is locally asymptotically stable under some conditions, other-
wise it is unstable.

The Jacobian matrix of the model (2.2) at endemic equi-
librium point E1 = (Nh, Ih,Rh,Nv, Iv) is obtained as follows:

J1 =


−µh −µ1 0 0 0
k21 k22 k23 0 k25
0 γh −µh 0 0
0 0 0 −µv 0

k51 k52 0 k54 k55


where,

k21 =
(1+ p2I∗h )β1I∗h

(1+ p1(N∗h − I∗h −R∗h)+ p2I∗h )
2 +

β2I∗v (I
∗
h +R∗h)

(N∗h )
2

k22 =−
β1{(1+ p1(N∗h − I∗h −R∗h)

(1+ p1(N∗h − I∗h −R∗h)+ p2I∗h )
2

+
p2I∗h}+ p1β2I∗h (N

∗
h − I∗h −R∗h)(−p1 + p2)

(1+ p1(N∗h − I∗h −R∗h)+ p2I∗h )
2 − β2I∗v

N∗h
− (µ1 +µh + γh)

k23 =−
[

(1+ p2I∗h )β1I∗h
(1+ p1(N∗h − I∗h −R∗h)+ p2I∗h )

2 +
β2I∗v
N∗h

]
k25 = β2

(
1−

(I∗h + r∗h)
N∗h

)
k51 =−βv

(
I∗h (N

∗
v − I∗v )

(N∗h )
2

)
k52 = βv

(
N∗v − I∗v
(N∗h )

2

)
k54 = βv

I∗h
N∗h

;k55 =−
(

βv
I∗h
N∗h

+µv

)
Clearly, two eigenvalues of the matrix J1 are negative such
as −µh, −µv and the remaining three roots possible to deter-
mined by the following cubic equation:

λ
3 +Xλ

2 +Y λ +Z = 0

where,

X = (µh− k22− k55)

Y = {k22k55−µh(k22 + k55− k22k55)− γhk23−µ1k21}
Z = (µhk22k55 + γhk23k55−µ1k21k55 +µ1k51k25)
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According to the Routh-Hurwitz Conditions, the three roots
of the cubic equation will have negative roots or roots with
negative real parts, if

X > 0, Y > 0, Z > 0, XY −Z > 0

AB−C = −µ
2
h (k22+55)−µh(k2

22 + k2
55− γhk23

−µ1k21 + k22k55− k2
22K55

+k22k55− k22k2
55)+µ1(k21k22 + k25k51)

−k22k55(k22 + k55−µ
2
h )

+γhk22k55− k23k25k52

Thus, the endemic equilibrium point E1 of the system (2.2) is
locally asymptotically stable.

6. Sensitivity Analysis

For the model system, the parameters β1,β2,βv are the
main parameters which regulate the basic reproduction num-
ber R0. The algebraic representations of the sensitivity index
of R0 to the parameters β1,β2,βv as described in [22, 23], we
get:

∂R0

∂β1
=

N0
h d1

2(1+ p1N0
h )

+
β1N0

h d1

2(1+ p1N0
h )

√
B

∂R0

∂β2
=

βvN0
v d1

µvN0
h

√
B

∂R0

∂βv
=

β2N0
v d1

µvN0
h

√
B

where B =
1

(
β1N0

h d1

(1+ p1N0
h )

)2 +
4β2βvN0

v d1d2

N0
h

The above mathematics expression
∂R0

∂β1
,

∂R0

∂β2
,

∂R0

∂βv
are posi-

tive. Hence we can conclude that the if any of the parameter
β1,β2,βv increases, the basic reproduction number R0 also
increases. We compute the elasticities to see the proportional
change of effect of the parameters R0. Elasticity is nothing
but the proportional response to a proportional perturbation.

Eβ1 =
β1

R0

∂R0

∂β1
=

β1N0
h d1

2R0(1+ p1N0
h )

+
β 2

1 N0
h d1

2(1+ p1N0
h )

√
B

Eβ2 =
β2

R0

∂R0

∂β2
=

β2βvN0
v d1

R0µvN0
h

√
B

Eβv =
β2

R0

∂R0

∂β2
=

β2βvN0
v d1

R0µvN0
h

√
B

Eβ2 = Eβv

It is observed that, from the above expressions Eβ1 , Eβ2 ,Eβv ,
are positive. As Eβ2 = Eβv ,we can say that β2 and βv will have
same influence on basic reproduction number R0. The minor
change in parameters β1,β2,βv will have massive change in
R0. In Figures 2 and 3, we have demonstrated the effect of the
parameters β1,β2,βv on R0.
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Figure 2. Influence of β2 and βv
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Figure 3. Influence of β1 and βv

7. Numerical Simulation
Here for the simulation of the model system (2.2) is estab-

lished to support our mathematical findings and we consider
all the parameters are in per day basis. To find the stability
of disease-free equilibrium, we consider the following set of
parameters.

Λh = 2; Λv = 40; γh = 1.436; β1 = 0.051; β2 = 0.051; µv = 2;

βv = 0.06; p1 = 0.1; p2 = 0.2; µh = 0.047; µ1 = 0.0523

We get R0 = 0.9921 < 1 for above set of parameters and
disease-free equilibrium point E0(995.51,0,0,298.31,0). The
result is illustrated in Figure 4. For endemic equilibrium we
consider β1 from 0.051 to 0.001,Λh from 2 to 10 and γh from
1.436 to 0.09. Here we found R0 = 1.4178 > 1, and the
endemic equilibrium E1(85.34,200.32,90.15,987.31,45.51).
Which is performed in Figure 5. The variation of Ih for dif-
ferent values of γh is shown in Figure 6. In figure 7, we have
demonstrated the effect of R0, β1 and γh.

8. Optimal Control Model
In this section, three time-dependent control parameters

u1(t) ,u2(t),and u3(t) are incorporate in model (2.1). With the
help of Pontryagin’s maximum principle [15] the optimal con-
trol theory is used to get the necessary conditions for optimal
control strategies to preventing and controlling the spread of
the ZIKV. The optimal control parameters and conditions are
consider as follows:
(i) the control variable u1(t) which represents the reductions
in the transmission between human to human.
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Figure 4. Variation of Sh, Ih ,Rh, Sv and Iv with time showing
the stability of disease-free equilibrium point.
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Figure 5. Variation of Sh, Ih ,Rh, Sv and Iv with time showing
the stability of endemic equilibrium point.
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Figure 6. Variation of Ih with time when γh is increasing.
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Figure 7. Effect of R0, β1 and γh

(ii) The control variable u2(t) which represents the use of
insecticide-treated bed nets and the use of mosquito repulsive
lotions and electronic devices, to reduce mosquito biting rate.
(iii) The control variable u3(t) corresponds to the additional
death rate of mosquitoes due to control efforts.
(iv) If u2(t) and u3(t) are equal to zero, then there is no sig-
nificant effort in these control measures.
(v) If u2(t) and u3(t) are equal to one, then the maximum
effort being significant.
Based on the above assumptions, the optimal control model
as follows:

dSh

dt
= Λh− (1−u1)β1

ShIh

1+ p1Sh + p2Ih

−(1−u2)β2
ShIv

Nh
−µhSh

dIh

dt
= (1−u1)β1

ShIh

1+ p1Sh + p2Ih

+(1−u2)β2
ShIv

Nh
− (γh +µh +µ1)Ih

dRh

dt
= γh−µhRh (8.1)

dSv

dt
= Λv− (1−u2)βv

SvIh

Nh
− (µv +u3)Sv

dIv

dt
= (1−u2)βv

SvIh

Nh
− (µv +u3)Iv.

8.1 The Optimal Control Analysis
In this section, we analyze the behavior of the given model

by using optimal control theory. The objective functional for
fixed time t f . Following the same notation as described in
[20, 21] we get:

J =
∫ t f

0

[
P1Ih +P2(Sv + Iv)+

1
2

P3u1
2 +

1
2

P4u2
2 +

1
2

P5u2
3

]
dt

(8.2)

Here the parameter P1 ≥ 0, P2 ≥ 0, P3 ≥ 0, P4 ≥ 0, P5 ≥ 0 and
they represent the weight constants.
Our main purpose is to determined the control parameters
u1
∗,u2

∗,u3
∗ such that

J(u∗) = min
u∈Ω

J(u1,u2,u3), (8.3)

where the control set Ω is defined as
Ω = {u1,u2,u3 : measurable and 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1,
0≤ u3 ≤ 1} and t ∈ [0, t f ].
The Lagrangian of this problem is defined as :

L(Ih,Sv, Iv,u1,u2,u3) = P1Ih +P2(Sv + Iv)+
1
2

P3u1
2

+
1
2

P4u2
2 +

1
2

P5u2
3
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For our problem, we formed Hamiltonian H :

H = L(Ih,Sv, Iv,u1,u2,u3)+λ1
dSh

dt
+λ2

dIh

dt
+λ3

dRh

dt

+λ4
dSv

dt
+λ5

dIv

dt

where λ1,λ2,λ3,λ4,λ5 are the adjoint variables. Now the dif-
ferential equation corresponding to adjoint variables can be
rearranged as

dλ1

dt
= µhλ1 +(1−u1)

β1(1+ p2Ih)Ih

(1+ p1Sh + p2Ih)2 (λ1−λ2)

+(1−u2)
β2Iv

Nh
(λ1−λ2)

+(1−u2)

[
β2ShIv

N2
h

(λ2−λ1)+
βvSvIh

N2
h

(λ5−λ4)

]
dλ2

dt
= −P1 +(1−u1)

β1(1+ p1Sh)Sh

(1+ p1Sh + p2Ih)2 (λ1−λ2)

+(1−u2)
β2ShIv

N2
h

(λ2−λ1) (8.4)

+Aλ2 +(1−u2)
βvSv(Nh− Ih)

N2
h

(λ4−λ5)

dλ3

dt
= µhλ3

+(1−u2)

[
β2ShIv

N2
h

(λ2−λ1)+
βvSvIh

N2
h

(λ5−λ4)

]
dλ4

dt
= −P2 +(µv +u3)λ4 +(1−u2)

βvIh

Nh
(λ4−λ5)

dλ5

dt
= −P2 +(µh +u3)λ5 +(1−u2)

β2Sh

Nh
(λ1−λ2)

Let the respective optimal values of Sh, Ih, Rh,Sv, Iv be S̃h,
Ĩh, R̃h, S̃v,Ĩv and the solutions of the system (8.4) be λ̃1, λ̃2,
λ̃3,λ̃4,λ̃5.

Theorem 8.1. There exist optimal controls (u1
∗,u2

∗,u3
∗) ∈Ω

such that J(u1
∗,u2

∗,u3
∗) = minJ(u1,u2,u3) subject to system

(8.1).

Proof. : To prove this theorem we use [15, 19]. Here the state
variables and the controls are positive. For this minimizing
problem, the necessary convexity of the objective functional in
(u1,u2,u3) is satisfied. The control variable set u1,u2,u3 ∈Ω

is also convex and closed by the definition. The integrand of

the functional P1Ih +P2(Sv + Iv)+
1
2

P3u1
2 +

1
2

P4u2
2 +

1
2

P5u2
3

is convex on the control set Ω and the state variables are
bounded.
Since there exist optimal controls for minimizing the func-
tional subject to systems (8.1) and (8.4), we use Pontryagin’s
maximum principle to derive the necessary conditions to find
the optimal solutions as follows:

If (x,u) is an optimal solution of an optimal control problem,
then there exist a non-trivial vector function λ = λ1,λ2, ...,λn
satisfying the following equalities.

dx
dt

=
∂H(t,x,u,λ )

∂λ

0 =
∂H(t,x,u,λ )

∂u
dλ

dt
=−∂H(t,x,u,λ )

∂x
With the help of Pontryagin’s maximum principle [19] and
theorem (8.1), we prove the following theorem:

Theorem 8.2. The optimal controls (u1
∗,u2

∗,u3
∗) which min-

imizes J over the region Ω given by

u1
∗ = min{1,max(0, ũ1)}

u2
∗ = min{1,max(0, ũ2)}

u3
∗ = min{1,max(0, ũ3)}

where,

ũ1 = β1

[
(1+ p1S∗h)S

∗
h +(1+ p2I∗h )I

∗
h

P3(1+ p1S∗h + p2I∗h )
2

]
(λ2−λ1)

ũ2 =
(β2S∗hI∗v )(λ1−λ2)+(βvS∗hI∗h )(λ4−λ5)

P4N∗h

ũ3 =
S∗vλ4 + I∗v λ5

P5

Proof. : Using optimally condition :

∂H

∂u1
= 0,

∂H

∂u2
= 0,

∂H

∂u3
= 0

we get,

u1P3 +β1

[
(1+ p1S∗h)S

∗
h +(1+ p2I∗h )I

∗
h

(1+ p1S∗h + p2I∗h )
2

]
(λ1−λ2) = 0.

This implies,

u1 = β1

[
(1+ p1S∗h)S

∗
h +(1+ p2I∗h )I

∗
h

A3(1+ p1S∗h + p2I∗h )
2

]
(λ2−λ1)

∂H

∂u2
= u2P4 +

β2S∗hI∗v
N∗h

(λ2−λ1)+
βvS∗hI∗h

N∗h
(λ5−λ4) = 0

This implies,

u2 =
(β2S∗hI∗v )(λ1−λ2)+(βvS∗hI∗h )(λ4−λ5)

P4N∗h

And,
∂H

∂u3
= u3P5− (S∗vλ4 + I∗v λ5)
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Figure 8. Control profil of u1

This implies,

u3 =
S∗vλ4 + I∗v λ5

P5
,
Again upper and lower bounds for these control are 0 and 1
respectively. i.e. u1 = u2 = u3 = 0 if u1 < 0,u2 < 0,u3 < 0 and
u1 = u2 = u3 = 1 if ũ1 > 1, ũ2 > 1 and ũ3 > 1 otherwise u1 =
ũ1, u2 = ũ2 and u3 = ũ3. Hence for these controls u1

∗,u2
∗,u3

∗

we get optimum value of the function J.

9. Numerical Simulation of Optimal
Control

We simulate our optimal control model by keeping the pa-
rameters corresponding to stability of endemic equilibrium
point E1 of the model (2.1). With the help of MATLAB the
optimal control model is simulated. The weight constants for
the optimal control problem are taken as

P1 = 1,P2 = 1,P3 = 45,P4 = 65,P5 = 75

We solve the optimality system (8.1) by iterative method with
the help of forward and backward difference approximations
[19]. We consider the time interval as [0, 150]. Here in Figure
8, is showing the control profile of u1, in Figure 9, is showing
the control profile of u2, in Figure 10, is showing the control
profile of u3 and finally in the Figure 11, is plotted to observe
the effects of optimal controls for infected human against
time with and without optimal control.It is easy to notice that
optimal control is more effective in reducing the number of
infective is considered period of time. The all three optimal
control application is the best control strategy to minimize
the number of infective, which will definitely reduce of the
spread of ZIKV.

10. Conclusion
A deterministic model for transmission dynamics of the

Zika virus is designed and analyzed. Here we considered the
human to human sexual transmission of ZIKV as a saturated
incidence rate. In summary, the study shows the following
(i) The equilibria of the proposed model and the basic repro-
duction number (R0) are computed.
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Figure 9. Control profil of u2
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(ii) It is found that for R0 < 1, the disease-free equilibrium
point (E0) is locally asymptotically stable. It also globally
asymptotically stable for R0 < 1 under some restriction of
parameters.
(iii) The system also exhibits backward bifurcation which
suggests that merely reducing R0 below one is not enough to
make disease-free equilibrium to be globally stable.
(iv) The endemic equilibrium point (E1) also locally asymp-
totically stable for R0 > 1.
(v) Sensitivity analysis is performed to determine which pa-
rameter is more sensitive to basic reproduction number (R0).
The sensitivity of (R0) with parameters β1,β2,βv; it is found
that (R0) is very sensitive to the parameter corresponding to
the transmission.
(vi) The model is extended to the optimal control model and
is analyzed by using Pontryagin’s Maximum Principle. It is
observed that the optimal control model gives better effective
results to reduce the infection than the model without optimal.
(vii) The numerical simulations are performed to support our
analytical findings and to compare our model with the exist-
ing model in [11]. Through the numerical simulation, we can
conclude that the parameter (γh) increases, as a result, the
human infective population is decreasing in the equilibrium
level. These results will help the policymakers as well as
public health for future implications.
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