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Abstract
In many years authors have adapted some notions of topology and combinatorial topology to the digital topology.
In this paper we apply some definition of discrete Morse theory to the digital topology. We define a new definition
of adjacency relation to show that digital subcomplexes are digitally homotopy equivalent. We conclude that if
there is no digitally critical simplex in the digital interval [m,n]Z, then the digital subcomplexes K(m) and K(n) are
digitally homotopy equivalent.
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1. Introduction
The importance of digital image analysis has increased

considerably with technological advances. Image analysis has
a lot of applications in many fields such as industry, medicine
and environmental sciences.

Since topological invariants are extremely useful in the
digital image analysis and computer graphics, digital
topology is constructed by benefits from topology and
algebraic topology methods.

Digital topology is first introduced by Rosenfeld [17]
and the concept of topology has become more useful with
Rosenfeld’s definition of an adjacency relation.

Boxer [2] has expanded the work of Rosenfeld [18] and
defined digital analogs of specific types such as continuous
functions, homeomorphisms and homotopy. Also, Boxer [3]
has studied the digital homotopy first given by Kong [16] and
obtained some properties of digital homotopy groups in [4].

Digital versions of the simplex concept in algebraic
topology and many properties about simplicial complexes

have been appeared in [1]. By analysing the topology of the
simplicial complex, it is thought that a different approach can
be brought to many problems in various mathematical fields.
Moreover, many theories have been developed for smooth
manifolds. One of them is a Morse Theory. Discrete Morse
Theory has been given as a combinatorial adaptation of Morse
Theory in [12]. Forman has discussed the discrete Morse
Theory and applied it to new problems in his works [11] and
[12].

In this study, we try to carry some basic definitions and
theorems in discrete Morse Theory to digital topology. We
shall try to apply some properties and theorems from discrete
Morse Theory to digital topology. We give digital topology
versions of some important properties and theorems about
the theory in [12]. We cannot prove a digital analog of an
important theorem and some lemmas about the homotopy
equivalence of subcomplexes in discrete Morse theory in [12]
by using known adjacency relations. In order to prove the
theorem we define a new adjacency relation.

2. Preliminaries
Let Z denote the set of integers and Zn be the set of lattice

points in the Euclidean n-dimensional space. The pair (X ,κ)
is called a digital image, where X is a subset of Zn and κ is an
adjacency relation on X [3]. Several adjacency relations are
used in the study of digital images. The following terminology
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is used in [16]. Two points p and q in Z2 are 8-adjacent, if
they are distinct and differ by at most 1 in each coordinate; p
and q in Z2 are 4-adjacent, if they are 8-adjacent and differ
in exactly one coordinate. Two points p and q in Z3 are 26-
adjacent, if they are distinct and differ by at most 1 in each
coordinate; they are 18-adjacent, if they are 26-adjacent and
differ in at most two coordinates; they are 6-adjacent if they
are 18-adjacent and differ in exactly one coordinate. For an
adjacency relation κ , a κ- neighbor of a lattice point p∈Zn is
a point which is κ-adjacent to p [14]. A digital image X ⊂ Zn

is κ-connected, where κ is an adjacency relation defined on
Zn if and only if for every pair of different points x,y ∈ X ,
there exists a set {x0,x1, . . . ,xr} ⊂ X such that x = x0, xr = y,
and xi and xi+1 are κ-neighbors, i ∈ {0,1, . . . ,r−1} [14].

For a,b ∈ Z with a < b if the set is of the form

[a,b]Z = {z ∈ Z | a≤ z≤ b},

then it is called a digital interval in [3] in which 2-adjacency
is given.

Definition 2.1. [3] Let (X ,κ) and (Y,λ ) be digital images
and f : X → Y be a function. We say f is (κ,λ )-continuous
if the image under f of every κ-connected subset of X is
λ -connected in Y .

The following proposition is a simple result of
Definition 2.1.

Proposition 2.2. [3] Let (X ,κ) and (Y,λ ) be digital images.
A function f : X → Y is (κ,λ )-continuous if and only if for
every κ-adjacent pair x0,x1 in X , either f (x0)= f (x1) or f (x0)
and f (x1) are λ -adjacent in Y .

Definition 2.3. [2] Let X and Y be digital images. Let
f : X→Y be a digitally continuous function that is one to one
and onto. If f−1 : Y → X is a digitally continuous function,
then f is called a digital isomorphism, and we say X and Y
are digitally isomorphic.

In Definition 2.3 it is offered to use the terminology
digitally isomorphism instead of digitally homeomorphic to
avoid misunderstandings. We use the term homeomorphic
for two closed interval which are subsets of Euclidean space
since they are homeomorphic sets in algebraic topology sense.
But their digital models may not be digitally homeomorphic.
For example, consider two digital intervals [0,2]Z and [0,6]Z.
These are not digitally homeomorphic since their cardinalities
are different.

The notion of the homotopy is modified in a digital setting
as follows.

Definition 2.4. [3] Let (X ,κ) and (Y,λ ) be digital images.
We say two (κ,λ )-continuous functions f ,g : X → Y are
(κ,λ )-homotopic if there is a positive integer m and a function

F : X× [0,m]Z→ Y

such that

• for all x ∈ X, F(x,0) = f (x) and F(x,m) = g(x);

• for all x ∈ X, the induced function Fx : [0,m]Z → Y
defined by Fx(t) = F(x, t) for all t ∈ [0,m]Z is
(2,λ )-continuous; and

• for all t ∈ [0,m]Z, the induced function Ft : X → Y
defined by Ft(x) = F(x, t) for all x ∈ X is
(κ,λ )-continuous.

In that case, F is a said to be a digital (κ,λ )-homotopy
between f and g and if such a homotopy function exists
between f and g, we write f '(κ,λ ) g for short.

In [3] it is mentioned that for the (κ,λ )-continuous
function f : X → Y , if there exists a (λ ,κ)-continuous
function g : Y → X such that

f ◦g'(λ ,λ ) 1Y and g◦ f '(κ,κ) 1X ,

then we say digital images X and Y have the same
(κ,λ )-homotopy type and these are (κ,λ )-homotopy
equivalent.

Definition 2.5. [1] Let S be a set of nonempty subset of a
digital image (X ,κ). Then the members of S are called
simplices of (X ,κ) if the following statements hold:

1. If p and q are distinct points of s ∈ S, then p and q are
κ-adjacent,

2. If s ∈ S and /0 6= t ⊂ s, then t ∈ S.

A digital m-simplex αm, is a digital simplex |αm|= m+1.
If α

′
is a nonempty proper subset of αm, then α

′
is called a

digital face of αm. We write Vert(αm) to denote the vertex
set of αm, namely, the set of all digital 0-simplexes in αm.

Throughout this paper the digital p-simplex will be
denoted by α p.

Definition 2.6. [1] Let (X ,κ) be a finite collection of digital
m-simplices, 0≤m≤ d for some non-negative integer d. Then
we call (X ,κ) as a finite digital simplicial complex if the
following statements hold:

1. If P belongs to X, then every face of P also belongs to
X,

2. If P,Q ∈ X, then P∩Q is either empty or common face
of P and Q.

Example 2.7. The digital image (X ,κ) on the left has two
paths in Figure 1. One of them is between a and d, the other
one is between c and f . So (X ,κ) has only one 8-connected
component. But (Y,λ ) has two 8-connected components.
Therefore, these digital images are not digitally homotopy
equivalent.
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Figure 1

If we consider the usual adjacency relations in digital
topology, then we see from Example 2.7 these two images
are not digitally homotopy equivalent. However, we want to
show that these digital images are homotopy equivalent in the
sense of algebraic topology. In order to do it, we propose an
alternative definition for the adjacency relation as follows:

Definition 2.8. Let (X ,κ) be a digital image. Consider a
digital simplicial complex K whose digital 0-simplices are
the elements of X. Then two distinct points x,x

′ ∈ Vert(K)

are relatively κ-adjacent iff x and x
′

are two faces of some
digital 1-simplex in K. We write x ∝ x

′
if x and x

′
are relatively

κ-adjacent.

Note that if two points in a digital image are relatively
κ-adjacent, they are also κ-adjacent.

Now according to the Definition 2.8 we can say
a,d ∈ (X ,κ) in Figure 1 are not relatively κ-adjacent so (X ,κ)
also has two connected components. Hence these digital
images are digitally homotopy equivalent.

Definition 2.9. Let (X ,κ) and (Y,λ ) be digital images and
(K,κ) and (L,λ ) be two simplical complex whose digital
0-simplices are the elements of X and Y respectively. Then
f : Vert(K)→ Vert(L) is relatively (κ,λ )-continuous if for
every {x0,x1}⊂X such that x0 and x1 are relatively-κ-adjacent,
either f (x0) = f (x1) or f (x0) and f (x1) are relatively-λ -
adjacent.

There are no notions for 1-simplex and 2-simplex in digital
topology, because of studying with discrete points. As a result,
the concept of a simplicial complex in digital topology is quite
different from the concept in algebraic topology.

The homotopy function to be established between two
digital simplicial complexes is defined on vertices sets of these
simplicial complexes via definition of relatively
adjacency relation. We say that two simplicial complexes
have the same homotopy type, when their set of vertices have
the same homotopy type.

Now the definition of homotopy and homotopy
equivalence will be given with respect to the definition of
relatively adjacency.

Definition 2.10. Let (X ,κ) and (Y,λ ) be digital images and
(K,κ) and (L,λ ) be two simplical complexes whose digital
0-simplices are the elements of X and Y , respectively. Let
f ,g : Vert(K) → Vert(L) be relatively-(κ,λ )-continuous
functions and suppose there is a positive integer m and a

function

F : Vert(K)× [0,m]Z→ Vert(L)

such that

• for all x ∈ K, F(x,0) = f (x) and F(x,m) = g(x);

• for all x ∈ K, the induced function Fx : [0,m]Z → L
defined by Fx(t) = F(x, t) for all t ∈ [0,m]Z is
relatively-(2,λ )-continuous,

• for all t ∈ [0,m]Z, the induced function Ft : K → L
defined by Ft(x) = F(x, t) for all x ∈ K is
relatively-(κ,λ )-continuous.

Then F is said to be digital relatively-(κ,λ )-homotopy
between f and g and if such a homotopy function exists
between f and g, we write f �(κ,λ ) g shortly.

Definition 2.11. f : K → L be relatively-(κ,λ )-continuous
function and let g : L→ K be a relatively-(λ ,κ)-continuous
function such that

f ◦g�(λ ,λ ) 1K and g◦ f �(κ,κ) 1L.

Then we say K and L have the same relatively-(κ,λ )-homotopy
type and that X and Y are relatively-(κ,λ )-homotopy
equivalent.

Note that if two digital images have the same
relatively-(κ,λ )-homotopy type, they have also the same
(κ,λ )-homotopy type.

According to Definition 2.8, a and d are not relatively
κ-adjacent, because a and d are not faces of the same digital
1-simplex. Similarly, c and f are not relatively κ-adjacent.
Therefore, the digital images (X ,κ) and (Y,λ ) are not
relatively homotopy equivalent.

3. Digital Morse Function
The adaptation of the concept “discrete Morse function”

into a digital case is based on [12]. In this section, we start
with giving the digital version of the discrete Morse function
and critical simplex in [12]. Then we present a few lemmas
and propositions related to a critical simplex. Finally, we give
the proof of the main result.

Remark 3.1. For n < m, let αn be a digital n-simplex and γm

be a digital m-simplex. Note that whenever we state αn ⊂ γm

we mean that αn is a face of γm.

Definition 3.2. A function

φ : (K,κ)→ R

is a digital Morse function if for every digital p-simplex
α p ∈ (K,κ)

#{α p ⊂ β
p+1 | φ(β p+1)≤ φ(α p)} ≤ 1

and

#{γ p−1 ⊂ α
p | φ(γ p−1)≥ φ(α p)} ≤ 1.
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Example 3.3. Consider the minimal simple closed curve
(MSC

′
8,8) given in Figure 2 and a digital Morse function

φ : (K,κ)→ R where K = {{a},{b},{c},{d},{a,b},{b,c},
{c,d},{a,d}} is a simplicial complex whose 0-simplices are
the elements of MSC

′
8. Then the following function

φ : (K,8)→ R
{a} 7→ 0
{b} 7→ 2
{c} 7→ 4
{d} 7→ 6
{a,b} 7→ 1
{b,c} 7→ 3
{c,d} 7→ 5
{a,d} 7→ 7,

is a digital Morse function. But if the function φ maps the
digital 0-simplex {d} to 7 and the digital 1-simplex {a,d}
to 6, then it is not a digital Morse function since {a,d} and
{c,d} have values less than 7.

Figure 2. The figure on the left is an example of a digital
Morse function while the figure on the right is not.

Example 3.4. Consider the minimal simple closed curve
(MSC8,8) in Figure 3 and a digital Morse function
φ : (K,κ) → R where K = {{a},{b},{c},{d},{e},{ f},
{a,c},{a,b},{b,d},{c,e},{d, f},{e, f}} is a simplicial
complex whose 0-simplices are the elements of MSC8. If
we define the function such that

φ : (K,8)→ R
{a} 7→ 0
{b} 7→ 8
{c} 7→ 3
{d} 7→ 2
{e} 7→ 9
{ f} 7→ 1
{a,c} 7→ 5
{a,b} 7→ 6
{b,d} 7→ 11
{c,e} 7→ 10
{d, f} 7→ 4
{e, f} 7→ 7,

then it is a digital Morse function.

Figure 3. (MSC8,8)

Example 3.5. Consider the minimal simple closed curve
(MSC4,8) in Figure 3 and a digital Morse function
φ : (K,κ) → R where K = {{a},{b},{c},{d},{e},{ f},
{g},{h},{a,b},{b,c},{c,d},{d,e},{e, f},{ f ,g},{g,h},
{a,h}} is a simplicial complex whose 0-simplices are the
elements of MSC4. If we define the function such that

φ : (K,8)→ R
{a},{c},{e},{g} 7→ 4

{b},{ f} 7→ 6
{d},{h} 7→ 1

{a,b},{e, f} 7→ 5
{b,c},{ f ,g}, 7→ 7
{a,h},{d,e} 7→ 3
{g,h},{c,d} 7→ 2,

then it is a digital Morse function.

Figure 4. (MSC4,8)

The following definition gives us the digital version of the
critical simplex in [12].

Definition 3.6. A digital p-simplex α p is digitally critical if

#{α p ⊂ β
p+1 | φ(β p+1)≤ φ(α p)}= 0,

or

#{γ p−1 ⊂ α
p | φ(γ p−1)≥ φ(α p)}= 0.

Note that in Figure 2 the digital 0-simplex {a} is
digitally critical since {a,b} and {a,d} have values greater
than 0 in the digital image MSC8 with the digital Morse
function φ , in Figure 3 digital 0-simplices {a}, {c}, {d},
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{ f} and digital 1-simplices {d, f}, {a,c}, {c,e}, {b,d} are
digitally critical and in Figure 4 digital 0-simplices {b}, {c},
{d}, {h} are digitally critical.

It follows from Definition 3.6 that a digital p-simplex α p

is not critical if and only if either of the following conditions
holds [11]:

(i) ∃α p ⊂ β p+1 such that φ(β p+1)≤ φ(α p)

(ii) ∃γ p−1 ⊂ α p such that φ(γ p−1)≥ φ(α p)

Lemma 3.7. If α is not a digitally critical p-simplex, then the
conditions (i) and (ii) in the Definition 3.6 cannot be verified
at the same time.

Proof. Assume the both conditions holds. Let α p is not a
digitally critical p-simplex. From condition (i), there is a
digital (p + 1)-simplex β p+1 such that φ(β p+1) ≤ φ(α p).
Since φ is a digital Morse function, for another p-simplex
α1 which is a face of β p+1, φ(β p+1)> φ(α1).

From the condition (ii), there is a digital (p−1)-simplex
γ p−1 such that φ(γ p−1)≥ φ(α p). Since φ is a digital Morse
function, for another p-simplex α2 that one of faces is γ ,
φ(γ p−1) < φ(α2). γ p−1 is a face of α p and α p is a face of
β p+1, so there is a digital p-simplex which is face of β p+1

and has γ p−1 as a face. Let’s denote this simplex by τ . Then
we have,

φ(α)≤ φ(γ)< φ(τ)< φ(β )≤ φ(α)

which is a contradiction.

Lemma 3.7 is a digital version of Lemma 2.5 [11] and it
is useful for the proof of Theorem 3.10.

Lemma 3.8. Let φ : (K,κ)→ R be a digital Morse function
and α be any digital simplex in X. If α attains a minimum
value, then α is singleton.

Proof. Assume that α p is a digital p-simplex, where p > 0
and φ(α p) is a minimum value. From the definition of a
digital Morse function, at most one of the (p− 1)-faces of
α p has greater value than φ(α p). Since α p is a digital p-
simplex, the number of (p−1)-faces of α p is p+1. So the
rest p (p− 1)-faces of α p have values smaller than φ(α p).
It contradicts to a minimum value of α p, because α p should
have a minimum value. Thus, α must be a singleton.

Proposition 3.9. Let φ : (X ,κ) → R be a digital Morse
function and α be a digital simplex. If α is a face of a digital
1-simplex γ1 and α attains a minimum value, then φ(γ1)
cannot be equal to φ(α).

Proof. Take α0 as a face of a digital 1-simplex γ1, and assume
that φ(γ1) = φ(α0). Since γ1 is a digital 1-simplex, it has
exactly two 0-faces, α0 and β 0.

By the definition of a digital Morse function, a value of
only one of the faces of γ1 can be greater than or equal to
φ(γ1). Since φ(γ1) = φ(α0), the condition holds and hence

φ(β 0) must be smaller than φ(γ1). From our assumption that
φ(γ1) = φ(α0), φ(β 0)< φ(γ1) = φ(α0) is obtained. This is
a contradiction since α0 attains a minimum value. So we have
φ(γ1) 6= φ(α0).

Lemma 3.8 and Proposition 3.9 play a crucial role in the
proof of Theorem 3.10.

Theorem 3.10. If a digital 0-simplex α0 has a minimum value,
then α0 is critical.

Proof. Assume that α p is a digitally noncritical p-simplex.
Then α p satisfies exactly one of the followings by Lemma 3.7:

(i) ∃τ p+1 > α p with φ(τ p+1)≤ φ(α p),

(ii) ∃υ p−1 < α p with φ(υ p−1)≥ φ(α p).

Since α0 is a digital 0-simplex, the condition (ii) cannot be
hold. So we have only condition (i) that is there exists a
digital 1-simplex τ1 whose face is α0 with φ(τ1)≤ φ(α0). It
can be considered in two separate cases: φ(τ1) = φ(α0) or
φ(τ1)< φ(α0).

First, if φ(τ1) = φ(α0), then we get a contradiction by
Proposition 3.9. Also we know that φ(α0) has minimum
value by hypothesis. So φ(τ1) cannot be less than φ(α0). As
a result, α0 should be critical.

Definition 3.11. For any digital simplicial complex (K,κ)
with a digital Morse function φ : (K,κ)→ R, and any real
number m, a digital subcomplex (K(m),κ) is a digital
subcomplex consisting of all digital simplices α of (K,κ)
such that φ(α)≤m along with all their faces likewise in [12].

Also in [12], a free face is defined as a face which is not
the face of any other simplex in digital subcomplex (K(m),κ).

Lemma 3.12. Let φ : (K,κ) → R be a digital Morse
function, [m,n]Z be a digital interval such that n = m+1 and
K(m) 6= K(n) be subcomplexes. If there is no critical simplex
in [m,n]Z, then γ ∈ K(n) \K(m) is a face of σ ∈ φ−1(n) or
γ ∈ φ−1(n) is a digital t-simplex for t ≥ 1.

Proof. Let K(m) 6= K(n) and let γ be a digital simplex such
that γ ∈ K(n) \ K(m). From the definition of digital
subcomplex and the assumption γ ∈ K(n)\K(m), we obtain

γ ∈ K(n) =
⋃

σ∈K
φ(σ)≤n

⋃
τ≤σ

τ and γ /∈ K(m) =
⋃

σ∈K
f (σ)≤m

⋃
τ≤σ

τ.

Since γ /∈ K(m), we have φ(γ)> m and there is no σ ∈ K(m)
such that φ(σ)≤m and γ is not the face of σ . Since γ ∈ K(n)
we get φ(γ) ≤ n or there is a σ ∈ K(n) such that φ(σ) ≤ n
and γ is the face of σ . But we know that φ(γ)> m and there
is no σ ∈ K(m) such that φ(σ)≤ m and γ is not the face of
σ , so φ(γ) = n or there is a σ ∈ K(m) such that φ(σ) = n.
Therefore, γ ∈ φ−1(n) or there is σ ∈ φ−1(n) such that γ is a
face of σ .
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Assume that γ ∈ φ−1(n) and let γ be a digital 0-simplex.
Then γ is a separated point from K(m). In this case, γ is
a digitally critical simplex which gives a contradiction. So
γ ∈ φ−1(n) is a digital t-simplex for t ≥ 1.

Lemma 3.13. Let φ : (K,κ) → R be a digital Morse
function, [m,n]Z be a digital interval such that n = m+ 1,
K(m) 6= K(n) be digital subcomplexes and assume that there
is no critical point in [m,n]Z. Then the number of relatively κ-
connected subsets of K(m) is equal to the number of relatively
κ-connected subsets of K(n).

Proof. Let K(m) =
⋃

i∈I Ki, I = {0, . . . ,k}, where Ki is a
κ-connected subsets of K(m). Assume that we add a new
connected component to K(m) and so construct K(n). Lets
call this component by Kk+1. Hence, α ∈ f−1(n) is a
t-simplex for t ≥ 1 from Lemma 3.12. Since α ∈ f−1(n) is
not critical from hypothesis, it holds only one of the following
conditions:

(i) ∃τ t+1 > α ∈ f−1(n) such that f (τ)≤ f (α) = n,

(ii) υ t−1 < α ∈ f−1(n) such that f (υ)≥ f (α) = n.

Assume that condition (i) holds. Then there exists a
simplex τ t+1 >α ∈ φ−1(n) such that φ(τ)≤ φ(α) = n. Since
φ(τ)≤ n, the value of φ(τ) is either n or less than or equal to
m. If φ(τ) ≤ m, the simplex τ would be in the
subcomplex K(m) by the definition of the K(m). Since Ki+1 is
a disconnected component, this is a contradiction. If φ(τ) = n,
then only one of the followings holds from Lemma 3.7:

(i)∗ ∃γ t+2 > τ such that φ(γ)≤ φ(τ) = n,

(ii)∗∗ δ t < τ such that φ(δ )≥ φ(τ) = n.

The condition (ii)∗∗ already holds because the simplex
α ∈ f−1(n) was a t-simplex with the value n. Since the digital
simplex τ is not critical, other t-faces of τ must have smaller
value than n. Let δ be one of the these faces. Since f (δ )< n,
δ ∈ K(m). This is a contradiction.

Assume now that the condition (ii) holds. Then there
exists a υ t−1 <α = φ−1(n) such that φ(υ)≥ φ(α)= n. Since
α is not critical, t− 1-faces of α must have values smaller
than n. Consequently, these faces are in K(m). This is a
contradiction. Then the number of the κ-connected
component of K(m) and K(n) must be equal.

We can now express the digital version of the main
theorem of discrete Morse theory in [12].

Theorem 3.14. Let (K,κ) be a digital complex, (K(m),κ)
and K((n),κ) be digital subcomplexes with digital interval
[m,n] such that m < n, m,n ∈ Z. Consider a digital Morse
function φ : (K,κ) → R. If there is no digitally critical
simplex in [m,n], then the digital subcomplex K(m) is
digitally homotopy equivalent to the digital subcomplex K(n).

Proof. Take n = m+ 1. In this case to construct K(n) from
K(m) we add points which are relatively
κ-adjacent to some points in K(m) from Lemma 3.13. Thus,
the number of κ-connected components of two digital
subcomplexes K(m) and K(n) will be same.

These added points must be relatively κ-adjacent to some
points in K(m). Hence, we can construct a (κ,κ)-homotopy
equivalence between K(m) and K(n) as follows:

Let X(m) = Ver(K(m)) = {q j} j∈J , J = {0, ...,k}, and
X(n) = Ver(K(n)) = X(m)∪{q j} j∈I , I = {k+ 1, ..., l}. For
the point q j, if j ∈ I there is an index j

′ ∈ J such that q j and q
′
j

are relatively κ-adjacent. This means q j ∝ q
′
j. The function f

is defined by

f : X(n)→ X(m)

q j 7→

{
q j j ∈ J
q
′
j j ∈ I.

Consider points q j0 ,q j1 ∈ X(n) such that q j0 ∝ q j1 . We have
the following three cases for these points.
Case 1: Let q j0 ,q j1 ∈ X(m) be points such that q j0 ∝ q j1 .
From the definition of f , f (q j0) = q j0 and f (q j1) = q j1 . So
we have f (q j0) ∝ f (q j1).
Case 2: Let q j0 ∈X(m), q j1 ∈X(n)\X(m) be points such that
q j0 ∝ q j1 . Since q j0 ∈ X(m), we have f (q j0) = q j0 and since
q j1 ∈ X(n) \X(m), we get f (q j1) = q

′
j. Hence, we obtain

f (q j0) ∝ f (q j1).
Case 3: For the points q j0 ,q j1 ∈ X(n) \ X(m) such that
q j0 ∝ q j1 , both of the points f (q j0) and f (q j1) are equal to a
point q

′
j by the definition of the function f so that f (q j0) ∝

f (q j1). Thus, the function f is digitally continuous. The
function g defined by

g : X(m)→ X(n)

q j 7→ q j

is also digitally continuous. As f ◦g = 1X(m), it is enough to
show that g ◦ f '(κ,κ) 1Xn . Define a function

g◦ f : X(n)→ X(n) by q j 7→

{
q j j ∈ J
q
′
j j ∈ I.

A digital (κ,κ)-homotopy function

H : X(n)× [0,1]Z→ X(n)

is defined by H(q j,0) = q j = 1X(n)(q j) and
H(q j,1) = g◦ f (q j). For the point q j ∈ X(n) restriction of the
digital (κ,κ)-homotopy function to t, Ht(q j) is
(κ,κ)-continuous. The identity map and the maps f and
g are digitally continuous, so H0(q j) = H(q j,0) = 1X(n)(q j)
and H1(q j) = g ◦ f (q j) are digitally continuous. Now, we
shall show that restriction of the digital (κ,κ)-homotopy
function to the point q j, Hq j(t) for the point q j ∈ X(n),
t ∈ [0,1]Z is (2,κ)-continuous. Assume that the points 0
and 1 are 2-adjacent. Then we have two cases with respect to
the point q j:
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• For j ∈ J, Hq j(t) = {q j}, t ∈ [0,1]Z is digitally
continuous,

• For j ∈ I, Hq j(t) is digitally continuous, because
Hq j(0) = {q j} and Hq j(1) = {q

′
j}.

So we have g ◦ f '(κ,κ) 1X(n). Therefore, the digital
subcomplex K(m) is digitally homotopy equivalent to the
digital subcomplex K(n) as desired.

Example 3.15. In this example we handle the digital
minimal simple closed curve MSC

′
8 and the digital Morse

function defined in Example 3.3. Since there is no

Figure 5. Subcomplexes of the digital image MSC
′
8

digitally critical simplex in the digital interval [2,5]Z, we
obtain K(2) '(κ,κ) K(5) from Theorem 3.14. Also
K(a)'(κ,κ) K(b) for a,b ∈ [1,6]Z from Theorem 3.14.

Example 3.16. Consider the digital image X in Figure 6
and a digital Morse function φ : (K,κ)→ R where K is a
digital simplicial complex whose digital 0-simplices are the
elements of this digital image. Let define the Digital Morse
function as shown in Figure 6. So the digitally critical
simplices are φ−1(0), φ−1(1), φ−1(7), φ−1(11), φ−1(12)
and the digital subcomplexes K(a) '(κ,κ) K(b) for
a,b ∈ [2,6]Z or a,b ∈ [8,10]Z from Theorem 3.14.

Figure 6. Digital image X
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