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Bernstein induced one step hybrid scheme for
general solution of second order initial value
problems
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Abstract
In this paper, a Bernstein polynomial with collocation and interpolation techniques were used to develop one
step hybrid scheme with one offgrid point for the direct solution of general second order ordinary differential
equations. The basic properties of the derived scheme was investigated and found to be of order four(4), zero
stable and convergent. The scheme obtained is used to solve some standard initial value problems. From the
numerical results obtained, it was revealed that the proposed method performs better than some of the existing
methods in the literature.
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1. Introduction
In this work, we consider a second order initial value

problem of the form

y′′ = f (x,y(x),y′(x)) (1.1)

In order to solve (1.1), the conditions stated below need
to be imposed

y(x0) = a, y′(x0) = b (1.2)

where x0 is the initial point, y0 is the solution at x0, f is
a continuous function within the interval of integration and
prime indicates differentiation with respect to x, while y(x) is
the unknown function to be determined.

Eq. [(1.1) - (1.2)] have been studied in many areas due to
their frequent appearance in various applications in physics,
engineering, biology and other field, for instance, diffusion
reaction process, isothermal gas equilibrium, geophysics, etc.
The Exact or approximate solutions of these problems are
very importance due to its wide application in science and
other fields of research [6].

In recent years, the Bernstein polynomials have gained the
attention of many researchers. It has been used to obtained
approximate solutions of different differential equations. For
example, a method for approximating solutions to differen-
tial equations, proposed by Bhatti used Bernstein operational
matrix of differentiation[12]. Alshbool et al in [6] solved
fractional differential equations (FDEs) with a modified new
Bernstein polynomial basis.

Rupa et al in [25], formulate one dimensional linear and
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nonlinear system of second order boundary value problems
(BVPs) using Galerkin weighted residual method with Bern-
stein and Legendre polynomials as basis functions. Alshbool
and Hashim in [7], used Multistage Bernstein polynomials
(MB-polynomials) scheme to solve Fractional Order Stiff Sys-
tems of differential equations numerically.

Hao et al in [18], proposed a Bernstein polynomials ma-
trices for the numerical solutions of fractional partial differ-
ential equations. In [24], Ordokhani and Davae proposed an
algorithm based on operational matrix by an expansion of
Bernstein polynomials in terms of Legendre polynomials for
solving differential equations.

Davaeifar et al in [14], have given solutions of nth or-
der linear Fredholm integro-differential-diference equations
subjected to mixed conditions using the Bernstein colloca-
tion matrix method. Salih et al, present a Bernstein matrix
method to solve the first order nonlinear ordinary differential
equations with the mixed non-linear conditions in [27] .

Taiwo and Hassan in [28], developed two approximation
methods namely; Iterative Decomposition and Bernstein Poly-
nomial Methods to solve some classes of Singular Initial and
Boundary Value Problems.

Ahmed[2], proposed an algorithm for approximating so-
lutions to 2nd-order linear differential equations with poly-
nomial coefficients in B-polynomials and Abbas[26], present
a Bernstein operational matrix with collocation method for
solving multi-order fractional differential equations.

Aysegul et al in [11] introduced a new method to solve
high order linear differential equations with initial and bound-
ary conditions. The method which is numerically based on
Bernstein polynomial and depend on collocation method.
Also Aysegul et al, have proposed a numerical solution of
nonlinear ordinary differential equations based Bernstein col-
location method in [10] .

In [30], a numerical method which employs the Bernstein
polynomials basis to approximate solution of a parabolic par-
tial differential equation with boundary integral conditions,
was proposed by Yousefi et al.

Recently, Ahmad[3] obtained approximate solutions of
the calculus of variations problems with B-polynomials opera-
tional matrices . Khataybeh et al in [21] solved numerically a
class of third-order ordinary differential equations (ODEs) us-
ing the operational matrices of Bernstein polynomials method.

In this paper, hybrid one step scheme will be developed for
direct solution of general second order initial value problem
using Bernstein Polynomial as basis function.

This paper is organization as follows: in Section 2, we
introduce the B-polynomials and their properties. Section 3
is a development of the method. Section 4, analysis of the
basic properties of the method. Numerical implementation of
the scheme in Section 5. Section 6 offers discussion of result.
And Section 7 is reserved for conclusion.

2. Bernstein Polynomials and their
Properties

Aysegul et al in [11], defined the Bernstein polynomials
of degree m on the interval [0, 1], as

Bi,m(x) =
(m

i
)

xi(1− x)m−i, i = 0,1, ...,m (2.1)

where the binomial coefficient is(m
i
)
=

m!
i!(m− i)!

There are (m+1) nth degree of Bernstein polynomials. For
mathematical convenience, we usually set Bi,m = 0, if i < 0
or i > m.

In general, we approximate any function y(x) with the first
(m+1) Bernstein polynomials as

y(x) =
m

∑
i=0

ciBi,m(x) =CT
φ(x), (2.2)

where CT = [c0,c1, ...,cm], are the coefficients to be deter-
mined and
φ(x) = [B0,m(x),B1,m(x), ...,Bm,m]

T is the Bernstein polyno-
mial of degree m.
where φ(x) = Am×Tm(x)

Tm(x) =
(
1 x x2 . . . xn

)

Am =


b0,0 0 0 . . . 0
b1,0 b1,1 0 . . . 0
b2,0 b2,1 b2,2 . . . 0

...
...

...
. . .

...
bn,0 bn,1 bn,2 . . . bn,n


so we can convert (2.2) to

y(x) = (1 x x2 . . . xn)


b0,0 0 0 . . . 0
b1,0 b1,1 0 . . . 0
b2,0 b2,1 b2,2 . . . 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.
bn,0 bn,1 bn,2 . . . bn,n




c0
c1
c2
.
.
.

cn


(2.3)

Properties of Bernstein Polynomials

1. Positivity property:

Bi,m(x)> 0 is hold, for 0≤ x≤ 1

2. Unity partition property:
m

∑
k=0

Bi,m(x)=
m−1

∑
k=0

Bi,m−1(x)=
m−2

∑
k=0

Bi,m−2(x)= · · ·=
1

∑
i=0

Bi,1(x)= 1

3. Recursive relation property:

Bi,m(x) = (1− x)Bi,m−1(x)+ xBi−1,m−1(x)

4. First derivatives of the generalized Bernstein basis poly-
nomials:
d
dx Bi,m(x) = m(Bi−1,m−1(x)−Bi,m−1(x))

The proofs of the property can be found in [19].
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3. Development of the method
Our aim in this section is to find an approximate solution

of Eq. (1.1), expressed in the Bernstein polynomial form:

y(t) =
c+i−1

∑
k=0

akBk,n(t), (3.1)

where c and i are number of distinct collocation and interpo-
lation points respectively and Bk,n(t) is the Bernstein Polyno-
mial derived from the recursive relation

Bk,n(t) = (1− t)Bk,n−1(t)+ tBk−1,n−1(t) (3.2)

Differentiating (3.1) twice and substituting into (1.1) gives:

f (x,y(x),y′(x)) =
c+i−1

∑
k=0

akB′′k,n(t). (3.3)

We consider a grid point of steplength one and off step point
at x = xn+ 1

2
. Collocating (3.3) at points x = xn, xn+ 1

2
and

xn+1, interpolating (3.1) at x = xn and xn+ 1
2

give a system of
five equations which are solved using Gaussian elimination
method to obtained the parameters a′js, j = 0,1, ...4. The
parameters a′js obtained are then substituted back into (3.1)
to give the continuous hybrid one step method of the form;

y(x) = α0yn +α 1
2
yn+ 1

2
+h2

[
β0 fn +β1 fn+1 +β 1

2
fn+ 1

2

]
,

(3.4)
where

α0(t) = 1−2t,

α 1
2
(t) = 2t

β0(t) = h2
[
− 7t

48
+

t2

2
− t3

2
+

t4

6

]
(3.5)

β 1
2
(t) = h2

[
− t

8
+

2t3

3
− t4

3

]

β1(t) = h2
[

t
18
− t3

6
+

t4

6

]
Evaluating (3.4) at t = 1 gives rise to:

yn+1 =−yn +2yn+ 1
2
+

h2

48

[
fn +10 fn+ 1

2
+ fn+1

]
(3.6)

Also differentiating (3.4), where dt
dx = 1

h give rise to

y′(x) = α
′
0yn +α

′
1
2
yn+ 1

2
+h2

[
β
′
0 fn +β

′
1
2

fn+ 1
2
+β

′
1 fn+1

]
,

(3.7)
where

α
′
0 =−

2
h

α
′
1
2
=

2
h

β
′
0(t) = h

[
2t3

3
− 3t2

2
+ t− 7

48

]
(3.8)

β
′
1
2
(t) = h

[
−4t3

3
+2t2− 1

8

]
β
′
1(t) = h

[
2t3

3
− t2

2
+

1
48

]
On evaluating (3.7) at t = 0, 1

2 and 1, we have the following
discrete methods

hy′n−2yn+ 1
2
+2yn =

h2

48

[
−7 fn−6 fn+ 1

2
+ fn+1

]
(3.9)

hy′n+ 1
2
−2yn+ 1

2
+2yn =

h2

48

[
3 fn +10 fn+ 1

2
− fn+1

]
(3.10)

hy′n+1−2yn+ 1
2
+2yn =

h2

48

[
fn +26 fn+ 1

2
+9 fn+1

]
(3.11)

The methods derived in equation (3.6), (3.9) to (3.11) will
be combined and implemented as a block to solve numerical
examples in section 5.

4. Analysis of the Basic Properties of the
Method

In this section, we analyze the derived scheme by deter-
mining the order and error constant, consistency, zero stability
and region of absolute stability of the scheme.

4.1 Order and Error constant
Definition 4.1. The one-step implicit hybrid block linear
method and the associated linear difference operator are said
to have order p if C0 =C1 =C2 =C3 = ...=Cp =Cp+1 and
Cp+2 6= 0 see [23] for details

According to Fatunla [16], we expand (3.6), (3.9) to (3.11)
using Taylor’s series and combining the coefficient of the like
terms in hn, the following result are obtained

Table 1. Order and Error Constants of additional methods.

method(eqn no) Order Error Constant
2.6 4 − 1

15360
2.9 3 − 1

720
2.10 3 7

5760
2.11 3 − 1

720

4.2 Consistency of the Scheme
Definition 4.2. A numerical method is said to be consistent,
if it has order greater than one (p≥ 1) see [22] for details

hence our methods are consistent

352



Bernstein induced one step hybrid scheme for general solution of second order initial value problems — 353/355

4.3 Zero Stability
Definition 4.3. According to Lambert[23] a method is said to
be Zero stable if no roots of the first characteristic polynomial
ρ(z) has modulus greater than one, and if every root of the
modulus one has multiplicity not greater than one, |z| ≤ 1 and
is simple.

Therefore our numerical schemes in 3.6, 3.9, 3.10 and
3.11 are zero stable.

4.4 Convergence of the method
Definition 4.4. The necessary and sufficient condition for
a linear multistep method to be convergent is for it to be
consistent and zero stable. see [13] for details

Hence our methods are convergent.

4.5 Region of Absolute Stability of the method
Definition 4.5. A method is said to be absolutely stable within
a given interval if for a given h, all roots zs of the char-
acteristic polynomial π(z,h) = ρ(z)+ h2σ(z) = 0, satisfies
|z|< 1,s = 1,2, . . . ,n, where h = λ 2h2 and λ = ∂ f

∂y .

We adopted the boundary locus method to determine the
stability interval of our main method(3.6).

Table 2:The boundaries of the region of absolute stability of
the method

θ0 0 30 60 90 120 150 180
~h(θ) 0.0000 −0.2885 −1.0963 −2.4633 −4.3636 −6.7651 −9.6000

The region of absolute stability of the method is between
(-9.60 ,0.00)

5. Numerical implementation of the
scheme

In this section, we test effectiveness and validity of our newly
derived scheme by applying it to some second order differen-
tial equations. All numerical calculations and programs are
carried out with the aid of Maple 16 software.

Example 1
We consider a moderately stiff problem [[1],[4]]:

y′′ = y′,y(0) = 0,y′(0) =−1, h = 0.1

whose exact solution is y(x) = 1− exp(x).

Table 3: Numerical result for Example 1 with h = 0.1

x Exact Numerical Error in the Proposed
Methodp = 3

0.1 −0.10517091807565 −0.105170902716915 1.5358735×10−08

0.2 −0.22140275816017 −0.221402724212121 3.3948049×10−08

0.3 −0.34985880757600 −0.349858751298410 5.6277590×10−08

0.4 −0.49182469764127 −0.491824614712792 8.2928478×10−08

0.5 −0.64872127070013 −0.648721156137452 1.14562678×10−07

0.6 −0.82211880039051 −0.822118648456907 1.51933603×10−07

0.7 −1.01375270747048 −1.01375251157245 1.9589803×10−07

0.8 −1.22554092849247 −1.22554068106298 2.4742949×10−07

0.9 −1.45960311115695 −1.45960280352360 3.0763335×10−07

1.0 −1.71828182845905 −1.71828145069524 3.7776381×10−07

Table 4: Comparison of the error for Example 1.

x Error in [4] Error in [29] Error in[20] Error in [1] Error in our
p = 4 p = 4 p = 6 p = 3 method p = 4

0.2 0.5372×10−05 3.2672×10−04 8.17176×10−07 1.25×10−07 3.3948×10−08

0.3 0.6247×10−05 2.2156×10−03 3.10356×10−06 3.250×10−07 5.6278×10−08

0.4 0.1517×10−05 4.8571×10−03 6.56957×10−06 6.424×10−07 8.2928×10−08

0.5 0.1001×10−04 9.0977×10−03 1.14380×10−05 1.099×10−06 1.1456×10−07

0.6 0.2970×10−04 1.4391×10−02 1.79656×10−05 1.7213×10−06 1.5193×10−07

0.7 0.5916×10−04 2.1438×10−02 2.64474×10−05 2.538×10−06 1.9590×10−07

0.8 0.1002×10−03 2.9899×10−02 3.72222×10−05 3.583×10−06 2.4743×10−07

0.9 0.1550×10−03 4.0301×10−02 5.06788×10−05 4.896×10−06 3.0763×10−07

1.0 0.2259×10−03 5.2552×10−02 6.72615×10−05 6.522×10−06 3.7776×10−07

Example 2
We consider a highly stiff problem [[1], [4]]:

y′′+1001y′+1000y = 0,y(0) = 1,y′(0) =−1, h = 0.05

whose exact solution is y(x) = exp(−x).

Table 5: Numerical result for Example 2 with h = 0.05

x Exact Numerical Error
0.1 0.951229424500714 0.951229424396234 1.04480×10−10

0.2 0.904837418035960 0.904837417831670 2.04290×10−10

0.3 0.860707976425058 0.860707976126546 2.98512×10−10

0.4 0.818730753077982 0.818730752691421 3.86561×10−10

0.5 0.778800783071405 0.778800782603302 4.68103×10−10

0.6 0.740818220681718 0.740818220138724 5.42994×10−10

0.7 0.704688089718713 0.704688089107476 6.11237×10−10

0.8 0.670320046035639 0.670320045362696 6.72943×10−10

0.9 0.637628151621773 0.637628150893473 7.28300×10−10

1.0 0.606530659712633 0.606530658935081 7.77552×10−10

Table 6:Comparison of the error Example 2

x Error in [4] Error in [1] Error in Proposed Scheme
0.1 1.0886170×10−10 2.22×10−08 1.04480×10−10

0.2 2.0752355×10−10 1.250×10−07 2.04290×10−10

0.3 2.8642155×10−10 3.254×10−07 2.98512×10−10

0.4 3.4842440×10−10 6.428×10−07 3.86561×10−10

0.5 3.9603265×10−08 1.0993×10−06 4.68103×10−10

0.6 4.3142434×10−07 1.7209×10−06 5.42994×10−10

0.7 4.5649384×10−07 2.538×10−06 6.11237×10−10

0.8 4.7288495×10−07 3.583×10−06 6.72943×10−10

0.9 4.8202237×10−07 4.896×10−06 7.28300×10−10

1.0 4.8513832×10−07 6.522×10−06 7.77552×10−10

Example 3
We consider an inhomogeneous problem [1] :

y′′ =−100y+99sin(x), y(0) = 1,y′(0) = 11,h =
1

320
which has a solution of the form y(x) = cos(10x)+sin(10x)+
sin(x).

Table 7: Numerical result for problem 3 with h = 1
320

x Exact Numerical Error
1

320 1.03388166738420 1.03388166734330 4.090×10−11

3
320 1.06675678785246 1.06675678777170 8.076×10−11

6
320 1.09859628036501 1.09859628024550 1.1951×10−10

9
320 1.12937207509627 1.12937207493916 1.5711×10−10

12
320 1.15905714081491 1.15905714062147 1.9344×10−10

15
320 1.18762551125002 1.18762551102154 2.2848×10−10

18
320 1.21505231041716 1.21505231015499 2.6217×10−10

21
320 1.24131377687988 1.24131377658543 2.9445×10−10

24
320 1.26638728692280 1.26638728659754 3.2526×10−10

27
320 1.29025137661388 1.29025137625933 3.5455×10−10

353



Bernstein induced one step hybrid scheme for general solution of second order initial value problems — 354/355

Table 8: Comparison of error of the error Example 3

x Error in [1] Error in our Proposed Method
1

320 7.9800×10−11 4.090×10−11

3
320 8.3780×10−10 8.076×10−11

6
320 3.3600×10−09 1.5711×10−10

9
320 7.3481×10−09 1.5711×10−10

12
320 1.2557×10−08 1.9344×10−10

15
320 1.8721×10−08 2.2848×10−10

18
320 2.5555×10−08 2.6217×10−10

21
320 3.2762×10−08 2.9445×10−10

24
320 4.0036×10−08 3.2526×10−10

27
320 4.7066×10−08 3.5455×10−10

Example 4
We consider Nonlinear problem [5] :

y′′− x(y′)2 = 0, y(0) = 1,y′(0) =
1
2
,h = 0.003125

The analytical solution of the above problem is given by

y(x) = 1+
1
2

ln
(

2+ x
2− x

)
Table 9: Comparison of the error of the proposed method

with existing literature for problem 4.
x Error in [8] Error in Error in [5] Error in our

p = 6 [9] p = 8 p = 4 scheme p = 4
0.1 0.8474×10−07 8.7932×10−05 0.817×10−06 3.105×10−16

0.2 0.5372×10−05 3.2672×10−04 8.17176×10−07 6.209×10−16

0.3 0.6247×10−05 2.2156×10−03 3.10356×10−06 9.314×10−16

0.4 0.1517×10−05 4.8571×10−03 6.56957×10−06 1.2420×10−15

0.5 0.1001×10−04 9.0977×10−03 1.14380×10−05 1.5527×10−15

0.6 0.2970×10−04 1.4391×10−02 1.79656×10−05 1.8635×10−15

0.7 0.5916×10−04 2.1438×10−02 2.64474×10−05 2.1745×10−15

0.8 0.1002×10−03 2.9899×10−02 3.72222×10−05 2.4855×10−15

0.9 0.1550×10−03 4.0301×10−02 5.06788×10−05 2.7967×10−15

1.0 0.2259×10−03 5.2552×10−02 6.72615×10−05 3.1080×10−15

6. Discussion of Result
A new one-step hybrid Bernstein method with one off-

step points of order 4 and3 is proposed for the direct solution
of general second order ordinary differential equations. The
main method and the additional methods were obtained from
the same continuous method derived via interpolation and
collocation procedures. The stability properties and region of
the method are also discussed. The methods are then applied
in block form as simultaneous numerical integrators over non-
overlapping interval. In Tables 4, 6, 8 and 9, we compared
the accuracy of proposed method with some existing methods,
the proposed method display better accuracy.

7. Conclusion
The one step hybrid method generated in this paper is

accurate, efficient and can compete favorably with existing
schemes.
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