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Modelling of an M/M/2 production inventory system
with multiple vacation
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Abstract
The paper analyzes an M/M/2 multiple vacations production inventory system with two heterogeneous servers.
Server 2 avails multiple vacation, whereas the other one continues static even when the system is vacant. At
a time one unit of order arrive from customers randomly. We model the system according to (s, S) policy and
the products are manufactured one at a time. The arrival of demands is according to a Poisson process. The
duration of the vacation time of server 2 is exponentially distributed. Once the stock position goes down to s, the
manufacturing procedure is started and it ceases at the point when the stock position is at the largest extent S.
The time gap between the replenishment of two successive items is also distributed exponentially with rate β .
Matrix Geometric Method is employed to derive the steady state solution. Several measures of performance
in the steady state are derived. An appropriate cost function is constructed and numerical experiments are
conducted to obtain the optimum value of the cost function for parameter values.
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1. Introduction
The queueing system with vacations has been studied

extensively and has practical applications in production in-
ventory models, data communication systems, designing com-
puter networks, etc. Vacations to the servers may due to server
failures, lack of work, or some other secondary jobs being
assigned to the servers. If we allow the servers to avail vaca-
tions, the vacation time can be utilized for performing some
other jobs, which will improve the profitability of an organiza-
tion. We consider the concept of heterogeneity of service that
allows the customers to receive the different quality of service
and it can be seen in organizations like banks, hospitals, rail-
way stations, manufacturing systems, etc. Krishnamoorthy
and Viswanath[1] analyzed a production inventory model with
service time and vacation to the server.They considered the
Markovian production scheme and the arrival of customers are
according to a Markovian Arrival Process (MAP). Relevant
performance measures and the impact of correlation in the
manufacturing process on different performance measures are
discussed.

Three production inventory systems were detailed by Kr-
ishnamoorthy and Jose [2] in which the loss and retrial of
customers are considered. They compared the three systems



Modelling of an M/M/2 production inventory system with multiple vacation — 357/362

using Matrix Analytic Method. The queueing system with
two heterogeneous servers was analyzed by Krishnamoorthy
and Sreenivasan[3]. They discussed the system in which one
server always ready to serve whereas the other one was a vaca-
tioning server. A numerical example is provided to illustrate
the characteristics of the system. They focused on the busy
period analysis of the system and long run waiting time in
the queue. Another remarkable study was made by Krishna
Kumar and Pavai Madheswari[4] on a Markovian queue. They
discussed the system when both servers are heterogeneous
and choose multiple vacations for want of customers waiting
in the queue. The Markovian queue with a working vacation
to the heterogeneous servers was devised by Sridhar and Allah
Pitchai[5]. When there are no customers both servers go for a
vacation and after this vacation, server 1 is always available.
During the period of vacation of server 2, if server 1 busy,
then server 2 returns from vacation and start servicing at a
rate lower than the normal rate. Then after the vacation pe-
riod, when the customers are staying in the queue for service
facility, server 2 is busy with the ordinary rate.

For a more detailed study on server vacations, we can refer
to the survey paper by Doshy[6]. A numerical solution for a
two-stage production and inventory system with the arrival
of demands randomly was analyzed by Andrew Junfang Yu
and Yuanyuan Dong [7]. In the model, they considered the
production rate is constant and to obtain the optimal solu-
tion a numerical approach is used. A production inventory
model with probabilistic deterioration and the varying produc-
tion cost was considered by Palanivel and Uthayakumar[8].
Samanta[9] considered a production inventory model with
shortages and the items are deteriorating. For quasi-birth-
death processes, a logarithmic reduction algorithm was de-
vised by Latouche and Ramaswami[10]. Sennott et al.[11]
derived mean drifts and the non-ergodicity of Markov chains.
The analysis of a queue with heterogeneous servers, repair
of servers, system disaster, and impatience of customers was
studied by Sudheesh et al.[12]. Sivakumar[13] considered a
retrial demand inventory system and calculated the joint prob-
ability distribution of the inventory level, total expected cost
and the number of customers in the orbit. Krishnamoorthy
et al.[14] analyzed a production inventory system with ser-
vice time and interruptions. They derived the necessary and
sufficient condition for the stability of the system. Back and
Moon[15] considered a production inventory model in which
service queue is a Markovian and lost sales were discussed.
They derived an explicit stationary joint probability in product
form and developed a cost model using mean performance
measures. For the detailed study of Matrix Analytic Method,
one can refer to Neuts[16]. The remaining part of the paper is
arranged as follows. Section 2 is devoted to a brief description
of the model. Section 3 presents analysis of the model and
system stability. In section 4 various measures of performance
are calculated. Numerical results in the form of tables and
graphs are presented in section 5 followed by the conclusions
in section 6.

2. Description of the model
The study focuses on an M/M/2 multiple vacation and pro-

duction inventory system with two heterogeneous servers.
One server is taking multiple vacations while the other re-
mains in the network even when the system is empty. Assume
that the inventory system consists of a single manufacturer,
two distributors, and customers. Orders from the buyers arrive
at the retailer randomly, which is single unit at a time. Items
are manufactured one after another according to (s,S) policy.
Inter arrival times of demand are assumed to be a Poisson
process with rate λ . Two severs, server 1 and server 2, gives
service of different dimension to the customers on an FCFS
basis. The service rates of server 1 and server 2 are µ1 and
µ2 respectively. It is assumed that server 1 is ever present,
but on the other hand, server 2 continues with multiple va-
cations whenever no customer is in the queue for service or
no items in the inventory. The vacation period of server 2 is
exponentially distributed with a rate of θ . Having the server 2
vacated, if no demand is made or there is no stock of items,
server 2 takes another vacation else it comes back to service.
If the servers are free and the inventory level is positive all
the arriving customers get service immediately. On the arrival
of a stock level at a position say s > 0 determined earlier, the
manufacturing process gets started and it ceases when the
stock level reaches back to the maximum inventory level S. In
order to replenish the items, a random amount of lead time
is required and lead time follows an exponential distribution
with rate β .

3. Analysis of the model
The presumptions and the notations applied in the model

are listed below.
Presumptions

1. order from customers is according to a Poisson process
with rate λ .

2. service rates of server 1 and 2 are exponentially dis-
tributed with parameter µ1 and µ2.

3. the time duration of the inclusion of two consecutive
items to the inventory is exponential with rate β .

4. duration of vacation of server 2 is exponentially dis-
tributed with parameter θ .

Notations

N(t) : Number of customers in the system at time t.
I(t) : Inventory level at time t.

C(t) :

{
0 if server 2 is on vacation
1 if server 2 is busy

J(t) :

{
0 if the production process is an OFF mode
1 if the production process is ON mode

e : (1,1, ...,1)′,column vector of 1’s of size (S+1)
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Then {(N(t),C(t),J(t)), I(t)), t ≥ 0} is a continuous time
Markov chain on the state space {(0,0,0,k),s+1≤ k ≤ S}∪
{(0,1,0,k),0≤ k≤ S−1}∪{(i,0, j,k), i≥ 1, j = 0,1,s+1≤
k ≤ S}∪{(i,1, j,k), i ≥ 1, j = 0,1,0 ≤ k ≤ S−1}. Now the
generator matrix of the process is given by

Q =


A00 A01 0 0 0 . . .
A10 A11 A0 0 0 . . .
0 A2 A1 A0 0 . . .
0 0 A2 A1 A0 . . .
...

...
...

...
...

. . .



where the blocks A00,A01,A10,A11,A0,A1, andA2 are given
by

[A01]uv =


λ , if 1≤ u≤ S− s,v = u

λ ,
if S− s+1≤ u≤ 2S− s,

2(S− s)+1≤ v≤ 3S−2s
0, otherwise

[A00]uv =



−λ , if 1≤ u≤ S− s,v = u
β , if u = 2S− s,v = S− s
−(λ +β ), if S− s+1≤ u≤ 2S− s,v = u

β ,
if S− s+1≤ u≤ 2S− s−1,

v = u+1
0, otherwise

[A10]uv =



µ1, if 2≤ u≤ S− s,v = u−1
µ1, if u = 1,v = S+1

(µ1 +µ2),
if S− s+2≤ u≤ 2(S− s),

1≤ v≤ S− s
(µ1 +µ2), if u = S− s+1,v = S+1

µ1,
if 2(S− s)+2≤ u≤ 3S−2s,

S− s+1≤ v≤ 2S− s−1

(µ1 +µ2),
if 3S−2s+2≤ u≤ 4S−2s,

S− s+1≤ v≤ 2S− s−1
0, otherwise

[A11]uv =



−(λ +µ1), if 1≤ u≤ S− s,v = u

−(λ +µ1 +µ2),
if S− s+1≤ u≤ 2S−2s,

v = u
−(λ +β ), if u = 2S−2s+1,v = u

−(λ +µ1 +β ),
if 2S−2s+2≤ u≤ 3S−2s,

v = u

β ,
if 2S−2s+1≤ u≤ 3S−2s−1,

v = u+1
−(λ +β ), if u = 3S−2s+1,v = u
β , if u = 3S−2s,v = S− s
∇, if 3S−2s+2≤ u≤ 4S−2s,v = u

β ,
if 3S−2s+1≤ u≤ 4S−2s−1,

v = u+1
β , if u = 4S−2s,v = 2S−2s
0, otherwise

[A0]uv =

{
λ , if 1≤ u≤ 4S−2s,v = u
0, otherwise

[A2]uv =



µ1, if 2≤ u≤ S− s,v = u−1
µ1, if u = 1,v = 2S− s+1
(µ1 +µ2), if S− s+2≤ u≤ 2S−2s,v = u−1
(µ1 +µ2), if u = S− s+1,v = 3S− s+1

µ1,
if 2S−2s+2≤ u≤ 3S−2s,

v = u−1

(µ1 +µ2),
if 3S−2s+2≤ u≤ 4S−2s,

v = u−1
0, otherwise

[A1]uv =



−(λ +µ1 +θ), if 1≤ u≤ S− s,v = u

θ ,
if 1≤ u≤ S− s,

S− s+1≤ v≤ 2S−2s
−(λ +µ1 +µ2), if S− s+1≤ u≤ 2S−2s,v = u
−(λ +β +θ), if u = 2S−2s+1,v = u

β ,
if 2S−2s+1≤ u≤ 3S−2s−1,

v = u+1

θ ,
if 2S−2s+1≤ u≤ 3S−2s,

v = S+u
β , if u = 3S−2s,v = S− s
β , if u = 4S−2s,v = 2S−2s
∆, if 2(S− s+1)≤ u≤ 3S−2s,v = u
−(λ +β ), if u = 3S−2s+1,v = u
∇ if 3S−2s+2≤ u≤ 4S−2s,v = u

β ,
if 3S−2s+1≤ u≤ 4S−2s−1,

v = u+1
0, otherwise

∆ =−(λ +θ +µ1 +β ),∇ =−(λ +β +µ1 +µ2),

3.1 System stability
The Markov chain obtained here is a level-independent

quasi-birth-death process. For the stability of the Markov
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chain, it is necessary and sufficient that πA0e < πA2e, where
π is the stationary vector which is unique and satisfies πA = 0
and πe = 1, where A = A0 +A1 +A2, and e is the column
vector of an appropriate order.

3.2 Stability conditions
Theorem 3.1. The above queueing model is stable if and only
if ρ < 1
where ρ = λ

µ1+µ2
.

Proof. The stability of the Markov chain is proved using
Pake’s Lemma. Immediately after the service completion
epoch of the ith customer, let there be Ti number of customers
in the system. Then Ti : i ∈ N satisfies the equation

Ti =

{
Ti−1−1+Vi, if Ti−1 ≥ 1
Vi, if Ti−1 = 0

where Vi represents the number of entries during the service
of the ith customer. Then the Markov chain {Ti : i ∈ N} is
irreducible and aperiodic. According to Pake’s lemma an
aperiodic Markov chain is ergodic, if there exist an ε > 0 such
that the mean drift ψ j = E[(T(i+1)−Ti)/Ti = j] is finite for
all j∈ N and ψ j ≤−ε for all j∈ N except perhaps for a finite
number. The Mean drift obtained here as

ψ j =

{
−1+ρ, if j ≥ 1
ρ, if j = 0

The Markov chain {Ti : i ∈ N} is ergodic if ρ < 1 and
hence the sufficient condition is satisfied. For obtaining the
necessary condition, we assume that ρ ≥ 1. Using the theorem
in Sennot, which states that {Ti : i ∈ N} non ergodic if the
Kaplan’condition : ψ j < ∞, for j≥ 0 and there exist a j0 such
that ψ j ≥ 0, for j ≥ j0 is satisfied. Here Kaplan’s condition is
fulfilled when ρ ≥ 1 and hence the Markov chain {Ti : i ∈ N}
is not ergodic.

3.3 Steady State Probability Vector
Our objective is to compute the stationary probability vector

X = (x0,x1, . . .) of Q from the system of equations XQ = 0.
Neuts developed a matrix geometric solution to solve this
problem that there exists a positive matrix R such that xi =
x(i−1) ∗R for (i = 2,3,4. . . ). If we know the sub vectors x0
and x1 and the rate matrix R then the remaining sub vectors
of the stationary distribution can be calculated. R can be
computed from R2A2 +RA1 +A0 = 0. The rate matrix R is
given by R = −A0(A1)

−1−R2A2(A1)
−1. This leads to the

successive substitution procedure derived by Nuets , R0 =
0,Rk+1 = −A0(A1)

−1 − R2
kA2(A1)

−1, k = 0,1,2, . . .. Nuets
proved that the sequences of matrices Rk,(k = 0,1,2, . . .) is
nondecreasing and converges to the rate matrix R. The process
came into an end once successive differences are less than a
specified tolerance criterion. To find x0 and x1, from XQ = 0

we get

x0A00 + x1A10 = 0
x0A01 + x1A11 + x2A2 = 0

}
(3.1)

Replacing x2 with x1 ∗R we get the homogeneous equations

x0A00 + x1A10 = 0
x0A01 + x1[A11 +RA2] = 0

}
(3.2)

The normalizing equation is

x0e+{x1[(I−R)−1]}e = 1
}

(3.3)

The boundary probabilities x0,x1, and the probabilities xi, for
i≥ 2 can be obtained using equations (2), (3) and R.

4. System Performance Measures
We partition the components of xi as

xi = {yi,0,0,s+1, . . . ,yi,0,0,S,yi,0,1,s+1 . . . ,yi,0,1,S,
yi,1,0,0, . . . ,yi,1,0,S−1,yi,1,1,0, . . . ,yi,1,1,S−1} for (i≥ 1)
x0 = {y0,0,0,s+1, . . . ,y0,0,0,S,y0,1,0,0 . . . ,y0,1,0,S−1}

Now we derive the system performance measures under
steady state.

1. Expected inventory level, EI , is given by

EI =
1

∑
j=0

S

∑
k=s+1

∞

∑
i=0

kyi,0, j,k +
1

∑
j=0

S−1

∑
k=1

∞

∑
i=0

kyi,1, j,k

2. Expected number of customers in the system, ECS, is
given by

ECS = (
∞

∑
i=1

ixi)e

=x1e+{x1R[(I−R)−1 +(I−R)−2]}e

3. Expected reorder level, ERO, is given by

ERO = µ1

∞

∑
i=1

yi,0,0,s+1 +(µ1 +µ2)
∞

∑
i=1

yi,0,1,s+1

4. Fraction of time production process is ON is given by

EPON =
∞

∑
i=0

1

∑
j=0

S−1

∑
k=0

yi,1, j,k +
S−1

∑
k=0

y0,1,0,k

5. Expected number of departures after completing service
is given by

EDS =µ1

∞

∑
i=1

S

∑
k=s+1

yi,0,0,k +µ1

∞

∑
i=2

S−1

∑
k=0

yi,1,0,k+

(µ1 +µ2)
∞

∑
i=1

(
S

∑
k=s+1

yi,0,1,k +
S−1

∑
k=0

yi,1,1,k

)
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5. Cost Analysis
Define the expected total cost of the system per unit per

unit time is given by

ETC = (C+(S− s)c1)ERO + c2EI + c3ECS + c4EDS

where,

C : Fixed cost/unit/unit time
c1 : Procurement cost perunit per unit time
c2 : Holding cost of inventory per unit per unit time
c3 : Holding cost of customers per unit per unit time
c4 : Cost due to service per unit per unit time

5.1 Numerical Results
Here some numerical results are provided to show the vari-

ations in various performance measures under the changes
in the value of one parameter at a time keeping the other
parameter values constant.

5.2 Tables for computation

Table 1. Effect of variation of λ on various performance
measures

λ EI ECS ERO EDS
0.1 17.570 0.129 0.143 3.74e-05
0.2 16.700 0.253 0.262 0.0003
0.3 16.005 0.380 0.369 0.0009
0.4 15.399 0.518 0.469 0.0021
0.5 14.826 0.672 0.565 0.0040
0.6 14.248 0.849 0.659 0.0066
0.7 13.639 1.060 0.751 0.0100
0.8 12.994 1.316 0.843 0.0139

µ1 = 0.4,µ2 = 1.2,β = 2.1,θ = 4,S = 20,s = 5

Table 2. Effect of variation of β on various performance
measures

β EI ECS ERO EDS
2.1 17.524 0.122 0.1436 4.95e-05
2.2 17.594 0.120 0.1428 4.16e-05
2.3 17.657 0.118 0.1420 3.53e-05
2.4 17.716 0.116 0.1411 3.01e-05
2.5 17.770 0.115 0.1403 2.59e-05
2.6 17.819 0.113 0.1395 2.23e-05
2.7 17.865 0.112 0.1387 1.94e-05
2.8 17.908 0.111 0.1380 1.69e-05

µ1 = 0.4,µ2 = 1.2,θ = 4,λ = 0.1,S = 20,s = 5

Table 3. Effect of variation of µ1 on various performance
measures

µ1 EI ECS ERO EDS
0.5 17.524 0.122 0.144 4.95e-05
0.6 17.468 0.115 0.144 6.56e-05
0.7 17.401 0.109 0.144 8.65e-05
0.8 17.321 0.103 0.143 0.0001
0.9 17.223 0.097 0.142 0.0001
1.0 17.105 0.092 0.141 0.0001
1.1 16.959 0.087 0.140 0.0002
1.2 16.778 0.083 0.138 0.0003

λ = 0.1,µ2 = 1.2,β = 2.1,θ = 4,S = 20,s = 5

Table 4. Effect of variation of µ2 on various performance
measures

µ2 EI ECS ERO EDS
1.2 17.524 0.122 0.144 4.9481e-05
1.3 17.501 0.119 0.146 5.1438e-05
1.4 17.478 0.116 0.149 5.3388e-05
1.5 17.455 0.113 0.151 5.533e-05
1.6 17.432 0.111 0.153 5.726e-05
1.7 17.410 0.109 0.156 5.9179e-05
1.8 17.388 0.107 0.158 6.1085e-05
1.9 17.366 0.106 0.160 6.2976e-05

λ = 0.1,µ1 = 0.5,θ = 4,β = 2.1,S = 20,s = 5

Table 5. Effect of variation of θ on various performance
measures

θ EI ECS ERO EDS
0.9 17.539 0.12552 0.14395 4.5518e-05
1.0 17.538 0.12513 0.14392 4.5911e-05
1.1 17.536 0.12480 0.14389 4.6251e-05
1.2 17.535 0.12451 0.14387 4.6549e-05
1.3 17.534 0.12425 0.14384 4.6812e-05
1.4 17.533 0.12403 0.14382 4.7047e-05
1.5 17.532 0.12382 0.14381 4.7258e-05

If the arrival rate λ is increased, then the expected inventory
level decreases and the expected number of customers in the
system increases. There is an increase in the expected inven-
tory level as replenishment rate β increases. Also, there is a
slight decrease in the expected number of customers as β in-
creases. The increase in service rates leads to a decrease in the
expected inventory level. If the value of θ increased,then there
is a slight decrease in the expected inventory level. There is a
decrease in the expected number of customers as θ increases.

5.3 Graphical illustrations
In this section, we presented the outcome of model pa-

rameters on the expected total cost and system performance
measures. Here, the value of the parameters that will con-
tribute the minimum value of the cost function is considered.
By fixing the values of all parameters other than λ , from fig-
ure 1, it is observed that the cost function is minimum at λ=
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Figure 1. λ vs ETC
C = 20,c1 = 65.51,c2 = 3.6,c3 = 1.5,c4 = 1,S = 20,s =

5,µ1 = 0.6,µ2 = 1.2,β = 2.1,θ = 1.5

Figure 2. θ vs ETC
C = 20,c1 = 231.1,c2 = 0.11,c3 = 0.21,c4 = 45.1,S =

20,s = 5,µ1 = 0.6,µ2 = 1.2,β = 2.1,λ = .1

Figure 3. µ1 vs ETC
C = 20,c1 = 333.6,c2 = 0.1,c3 = 22.10,c4 = 5.1,S =

20,s = 5,θ = 1.5,µ2 = 1.2,β = 2.1,λ = .1

Figure 4. µ2 vs ETC:C = 20,c1 = 353,c2 = 0.6,c3 =
1.6,c4 = 1,S = 20,s = 5,θ = 1.5,µ1 = 0.6,β = 2.1,λ = 0.1

Figure 5. β vs ETC
C = 20,c1 = 452.001,c2 = 0.6,c3 = 0.005,c4 = 2.8,S =

20,s = 5,θ = 1.5,µ2 = 1.2,µ1 = 0.6,λ = .1

0.4 and its minimum value is 65.5.It can also be seen that
the minimum values of the cost function by varying other
parameters. As θ increases ETC has a minimum value of
18.9178 at θ = 1.7 (see fig. 4). The minimum values of ETC
are 5.3121, 11.1575 and 11.25 at µ1 = 0.8,µ2 = 2, and β =2.6
respectively (see fig.2, fig.3 and fig.5).

6. Concluding remarks

The paper explains a production inventory system with two
servers and multiple vacations. The system using Matrix-
Analytic Method is also analyzed. Stability condition, Steady-
state distributions, System performance measures, and Nu-
merical experiments are also done. For an extension of the
present work, one may consider a multi-server production
inventory system with the arrival process as MAP (Markovian
Arrival Process), service time as a Phase-type distribution, and
production process as MPP (Markovian Production Process).

References
[1] A Krishnamoorthy and Viswanath C Narayanan. Produc-

tion inventory with service time and vacation to the server.
IMA Journal of Management Mathematics, 22(1):33–45,
2011.

[2] A Krishnamoorthy and K P Jose. Comparison of inven-
tory systems with service, positive lead-time, loss, and
retrial of customers. International Journal of Stochastic
Analysis, 2007, 2008.

[3] A Krishnamoorthy and C Sreenivasan. An m/m/2 queue-
ing system with heterogeneous servers including one va-
cationing server. Calcutta Statistical Association Bulletin,
64(1-2):79–96, 2012.

[4] B Krishna Kumar and S Pavai Madheswari. An m/m/2
queueing system with heterogeneous servers and multi-
ple vacations. Mathematical and Computer Modelling,
41(13):1415–1429, 2005.

[5] A Sridhar and R Allah Pitchai. Analyses of a marko-
vian queue with two heterogeneous servers and working
vacation. International Journal of Applied Operational
Research-An Open Access Journal, 5(4):1–15, 2015.

361



Modelling of an M/M/2 production inventory system with multiple vacation — 362/362

[6] Bharat T Doshi. Queueing systems with vacations—a
survey. Queueing systems, 1(1):29–66, 1986.

[7] Andrew Junfang Yu and Yuanyuan Dong. A numerical
solution for a two-stage production and inventory system
with random demand arrivals. Computers & Operations
Research, 44:13–21, 2014.

[8] M Palanivel and R Uthayakumar. A production-inventory
model with variable production cost and probabilistic
deterioration. Asia Pacific Journal of Mathematics,
1(2):197–212, 2014.

[9] GP Samanta. A production inventory model with de-
teriorating items and shortages. Yugoslav Journal of
Operations Research, 14(2), 2016.

[10] Guy Latouche and Vaidyanathan Ramaswami. A logarith-
mic reduction algorithm for quasi-birth-death processes.
Journal of Applied Probability, 30(3):650–674, 1993.

[11] Linn I Sennott, Pierre A Humblet, and Richard L Tweedie.
Mean drifts and the non-ergodicity of markov chains.
Operations Research, 31(4):783–789, 1983.

[12] R Sudhesh, P Savitha, and S Dharmaraja. Transient anal-
ysis of a two-heterogeneous servers queue with system
disaster, server repair and customers’ impatience. Top,
25(1):179–205, 2017.

[13] B Sivakumar. An inventory system with retrial demands
and multiple server vacation. Quality Technology &
Quantitative Management, 8(2):125–146, 2011.

[14] A Krishnamoorthy, Sajeev S Nair, and Viswanath C
Narayanan. Production inventory with service time and
interruptions. International Journal of Systems Science,
46(10):1800–1816, 2015.

[15] Jung Woo Baek and Seung Ki Moon. A production–
inventory system with a markovian service queue and lost
sales. Journal of the Korean Statistical Society, 45(1):14–
24, 2016.

[16] Marcel F Neuts. Matrix-geometric solutions in stochastic
models: an algorithmic approach. 1981. Johns Hopkins
University, Baltimore.

362


	Introduction
	Description of the model
	 Analysis of the model
	System stability
	Stability conditions
	Steady State Probability Vector

	System Performance Measures
	Cost Analysis
	Numerical Results
	Tables for computation
	Graphical illustrations

	Concluding remarks
	References

