Malaya Journal of Matematik		
	$\mathcal{M} J \mathcal{M}$ an international journal of mathematical sciences with	
	computer applications...	

An existence and uniqueness theorem for fuzzy H-integral equations of fractional order

Mouffak Benchohra ${ }^{a, b *}$ and Abderrahmane Boukenkoul ${ }^{c}$
${ }^{a}$ Laboratory of Mathematics, University of Sidi Bel Abbès, Algeria, PO Box 89 Sidi Bel Abbes 22000, Algeria.
${ }^{b}$ Department of Mathematics, King Abdulaziz University P.O. Box 80203, Jeddah 21589, Saudi Arabia.
${ }^{c}$ Département de Foresterie et d'Agronomie, Faculté des sciences de la vie et de l'environnement, Université Abou Bekr Belkaid, Tlemcen, Algérie.

Abstract

We present an existence and uniqueness theorem for H - integral equations of fractional order involving fuzzy set valued mappings of a real variable whose values are normal, convex, upper semi continuous and compactly supported fuzzy sets in \mathbb{R}^{n}. The method of successive approximation is the main tool in our analysis.

Keywords: Fuzzy mapping, fractional orders, Riemann-Liouville H-differentiability, Fuzzy H-integral equation, Hausdorff metric, successive approximation.

2010 MSC: 26A33, 34A07.
(C) 2012 MJM. All rights reserved.

1 Introduction

Dubois and Prade [10] introduced the concept of integration of fuzzy functions. Alternative approaches were later suggested by Goetschel and Voxman [13], Kaleva [15], Nanda [21] and others. While Goetschel and Voxman preferred a Riemann integral type approach, Kaleva chose to define the integral of fuzzy function, using the Lebesgue-type concept of integration. For more information about integration of fuzzy functions and fuzzy integral equations, for instance, see [2, 8, 10, 13, 15, 21, [22, 24, [25] and references therein. On the other hand, the first serious attempt to give a logical definition of a fractional derivative is due to Liouville, see [14] and references therein. Now, the fractional calculus topic is enjoying growing interest among scientists and engineers, see [1, 8, 14, 16, 18, 23, 26].

By means of the fuzzy integral due to Kaleva [15], we investigate the fractional fuzzy integral equation, for the fuzzy set-valued mappings of a real variable whose values are normal, convex, upper semi-continuous and compactly supported fuzzy sets in \mathbb{R}^{n}. We consider the fuzzy integral equation of Riemann-Liouville fractional order generalized H -differentiability this equation takes the form

$$
\begin{equation*}
y(t)=f(t)+\frac{1}{\Gamma(1-q)} \int_{0}^{t} \frac{g(s, y(s))}{(t-s)^{q}} d s \tag{1.1}
\end{equation*}
$$

where $f:[0, T] \rightarrow E^{n}$ and $g:[0, T] \times E^{n} \rightarrow E^{n}$, and $q \in(0,1)$. The definition of E^{n} is given in Section 2
The paper is organized as follows: in Section 2 auxiliary facts and results are given which will be used later. In Section 3, the Riemann-Liouville H-differentiability is proposed for fuzzy-valued function and the some of important results of it are provided. In Section 4 the main theorem on the existence and uniqueness of solutions of equation (1.1) is given.

[^0]
2 Auxiliary facts and results

This section is devoted to collect some definitions and results which will be needed further on.
Definition 2.1. Let X be a nonempty set. A fuzzy set A in X is characterized by its membership function $\mathrm{A}: \mathrm{X} \rightarrow[0,1]$ and $\mathrm{A}(x)$, called the membership function of fuzzy set A, is interpreted as the degree of membership of element x in fuzzy set A for each $x \in \mathrm{X}$.

The value zero is used to represent complete non-membership, the value one is used to represent complete membership and values between them are used to represent intermediate degrees of membership. Let $P_{k}\left(\mathbb{R}^{n}\right)$ denote the collection of all nonempty compact convex subsets of \mathbb{R}^{n} and define the addition and scalar multiplication in $P_{k}\left(\mathbb{R}^{n}\right)$ as usual. Let A and B be two nonempty bounded subsets of \mathbb{R}^{n}. The distance between A and B is defined by the Hausdorff metric

$$
H_{d}(A, B)=\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}
$$

where $d(b, A)=\inf \{d(b, a): a \in A\}$. It is clear that $\left(P_{k}\left(\mathbb{R}^{n}\right), d\right)$ is a complete metric space [17].
A fuzzy set $u \in E^{n}$ is a function $u: \mathbb{R}^{n} \rightarrow[0,1]$ for which
(i) u is normal, i.e., there exists an $x_{0} \in \mathbb{R}^{n}$ such that $u\left(x_{0}\right)=1$,
(ii) u is fuzzy convex, i.e., for $x, y \in \mathbb{R}^{n}$ and $\beta \in[0,1]$,

$$
u(\beta x+(1-\beta) y) \geq \min (u(x), u(y))
$$

(iii) u is upper semi-continuous, and
(iv) the closure of $\left\{x \in \mathbb{R}^{n}: u(x)>0\right\}$, denoted by $[u]^{0}$, is compact.

For $0<\gamma \leq 1$, the α-level set $[u]^{\gamma}$ is define by $[u]^{\gamma}=\left\{x \in \mathbb{R}^{n}: u(x) \geq \gamma\right\}$. Then from (i) - (iv), it follows that $[u]^{\gamma} \in P_{k}\left(\mathbb{R}^{n}\right)$ for all $0 \leq \gamma \leq 1$.

We define the supremum metric D on E^{n} by

$$
D(u, \bar{u})=\sup _{0<\gamma \leq 1} H_{d}\left([u]^{\gamma},[\bar{u}]^{\gamma}\right)
$$

for all $u, \bar{u} \in E^{n} .\left(E^{n}, D\right)$ is a complete metric space.

3 Riemann-Liouville Fractional H-differentiability

Now, we define fuzzy Riemann-Liouville fractional derivatives of order $0 \leq r \leq 1$ for fuzzy-valued function f which is a direct extension of strongly generalized H-differentiability in the fractional literature [9].

Definition 3.2. Let $x, y \in E$. If there exists $z \in E$ such that $x=y+z$, then z is called the H-difference of x and y, it is denoted by $z=x \ominus y$.
The sign \ominus always stands for H-difference, also not that $x \ominus y \neq x+(-1) y$.
Also,we define some notations which are used throughout the paper.

- $L_{p}^{F}(a, b), 1 \leq p<\infty$ is the set of all fuzzy-valued measurable and p-integrable functionsf on $[a, b]$ where

$$
\|f\|_{p}=\left(\int_{0}^{1}(d(f(t), 0))^{p} d t\right)^{\frac{1}{p}}
$$

- $C^{F}[a, b]$ is a space of fuzzy-valued functions which are continuous on $[a, b]$.
- $A C^{F}[a, b]$ denotes the set of all fuzzy-valued functions which are absolutely continuous.

Definition 3.3. Let $f:[a, b] \rightarrow E, x_{0} \in(a, b)$ and $\Phi(x)=\frac{1}{\Gamma(1-q)} \int_{a}^{x} \frac{f(t)}{(x-t)^{9}} d t$. We say that $f(x)$ is fuzzy RiemannLiouville fractional H-differentiable about order $0 \leq q \leq 1$ at x_{0}, if there exists an element $\left({ }^{R L} D_{a^{+}}^{q} f\right)\left(x_{0}\right) \in C^{F}, 0 \leq$ $q \leq 1$ such that for all $0 \leq r \leq 1, h>0$

$$
\begin{equation*}
\left({ }^{R L} D_{a^{+}}^{q} f\right)\left(x_{0}\right)=\lim _{h \rightarrow 0^{+}} \frac{\Phi\left(x_{0}+h\right) \ominus \Phi\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0^{+}} \frac{\Phi\left(x_{0}\right) \ominus \Phi\left(x_{0}-h\right)}{h} \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
\left({ }^{R L} D_{a^{+}}^{q} f\right)\left(x_{0}\right)=\lim _{h \rightarrow 0^{+}} \frac{\Phi\left(x_{0}\right) \ominus \Phi\left(x_{0}+h\right)}{-h}=\lim _{h \rightarrow 0^{+}} \frac{\Phi\left(x_{0}-h\right) \ominus \Phi\left(x_{0}\right)}{-h} . \tag{ii}
\end{equation*}
$$

For sake of simplicity, we say that a fuzzy-valued function f is ${ }^{R L}(1, q)$-differentiable if it is differentiable as in the definition 3.3 case (i), and is ${ }^{R L}(2, q)$-differentiable if it is differentiable as in Definition 3.3 case (ii).

Definition 3.4. Let $f \in \mathrm{~L}^{1}(a, b), 0 \leq a<b<\infty$, and let $0<q<1$ be a real number. The fractional integral of order q of Riemann-Liouville type is defined by (see; [16, 23]).

$$
I^{q} f(t)=\frac{1}{\Gamma(q)} \int_{0}^{t} \frac{f(s)}{(t-s)^{1-q}} d s
$$

Let us consider the r-cut representation of fuzzy valued function f as $f(x ; r)=[f(x ; r), \bar{f}(x ; r)]$ for $0 \leq$ $r \leq 1$, then we can indicate the Riemann-Liouville integral of fuzzy-valued function f based on its lower and upper functions as follows:
Theorem 3.1. Let $f:[a, b] \rightarrow$ E be a fuzzy-valued function. The fuzzy Riemann-Liouville integral of f can be expressed as follows:

$$
\left(I^{q} f\right)(x ; r)=\left[\left(I^{q} \underline{f}\right)(x ; r),\left(I^{q} \bar{f}\right)(x ; r)\right], 0 \leq r \leq 1
$$

where

$$
\begin{aligned}
& \left(I^{q} \underline{f}\right)(x ; r)=\frac{1}{\Gamma(q)} \int_{a}^{x} \frac{f(t ; r)}{(x-t)^{1-q}} d t \\
& \left(I^{q} \bar{f}\right)(x ; r)=\frac{1}{\Gamma(q)} \int_{a}^{x} \frac{\bar{f}(t ; r)}{(x-t)^{1-q}} d t .
\end{aligned}
$$

Now, we define fuzzy Riemann-Liouville fractional derivatives of order $0 \leq r \leq 1$ for fuzzy-valued function f which is a direct extension of strongly generalized H -differentiability [9] in the fractional literature. Also, we denote by C^{F} the space of all fuzzy-valued functions which are continuous on $[a, b]$ and we assume that all fuzzy-valued functions in this work are placed in C^{F}. We define the fuzzy Riemann-Liouville H-integrals of fuzzy-valued function as follows:
Theorem 3.2. Let $f:[0, T] \rightarrow E^{n}, x_{0} \in[0, T]$ and $0 \leq q \leq 1$ such that for all $0 \leq r \leq 1$.
(1) if $f(x)$ be a ${ }^{R L}(1, q)$ differentiable fuzzy-valued function, then

$$
\left({ }^{R L} D_{0}^{q} f\right)\left(x_{0} ; r\right)=\left[{ }^{R L} D_{0}^{q} \underline{f}\left(x_{0} ; r\right),{ }^{R L} D_{0}^{q} \bar{f}\left(x_{0} ; r\right)\right],
$$

(2) if $f(x)$ be a ${ }^{R L}(2, q)$ differentiable fuzzy-valued function, then

$$
\left({ }^{R L} D_{0}^{q} f\right)\left(x_{0} ; r\right)=\left[{ }^{R L} D_{0}^{q} \bar{f}\left(x_{0} ; r\right),{ }^{R L} D_{0}^{q} \underline{f}\left(x_{0} ; r\right)\right] .
$$

Where

$$
\left({ }^{R L} D_{0}^{q} \underline{f}\right)\left(x_{0}\right)=\left.\frac{1}{\Gamma(1-q)} \frac{d}{d x} \int_{0}^{x} \frac{f(t)}{(x-t)^{q}} d t\right|_{x=x_{0}}
$$

and

$$
\left({ }^{R L} D_{0}^{q} \bar{f}\right)\left(x_{0}\right)=\left.\ominus \frac{1}{\Gamma(1-q)} \frac{d}{d x} \int_{0}^{x} \frac{f(t)}{(x-t)^{q}} d t\right|_{x=x_{0}} .
$$

Rewrite Eq.(1.1] in the form

$$
\begin{equation*}
y(t)=f(t)+{ }^{R L} I_{0}^{q} g(t, y(t)), \quad t \geq 0, \tag{3.2}
\end{equation*}
$$

where ${ }^{R L} I_{0}^{q}$ is the standard Riemann-Liouville fractional H-integral operator. Notice that, since f is assumed to be integrable and $(x-t)^{q-1}$ is a crisp function, we deduce that $\frac{f(t)}{(x-t)^{1-q}}$ is integrable and then, the existence of integral (1.1) is proved.

Theorem 3.3. Letf : $[a, b] \rightarrow E, x_{0} \in(a, b)$ and $0 \leq q \leq 1$ for all $0 \leq r \leq 1$, we have
(1) if f is ${ }^{R L}(1, q)$ H-integrable then

$$
{ }^{R L} I_{0}^{q}(f)\left(x_{0} ; r\right)=\left[{ }^{R L} I_{0}^{q} \underline{f}\left(x_{0} ; r\right),{ }^{R L} I_{0}^{\eta} \bar{f}\left(x_{0} ; r\right)\right]
$$

(2) if f is ${ }^{R L}(2, q)$ H-integrable then

$$
{ }^{R L} I_{0}^{q} f\left(x_{0} ; r\right)=\left[{ }^{R L} I_{0}^{q} \bar{f}\left(x_{0} ; r\right),{ }^{R L} I_{0}^{q} \underline{f}\left(x_{0} ; r\right)\right]
$$

In this paper, we prove an existence and uniqueness theorem of a solution to the fuzzy integral equation 1.1). The method of successive approximation is the main tool in our analysis.

4 Main Theorem

In this section, we will study $\mathrm{Eq}(1.1)$ assuming that the following assumptions are satisfied, L Let L and T be positive numbers:
$\left(a_{1}\right) f:[0, T] \rightarrow E^{n}$ is continuous and bounded.
$\left(a_{2}\right) g:[0, T] \times E^{n} \rightarrow E^{n}$ is continuous and satisfies the Lipschitz condition, i.e.,

$$
D\left(g\left(t, y_{2}(t)\right), g\left(t, y_{1}(t)\right)\right) \leq L D\left(y_{2}(t), y_{1}(t)\right), t \in[0, T],
$$

where $y_{i}:[0, T] \rightarrow E^{n}, i=1,2$.
$\left(a_{3}\right) g(t, \hat{0})$ is bounded on $[0, T]$.
Now, we are in a position to state and prove our main result in paper
Theorem 4.4. Let the assumptions $\left(a_{1}\right)-\left(a_{3}\right)$ be satisfied. If

$$
T<\left(\frac{\Gamma(2-q)}{L}\right)^{\frac{1}{1-q}}
$$

then $\mathrm{Eq}(1.1)$ has a unique solution y on $[0, T]$ defined as the following:
(1) In the case ${ }^{R L}(1 ; q)$ differentiability, the successive iterations

$$
\begin{align*}
y_{0}(t) & =f(t) \\
y_{n+1}(t) & =f(t)+{ }^{R L} I_{0}{ }^{q} g\left(t, y_{n}(t)\right), \quad n=0,1,2, \ldots \tag{4.3}
\end{align*}
$$

(2) In the case ${ }^{R L}(2 ; q)$ differentiability, the successive iterations

$$
\begin{align*}
\hat{y}_{0}(t) & =f(t) \\
\hat{y}_{n+1}(t) & =f(t) \ominus^{R L} I_{0}{ }^{q} g\left(t, \hat{y}_{n}(t)\right), \quad n=0,1,2, \ldots \tag{4.4}
\end{align*}
$$

are uniformly convergent to y on $[0, T]$.

Proof. (1) Case (1): If f is ${ }^{R L}(1 ; q)$ differentiable
First we prove that y_{n} are bounded on $[0, T]$. We have $y_{0}=f(t)$ is bounded, thanks $\left(a_{1}\right)$. Assume that y_{n-1} is bounded. From (4.3) we have

$$
\begin{aligned}
D\left(y_{n}(t), \hat{0}\right) & =D\left(f(t)+{ }^{R L} I_{0}^{q} g\left(t, y_{n-1}(t)\right), \hat{0}\right) \\
& \leq D(f(t), \hat{0})+D\left({ }^{R L} I_{0}^{q} g\left(t, y_{n-1}(t)\right), \hat{0}\right) \\
& \leq D(f(t), \hat{0})+\frac{1}{\Gamma(1-q)} \int_{0}^{t} D\left(\frac{g\left(s, y_{n-1}(s)\right)}{(t-s)^{q}}, \hat{0}\right) d s \\
& \leq D(f(t), \hat{0})+\frac{1}{\Gamma(1-q)} \sup _{0 \leq t \leq T} D\left(g\left(t, y_{n-1}(t)\right), \hat{0}\right) \int_{0}^{t} \frac{d s}{(t-s)^{q}} .
\end{aligned}
$$

But

$$
\begin{aligned}
D\left(g\left(t, y_{n-1}(t)\right), \hat{0}\right) & \leq D\left(g\left(t, y_{n-1}(t)\right), g(t, \hat{0})\right)+D(g(t, \hat{0}), \hat{0}) \\
& \leq L D\left(y_{n-1}(t), \hat{0}\right)+D(g(t, \hat{0}), \hat{0}) .
\end{aligned}
$$

So

$$
\begin{aligned}
D\left(y_{n}(t), \hat{0}\right) & \leq D(f(t), \hat{0})+\frac{T^{1-q}}{\Gamma(2-q)} \sup _{0 \leq t \leq T}\left[L D\left(y_{n-1}(t), \hat{0}\right)+D(g(t, \hat{0}), \hat{0})\right] \\
& \leq D(f(t), \hat{0})+\sup _{0 \leq t \leq T} D\left(y_{n-1}(t), \hat{0}\right)+\frac{T^{1-q}}{\Gamma(2-q)} \sup _{0 \leq t \leq T} D(g(t, \hat{0}), \hat{0}) .
\end{aligned}
$$

This proves that y_{n} is bounded. Therefore, $\left\{y_{n}\right\}$ is a sequence of bounded functions on $[0, T]$. Second we prove that y_{n} are continuous on $[0, T]$. For $0 \leq t \leq \tau \leq T$, we have

$$
\begin{aligned}
D\left(y_{n}(t), y_{n}(\tau)\right) \leq & D(f(t), f(\tau))+\frac{1}{\Gamma(1-q)} D\left(\int_{0}^{t} \frac{g\left(s, y_{n-1}(s)\right)}{(t-s)^{q}} d s, \int_{0}^{\tau} \frac{g\left(s, y_{n-1}(s)\right)}{(\tau-s)^{q}} d s\right) \\
\leq & D(f(t), f(\tau))+\frac{1}{\Gamma(1-q)} D\left(\int_{0}^{t} \frac{g\left(s, y_{n-1}(s)\right)}{(t-s)^{q}} d s, \int_{0}^{t} \frac{g\left(s, y_{n-1}(s)\right)}{(\tau-s)^{q}} d s\right) \\
& +\frac{1}{\Gamma(1-q)} D\left(\int_{t}^{\tau} \frac{g\left(s, y_{n-1}(s)\right)}{(\tau-s)^{q}} d s, \hat{0}\right) \\
\leq & D(f(t), f(\tau))+\frac{1}{\Gamma(1-q)} \int_{0}^{t} D\left(\frac{g\left(s, y_{n-1}(s)\right)}{(t-s)^{q}}, \frac{g\left(s, y_{n-1}(s)\right)}{(\tau-s)^{q}}\right) d s \\
& +\frac{1}{\Gamma(1-q)} \int_{t}^{\tau} D\left(\frac{g\left(s, y_{n-1}(s)\right)}{(\tau-s)^{q}}, \hat{0}\right) d s \\
\leq & D(f(t), f(\tau))+\frac{1}{\Gamma(1-q)} \sup _{0 \leq t \leq T} D\left(g\left(t, y_{n-1}(t)\right), \hat{0}\right) \\
& \int_{0}^{t}\left|(t-s)^{-q}-(\tau-s)^{-q}\right| d s \\
& +\frac{1}{\Gamma(1-q)} \sup _{0 \leq t \leq T} D\left(g\left(t, y_{n-1}(t)\right), \hat{0}\right) \int_{t}^{\tau} \frac{d s}{(\tau-s)^{q}} d s \\
\leq & D(f(t), f(\tau))+\frac{1}{\Gamma(1-q)}\left[|t-\tau|^{(1-q)}-\left|t^{(1-q)}-\tau^{(1-q) \mid}\right|\right] \\
& \sup _{0 \leq t \leq T} D\left(g\left(t, y_{n-1}(t)\right), \hat{0}\right) \\
& +\frac{1}{\Gamma(2-q)}|t-\tau|^{\alpha} \sup _{0 \leq t \leq T} D\left(g\left(t, y_{n-1}(t)\right), \hat{0}\right)
\end{aligned}
$$

$$
\begin{gathered}
\leq D(f(t), f(\tau))+\frac{1}{\Gamma(2-q)}\left[2|t-\tau|^{(1-q)}-\left|t^{(1-q)}-\tau^{(1-q)}\right|\right] \\
\sup _{0 \leq t \leq T} D\left(g\left(t, y_{n-1}(t)\right), \hat{0}\right) \\
\leq D(f(t), f(\tau))+\frac{1}{\Gamma(2-q)}\left[2|t-\tau|^{(1-q)}-\left|t^{(1-q)}-\tau^{(1-q)}\right|\right] \\
\sup _{0 \leq t \leq T}\left[L D\left(g\left(y_{n-1}(t)\right), \hat{0}\right)+D(g(t, \hat{0}), \hat{0})\right] .
\end{gathered}
$$

The last inequality, by symmetry, is valid for all $t, \tau \in[0, T]$ regardless whether or not $t \leq \tau$. Thus, $D\left(y_{n}(t), y_{n}(\tau)\right) \rightarrow 0$ as $t \rightarrow \tau$. Therefore, the sequence $\left\{y_{n}\right\}$ is continuous on $[0, T]$. For $n \geq 1$, we have

$$
\begin{align*}
D\left(y_{n+1}(t), y_{n}(t)\right)= & \frac{1}{\Gamma(1-q)} D\left(\int_{0}^{t} \frac{g\left(s, y_{n}(s)\right)}{(t-s)^{q}} d s, \int_{0}^{t} \frac{g\left(s, y_{n-1}(s)\right)}{(t-s)^{q}} d s\right) \\
\leq & \frac{1}{\Gamma(1-q)} \int_{0}^{t} D\left(\frac{g\left(s, y_{n}(s)\right)}{(t-s)^{q}}, \int_{0}^{t} \frac{g\left(s, y_{n-1}(s)\right)}{(t-s)^{q}}\right) d s \\
\leq & \frac{1}{\Gamma(1-q)} \int_{0}^{t} D\left(g\left(s, y_{n}(s)\right), g\left(s, y_{n-1}(s)\right)\right) \frac{d s}{(t-s)^{q}} \\
\leq & \frac{1}{\Gamma(1-q)} \sup _{0 \leq t \leq T} D\left(g\left(t, y_{n}(t)\right), g\left(t, y_{n-1}(t)\right)\right) \int_{0}^{t} \frac{d s}{(t-s)^{q}} \\
\leq & \frac{L T^{(1-q)}}{\Gamma(2-q)} \sup _{0 \leq t \leq T} D\left(y_{n}(t), y_{n-1}(t)\right) \\
\leq & \left(\frac{L T^{(1-q)}}{\Gamma(2-q)}\right)^{2} \sup _{0 \leq t \leq T} D\left(y_{n-1}(t), y_{n-2}(t)\right) \\
& \vdots \\
\leq & \left(\frac{L T^{(1-q)}}{\Gamma(2-q)}\right)^{n} \sup _{0 \leq t \leq T} D\left(y_{1}(t), y_{0}(t)\right) \tag{4.5}
\end{align*}
$$

But

$$
\begin{aligned}
D\left(y_{1}(t), y_{0}(t)\right) & =\frac{1}{\Gamma((1-q))} D\left(\int_{0}^{t} \frac{g(s, f(s))}{(t-s)^{q}} d s, \hat{0}\right) \\
& \leq \frac{1}{\Gamma((1-q))} \int_{0}^{t} D\left(\frac{g(s, f(s))}{(t-s)^{q}}, \hat{0}\right) d s \\
& \leq \frac{1}{\Gamma((1-q))} \sup _{0 \leq t \leq T} D(g(t, f(t)), \hat{0}) \int_{0}^{t} \frac{d s}{(t-s)^{q}}
\end{aligned}
$$

Thus

$$
\sup _{0 \leq t \leq T} D\left(y_{1}(t), y_{0}(t)\right) \leq \frac{T^{(1-q)}}{\Gamma(2-q)}[L M+N]:=R
$$

where

$$
M=\sup _{0 \leq t \leq T} D(f(t), \hat{0}) \text { and } N=\sup _{0 \leq t \leq T} D(g(t, \hat{0}), \hat{0})
$$

Therefore (4.5) takes the form

$$
\begin{equation*}
D\left(y_{n+1}(t), y_{n}(t)\right) \leq R\left(\frac{L T^{(1-q)}}{\Gamma(2-q)}\right)^{n} \tag{4.6}
\end{equation*}
$$

Next, we show that for each $t \in[0, T]$ the sequence $\left\{y_{n}(t)\right\}$ is a Cauchy sequence in E^{n}. Let m_{1}, m_{2} be such that $m_{2}>m_{1}$ and $t \in[0, T]$. Then, by using 4.6, we have

$$
\left.\begin{array}{rl}
D\left(y_{m_{1}}(t), y_{m_{2}}(t)\right) \leq & D\left(y_{m_{2}}(t), y_{m_{2}-1}(t)\right)+D\left(y_{m_{2}-1}(t), y_{m_{2}-2}(t)\right) \\
& +\ldots+D\left(y_{m_{1}+1}(t), y_{m_{1}}(t)\right) \\
\leq & R\left(\frac{L T^{1-q}}{\Gamma(2-q)}\right)^{m_{2}-1}+R\left(\frac{L T^{1-q}}{\Gamma(2-q)}\right)^{m_{2}-2} \\
& +\ldots+R\left(\frac{L T^{1-q}}{\Gamma(2-q)}\right)^{m_{1}} \\
= & R\left(\frac{L T^{1-q}}{\Gamma(2-q)}\right)^{m_{2}-1}\left[1+\frac{\Gamma(2-q)}{L T^{1-q}}+\left(\frac{\Gamma(2-q)}{L T^{1-q}}\right)^{2}\right. \\
\left.+\ldots+\left(\frac{\Gamma(2-q)}{L T^{1-q}}\right)^{m_{2}-m_{1}-1}\right]
\end{array}\right] .\left[\frac{1-\left(\frac{\Gamma(2-q)}{L T^{1-q}}\right)^{m_{2}-m_{1}}}{\left.1-\frac{\Gamma(2-q)}{L T^{1-q}}\right]}\right] .
$$

The right hand side of the last inequality tends to zero as $m_{1}, m_{2} \rightarrow \infty$. This implies that $\left\{y_{n}(t)\right\}$ is a Cauchy sequence. Consequently, the sequence $\left\{y_{n}(t)\right\}$ is convergent, thanks to the completeness of the metric space $\left(E^{n}, D\right)$. If we denote $y(t)=\lim _{n \rightarrow \infty} y_{n}(t)$, then $y(t)$ satisfies 1.1). It is continuous and bounded on $[0, T]$. To prove the uniqueness, let $x(t)$ be a continuous solution of 1.1 on $[0, T]$. Then

$$
x(t)=f(t)+{ }^{R L} I^{q} g(t, x(t)), \quad t \geq 0
$$

Now, for $n \geq 1$, we have

$$
\begin{aligned}
D\left(x(t), y_{n}(t)\right) \leq & D\left({ }^{R L} I^{1-q} g(t, x(t))^{R L} I^{1-q} g\left(t, y_{n}(t)\right)\right) \\
\leq & \frac{1}{\Gamma(1-q)} \int_{0}^{t} D\left(\frac{g(s, x(s))}{(t-s)^{q}}, \int_{0}^{t} \frac{g\left(s, y_{n}(s)\right)}{(t-s)^{q}}\right) d s \\
\leq & \frac{1}{\Gamma(1-q)} \int_{0}^{t} D\left(g(s, x(s)), g\left(s, y_{n}(s)\right)\right) \frac{d s}{(t-s)^{q}} \\
\leq & \frac{1}{\Gamma(1-q)} \sup _{0 \leq t \leq T} D\left(g(t, x(t)), g\left(t, y_{n}(t)\right)\right) \int_{0}^{t} \frac{d s}{(t-s)^{q}} \\
\leq & \frac{L T^{1-q}}{\Gamma(2-q)} \sup _{0 \leq t \leq T} D\left(x(t), y_{n}(t)\right) \\
& \vdots \\
\leq & \left(\frac{L T^{1-q}}{\Gamma(2-q)}\right)^{n} \sup _{0 \leq t \leq T} D\left(x(t), y_{0}(t)\right) .
\end{aligned}
$$

Since $\frac{L T^{1-q}}{\Gamma(2-q)}<1$

$$
\lim _{n \rightarrow \infty} y_{n}(t)=x(t)=y(t), \quad t \in[0, T] .
$$

This completes the proof.
(2) Case (2): If f is ${ }^{R L}(2 ; q)$ differentiable, with the same argument as above, we can prove that the solution is (4.4) with

$$
\lim _{n \rightarrow \infty} \hat{y}_{n}(t)=\hat{x}(t)=\hat{y}(t), \quad t \in[0, T] .
$$

References

[1] S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
[2] R.P. Agarwal, M. Benchohra, D. O'Regan and A. Ouahab, Fuzzy solutions for multi-point boundary value problems, Mem. Differential Equations Math. Phys., 35(2005), 1-14.
[3] R. P. Agarwal, V. Lakshmikantham and J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72(2010), 2859-2862.
[4] R.P. Agarwal, D. O'Regan, and V. Lakshmikantham, Fuzzy Volterra integral equations: a stacking theorem approach, Appl. Anal., 83(5)(2004), 521-532.
[5] A. Arara and M. Benchohra, Fuzzy solutions for boundary value problems with integral boundary conditions, Acta Math. Univ. Comenianae, LXXV(1)(2006), 119-126.
[6] S. Arshad and V. Lupulescu, On the fractional differential equations with uncertainty, Nonlinear Anal., 74(2011), 3685-3693.
[7] M. Benchohra and M.A. Darwish, Existence and uniqueness theorem for fuzzy integral equation of fractional order, Commun. Appl. Anal., 12(1)(2008), 13-22.
[8] M.A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl., 311(2005), 112119.
[9] M.A. Darwish and A.A. El-Bary, Existence of fractional integral equation with hysteresis, Appl. Math. Comput., 176(2006), 684-687.
[10] D. Dubois and H. Prade, Towards fuzzy differential calculus, Part 1. Integraation of fuzzy mappings, Fuzzy Sets Systems 8(1982), 1-17.
[11] D. Dubois and H. Prade, Towards fuzzy differential calculus, Part 2. Integraation of fuzzy mappings, Fuzzy Sets Systems 8(1982), 105-116.
[12] M. Friedman, Ma Ming and A. Kandel, Solutions to fuzzy interal equations with arbitrary kernels, Internat. J. Approx. Reason, 20(3)(1999), 249-262.
[13] R. Goetschel and W. Voxman, Elementary Calculus, Fuzzy Sets Systems, 18(1986), 31-43.
[14] R. Hilfer, Applications of Fractional calculus in Physics, World Scientific, Singapore, 2000.
[15] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Systems 24 (1987), 301-317.
[16] A. A. Kilbas, Hari M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam, 2006.
[17] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991.
[18] V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.
[19] V. Lakshmikantham and R. Mohapatra, Theory of Fuzzy Differential Equations and Inclusions, Taylor \& Francis, New York, 2003.
[20] J. Mordeson and W. Newman, Fuzzy integral equations, Information Sciences, 87(1995), 215-229.
[21] S. Nanda, On integration of fuzzy mappings, Fuzzy Sets Systems 32(1989), 95-101.
[22] J. Y. Park and J.U. Jeong, A note on fuzzy integral equations, Fuzzy Sets Systems, 108(1999), 193-200.
[23] I. Podlubny, Fractional Differential Equations, Academic Press, New York and London, 1999.
[24] M. L. Puri and D.A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl., 114(1986), 409-422.
[25] P. V. Subrahmanyam and S.K. Sudarsanam, A note on fuzzy Volterra integral equations, Fuzzy Sets Systems, 81(1996), 237-240.
[26] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.

Received: November 20, 2013; Accepted: February 16, 2014

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

[^0]: *Corresponding author.
 E-mail addresses: benchohra@univ-sba.dz (Mouffak Benchohra), ab_koul@yahoo.fr (Abderrahmane Boukenkoul)

