
Malaya Journal of Matematik, Vol. 8, No. 2, 389-396, 2020

https://doi.org/10.26637/MJM0802/0012

Nonlinear functional integral equation: Existence,
global attractivity and positivity of solutions
Kavita Sakure1* and Samir Dashputre 2

Abstract
In this paper, we discuss the powerful tool measure of noncompactness and fixed point theorem of Dhage
to study existence and other characteristic such as global attractivity and positivity of solutions of nonlinear
functional integral equation.
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1. Introduction
The nonlinear integral equations have applications in po-

tential theory, electromagnetic, antenna synthesis problem,
etc (see [6, 15, 18]). The measure of noncompactness is used
for the characteristics of the attractivity and asymptotic attrac-
tivity of the solutions. There are two approaches for dealing
with these characteristic of solutions, namely, classical fixed
point theorems involving the hypotheses from analysis and
topology, fixed point theorem involving the use of measure
of noncompactness The measure of noncompactness is used
not only to contain the existence of solution of functional
integral equation but also to characterize those solutions in
terms of attractivity and positivity on interval. Some of the
useful measure of noncompactness in the application to non-
linear integral equations have been discussed in paper of Apell
[2]. Recently, Sakure [16] studied the existence of nonlinear

Volterra-Hammerstein-Fredholm integral equation using mea-
sure of noncompactness. In this paper,we are going to find
global attractivity result for nonlinear functional integral equa-
tion by using fixed point theorem of Dhage using measure of
noncompactness under certain conditions. Our investigations
will be situated in the Banach space of real-valued functions
defined, continuous and bounded on the right hand real half
axis R+.

2. Preliminaries.
Let E be a Banach space, P(E) a class of subset of E

with and Pp(E) denote the class of all nonempty subset of
E with the property p. Here p may be p=closed (in the cl
), p=bounded (in short bd) , p=relatively compact (in short
rcp) etc. Pcl(E),Pbd(E),Pcl,bd(E),Prcp(E) denote the class of
closed, bounded, closed and bounded and relatively compact
subsets of E respectively.

Definition 2.1. A function µ : Pbd(E)→ R+ is called a mea-
sure of noncompactness, if it satisfies:

1. φ 6= µ−1(0)⊂ Prcp(E),

2. µ(A) = µ(A), where A is closure of A,

3. µ(A) = µ(Conv(A)), where Conv(A) is convex hull of
A,
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4. µ is nondecreasing, and

5. if {An is a decreasing sequence of sets in Pbd(E) such
that limn→∞ µ(An)= 0, then the limiting set A∞ = limn→∞ =
∩∞

n=0An is nonempty.

The different types of measure of noncompactness appear
in Akhermov et.al. [1], Appell [2], Banas and Goebel [3] and
references given therein.

The family kerµ is said to be the kernel of measure of non-
compactness µ and

kerµ = {A ∈ Pbd(E) | µ(A) = 0} ⊂ Prcp(E).

The following definition appear in Dhage[9].

Definition 2.2. A mapping K : E → E is called D − set −
contraction if there exists a continuous nondecreasing func-
tion φ : R+→ R+ such that µ(K(A))≤ φ(µ(A)) for all A ∈
Pbd(E) with K(A) ∈ Pbd(E), where φ(0) = 0. So0metimes
we call the function φ to be a D − f unction of K on E.
In the special case, when φ(r) = kr,k > 0, K is called a
k− set − Lipschitz mapping and if k < 1, then K is called
a k− set− contraction on E. Further, if φ(r) < r for r > 0,
then K is called a nonlinear D− set− contraction on E.

Theorem 2.1. ([7]) Let C be a non-empty, closed, convex
and bounded subset of a Banach space E and let K : C→C
be a continuous and nonlinear D − set− contraction. Then
K has a fixed point.

Remark 2.1. Denote Fix(K) by the set all fixed points of
the operator K which belongs to C. It is easy to show that
the Fix(K) existing in 2.1 belongs to family kerµ . In fact
if Fix(K) /∈ kerµ , then µ(Fix(K)) > 0 and K(Fix(K)) =
Fix(K). Now from nonlinear D−set−contraction it follows
that µ(K(Fix(K)))≤ φ(µ(Fix(K))) which is a contradiction
since φ(r)< r for r > 0. Hence Fix(K) ∈ ker(µ).

Consider the Banach space BC(R+,R) consisting of all real
functions x = x(t) defined, continuous and bounded on R+.
This space is equipped with the standard supremum norm

‖x‖= sup{| x(t) |: t ∈ R+}

Let us fix a nonempty and bounded subset X of the space
BC(R+,R) and a positive number T . For x ∈ X and ε ≥ 0
denote by ωT (x,ε), the modulus of continuity is

ω
T (x,ε) = sup{| x(t)− x(s) |: t,s ∈ [0,T ], | t− s |≤ ε}

Assume that

ω
T (X ,ε) = sup{ ω

T (x,ε) : x ∈ X},

ω
T
0 (X) = lim

ε→0
ω

T (X ,ε).

It is clear that ωT
0 is a measure of noncompactness in the

Banach space C([0,T ],R) of continuous and real-valued func-
tions defined on a closed and bounded interval [0,T ]. Now we
define

ω0(X) = lim
T→∞

ω
T
0 (X).

Now, for a fixed number t ∈ R+ let us denote

X(t) = {x(t) : x ∈ X},

‖ X(t) ‖= sup{x(t) : x ∈ X},

and
‖ X(t)− c ‖= sup{x(t)− c : x ∈ X}.

Consider the functions µ ′s defined on the family Pcl,bd(X) by
the formulas

µa(X) = max{ω0(X), limsup
t→∞

diamX(t)}, (2.1)

µb(X) = max{ω0(X), limsup
t→∞

‖ X(t) ‖}, (2.2)

and

µc(X) = max{ω0(X), limsup
t→∞

‖ X(t)− c ‖}. (2.3)

Let T > 0 be fixed. Then for any x ∈ BC(R+,R) define

δT (x) = sup{|| x(t) | −x(t) |: x ∈ X},

δT (X) = sup{δT (x) : x ∈}

and
δ (X) = lim

T→∞
δT (X)

Define the functions µad : Pbd(E)→ R+ by

µad(X) = max{µa(X),δ (X)}, (2.4)

for all X ∈ Pcl,bd(E).
Assume that E = BC(R+,R) and Ω be a subset of E. Let
K : E→ E be an operator and consider the following operator
equation in E,

Kx(t) = x(t) (2.5)

for all t ∈ R+.
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Definition 2.3. ([8]) The solutions of the equation (2.5) are
locally attractive if there exists a closed ball Br(x0) in the
space BC(R+,R) for some x0 ∈BC(R+,R) such that arbitrary
solutions x = x(t) and y = y(t) of the equation (2.5) belonging
to Br(x0)∩Ω we have that

lim
t→∞

(x(t)− y(t)) = 0. (2.6)

In this case when the limit (2.6) is uniform with respect to the
set Br(x0)∩Ω, i.e., when for each ε > 0 there exists T > 0
such that

| x(t)− y(t) |≤ ε (2.7)

for all x,y ∈Br(x0)∩Ω being solution of (2.5) and for t ≥ T,
we will say that solutions of equation (2.5) are uniformly
locally attractive on R+.

Definition 2.4. ([8]) The solution x = x(t) of equation(2.5) is
said to be globally attractive if (2.6) holds for each solution
y = y(t) of (2.5) on ω . In other words, we may say that the
solutions of the equation (2.6) are globally attractive if for
arbitrary solutions x(t) and y(t) of (2.5) on Ω, the condition
(2.6) is satisfied. In the case when the condition (2.6) is
satisfied uniformly with respect to the set Ω, i.e., if for every
ε > 0 there exists T > 0 such that the inequality (2.7) is
satisfied for all x,y ∈ Ω being the solutions of (2.5) and for
t ≥ T , we will say that solutions of the equation (2.5) are
uniformly globally attractive on R+.

Definition 2.5. ([8]) A line y(t) = c, where c a real number,
is called an attractor for a solution x ∈ BC(R+,R) to the
equation (2.5) if limt→∞[x(t)−c] = 0 and the solution x to the
equation (2.5) is also called asymptotic to the line y(t) = c
and the line is an asymptote for the solution x on R+.

Definition 2.6. ([9]) The solutions of equations (2.5) are said
to be globally asymptotic attractive if for any two solutions
x = x(t) and y = y(t) of the equation (2.5), the condition (2.6)
is satisfied and there is a line which is a common attractor to
them on R+. When the condition (2.6) is satisfied uniformly
, i.e., if for every ε > 0 there exists T > 0 such that the
inequality (2.7) is satisfied for t ≥ T and for all x,y being
the solution of (2.5) and having a line as common attractor,
we will say that solutions of the equation (2.5) are uniformly
globally asymptotically attractive on R+.

Remark 2.2. The concept of global attractivity of solutions
are introduced in Hu and Yan [14] and concept of local and
global asymptotic attractivity have been presented in Dhage
[8] whle concept of uniform local and global attractivity were
introduced in Banas and Rzepka [4] and concept of global
asymptotic attractivity of solutions are presented in Dhage
[9].

Definition 2.7. A solution x of the equation (2.5) is called
locally ultimately positive if there exists a closed ball Br(x0)

in BC(R+,R for some x0 ∈ BC(R+,R such that x ∈Br(x0)
and

lim
t→∞

[| x(t) | −x(t)] = 0. (2.8)

When the limit (2.8) is uniform with respect to the solution set
of the operator equation (2.5),i.e., when for each ε > 0 there
exist T > 0 such that

|| x(t) || − | x(t) |≤ ε (2.9)

for all x being solutions of (2.5) and for t ≥ T , we will say that
solutions of equation (2.5) are uniformly locally ultimately
positive on R+.

Definition 2.8. A solution x ∈C(R+,R) of the equation (2.5)
is called globally ultimate positive if (2.8) is satisfied. When
the limit (2.8) is uniform with respect to the solution set of the
operator equation (2.5) in C(R+,R) , i.e., when for each ε > 0
there exists T > 0 such that (2.9) is satisfied for all x being
solutions of (2.5) and for t ≥ T , we will say that solutions
of equation (2.5) are uniformly globally ultimate positive on
R+.

Remark 2.3. The global attractivity and global asymptotic
attractivity implies the local attractivity and local asymptotic
attractivity, respectively, of the solutions for the operator equa-
tion (2.5) on R+. Similarly, global ultimate positivity implies
local ultimate positivity of the solutions for the operator equa-
tion (2.5) on unbounded intervals. The converse of the above
two statements may not be true.

3. Attractivity and Positivity of Solutions
In this section, we will investigate the following functional
integral equation (in short FIE)

x(t) = h(t)+ f (t,x(α1(t)),x(α2(t)))

+
∫

β (t)

0
k(t,s)g(t,s,x(γ1(s)),x(γ2(s)))ds

(3.1)

for all t ∈ R+, h : R+ → R, k : R+ ×R+ → R, f : R+ ×
R×R→ R, g : R+×R+×R×R→ R and α1,α2,β ,γ1,γ2 :
R+→ R+.
By a solution of FIE (3.1), we mean a function x ∈C(R+,R)
that satisfies FIE (3.1) where C(R+,R) is the space of contin-
uous real valued functions on R+.
When k(t,s) ≡ 1 for all t ∈ R+, the FIE (3.1) reduces to
functional integral equation

x(t) = h(t)+ f (t,x(α1(t)),x(α2(t)))

+
∫

β (t)

0
g(t,s,x(γ1(s),x(γ2(s)))ds (3.2)

for t ∈ R+. The integral equation (3.2) has been studied in
Dhage [9] for global asymptotic attractivity and positivity of
the solutions via measure of noncompactness.
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When k(t,s) ≡ 1 and α1(t) = γ + 1(t) for t ∈ R+, then FIE
(3.1) reduces to FIE

x(t)= h(t)+ f (t,x(t),x(α2(t)))+
∫

β (t)

0
g(t,s,x(s),x(γ2(s)))ds.

(3.3)

The integral equation (3.3) has been studied in Dhage [8] for
global attractivity and global asymptotic attractivity of the
solutions via classical hybrid fixed point theorem.
Consider the following functional integral equation

x(t) = f (t, ,x(α(t))+
∫

β (t)

0
g(t,s,x(γ(s)))ds (3.4)

for t ∈R+ is special case of functional integral equation (3.1).
The integral equation (3.4) has been studied in Banas and
Dhage [5].
Consider the following functional integral equation

x(t) = f (t, ,x(t)+
∫ t

0
g(t,s,x(t))ds (3.5)

for t ∈R+ is special case of functional integral equation (3.1).
The integral equation (3.5) has been studied in Banas and
Rzepka [4, 5].

Therefore, our FIE (3.1) is more general and so, the attractivity
and positivity results of this paper include the attractivity
and positivity results for all the above mentioned functional
integral equations.

Global attractivity of solutions
The FIE (3.1) will be considered under the following assump-
tions:
(K0) The functions α1,α2,β ,γ1,γ2 : R+→ R are continuous.
(K1) The function h : R+→ R is continuous and bounded.
(K2) The function f :R+×R×R→R is continuous and there
is bound l : R+→ R with bound L and a positive constant M
such that

| f (t,x1,x2)− f (t,y1,y2) |≤
l(t)max{| x1− x2 |, | y1− y2 |}
M+max{| x1− x2 |, | y1− y2 |}

for t ∈ R+ and for all x1,x2,y1,y2 ∈ R+. Moreover assume
that L≤M.
(K3) The function t 7→ f (t,0,0) is bounded on R+ with

F0 = sup{| f (t,0,0) |: t ∈ R+}.

(K4) The function k : R+×R+→ R is continuous and there
is a positive real number N such that

| k(t,s) |≤ N

(K5) The function g : R+×R+×R×R→ R is continuous
such that there is a continuous map b : R+×R+ such that

| g(t,s,x,y) |≤ b(t,s)

for t,s ∈ R+. Moreover, we assume that

lim
t→0

∫
β (t)

0
b(t,s)ds = 0.

Theorem 3.1. Under the assumptions (K0)- (K5), the FIE
(3.1) has atleast one solution in the space BC(R+,R). More-
over solutions of FIE (3.1) are globally uniformly attractive
on R+.

Proof. Consider the operator K defined on the space BC(R+,R)
such that

Kx(t) = h(t)+ f (t,x(α1(t)),x(α2(t)))

+
∫

β (t)

0
k(t,s)g(t,s,x(γ1(s)),x(γ2(s)))ds

(3.6)

By our assumptions, the function Kx(t) is continuous for any
function of x ∈ BC(R+,R).
For arbitrarily fixed t ∈ R+,∣∣Kx(t)

∣∣ =

∣∣∣∣h(t)+ f (t,x(α1(t)),x(α2(t)))

+
∫

β (t)

0
k(t,s)g(t,s,x(γ1(s)),x(γ2(s)))ds

∣∣∣∣
≤

∣∣∣∣h∣∣∣∣+ ∣∣ f (t,x(α1(t)),x(α2(t)))− f (t,0,0)
∣∣

+
∣∣ f (t,0,0)∣∣+∫ β (t)

0

∣∣k(t,s)∣∣∣∣g(t,s,x(γ1s),x(γ2(s)))
∣∣ds

≤
∣∣∣∣h∣∣∣∣+ Lmax{|x(α1(t))|, |x(α2(t))|}

M+max{|x(α1(t))|, |x(α2(t))|}

+
∣∣ f (t,0,0)∣∣+N

∫
β (t)

0
b(t,s)ds

≤
∣∣∣∣h∣∣∣∣+ L

∣∣∣∣x∣∣∣∣
M+

∣∣∣∣x∣∣∣∣ +F0 +Nv(t)

≤
∣∣∣∣h∣∣∣∣+ L

∣∣∣∣x∣∣∣∣
M+

∣∣∣∣x∣∣∣∣ +F0 +NV

≤
∣∣∣∣h∣∣∣∣+L+F0 +NV∣∣∣∣K(x)

∣∣∣∣ ≤
∣∣∣∣h∣∣∣∣+L+F0 +NV (3.7)

for all x ∈ BC(R+,R). This means that the operator K trans-
forms the space BC(R+,R) into itself. From (3.7), we obtain
the operator K transforms continuously the space BC(R+,R)
into the closed ball Br(0), where r =

∣∣∣∣h∣∣∣∣+ L+F0 +NV .
Therefore the existence of the solution for FIE (3.1) is global
in nature. We will consider the operator K : Br(0)→ Br(0).
Now we will show that the operator K is continuous on ball
Br(0). Let ε > 0 be arbitrary and take x,y ∈ Br(0) such that∣∣∣∣x− y

∣∣∣∣≤ ε , then∣∣(Kx)(t) − (Ky)(t)
∣∣≤ ∣∣ f (t,x(α1(t)),x(α2(t)))

− f (t,y(α1(t)),y(α2(t)))
∣∣

+
∫

β (t)

0

∣∣k(t,s)∣∣∣∣g(t,s,x(γ1(s)),x(γ2(s)))

−g(t,s,y(γ1(s)),y(γ2(s)))
∣∣ds

≤ Lmax{|x(α1(t))− y(α1(t))|, |x(α2(t))− y(α2(t))|}
M+max{|x(α1(t))− y(α1(t))|, |x(α2(t))− y(α2(t))|}

+
∫

β (t)

0
N2b(t,s)ds

≤ L||x− y||
M+ ||x− y||

+2Nv(t)

≤ ε +2Nv(t)

from assumption (K5), there exists T > 0 such that v(t)≤ ε

for t ≥ T. Thus for t ≥ T , we have∣∣(Kx)(t)− (Ky)(t)
∣∣≤ 3ε. (3.8)
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Let us assume that t ∈ [0,T ]. Then

∣∣(Kx)(t) − (Ky)(t)
∣∣≤ ε +

∫
β (t)

0

∣∣k(t,s)∣∣∣∣g(t,s,x(γ1(s)),x(γ2(s)))

−g(t,s,y(γ1(s)),y(γ2(s)))
∣∣ds

≤ ε +N
∫

β (t)

0
ω

T
r (g,ε)ds

≤ ε +NβT ω
T
r (3.9)

where
βT = sup{β (t) : t ∈ [0,T ]},

and

ω
T
r = sup{|g(t,s,x1,x2)−g(t,s,y1,y2)| : t ∈ [0,T ],

s ∈ [0,βT ]],x1,x2,y1,y2 ∈ [−r,r],

|x1− y1| ≤ ε, |x2− y2| ≤ ε}. (3.10)

Obviously we have βT <∞. By uniform continuity of the func-
tions g(t,s,x,y) on the set [0,T ]× [0,βT ]× [−r,r]× [−r,r],
we have ωT

r (g,ε)→ 0 as ε → 0. Now, by (3.9), (3.10) and
above established facts we conclude that the operator K maps
continuously the closed ball Br(0) into itself.

Further, let us take a nonempty subset X of the ball Br(0).
Next, fix arbitrarily T > 0 and ε > 0. Let us choose x ∈ X and
t1, t2 ∈ [0,T ] with |t2− t1| ≤ ε . Without loss of generality we
may assume that t1 < t2. Then

|(Kx)(t2) − (Kx)(t1)| ≤ |h(t2)−h(t1)|
+| f (t2,x(α1(t2)),x(α2(t2))−
f (t1,x(α1(t1)),x(α2(t1))|

+

∣∣∣∣∫ β (t2)

0
k(t2,s)g(t2,s,x(γ1(s)),x(γ2(s)))ds

+
∫

β (t1)

0
k(t1,s)g(t1,s,x(γ1(s)),x(γ2(s)))

∣∣∣∣
≤ ω

T (h,ε)+ | f (t2,x(α1(t2)),x(α2(t2))

− f (t2,x(α1(t1)),x(α2(t1))|
+| f (t2,x(α1(t1)),x(α2(t1))

− f (t1,x(α1(t1)),x(α2(t1))|

+

∣∣∣∣∫ β (t2)

0
k(t2,s)g(t2,s,x(γ1(s)),x(γ2(s)))ds

−
∫

β (t2)

0
k(t2,s)g(t1,s,x(γ1(s)),x(γ2(s)))ds

+
∫

β (t1)

0
k(t2,s)g(t1,s,x(γ1(s)),x(γ2(s)))ds

−
∫

β (t1)

0
k(t1,s)g(t1,s,x(γ1(s)),x(γ2(s)))ds

∣∣∣∣
≤ ω

T (h,ε)+A

+ω
T
r ( f ,ε)

+
∫

β (t2)

0
|k(t2,s)|g(t2,s,x(γ1(s)),x(γ2(s)))

−g(t1,s,x(γ1(s)),x(γ2(s)))|ds

+

∣∣∣∣∫ β (t2)

0
k(t2,s)g(t1,s,x(γ1(s)),x(γ2(s)))ds

−
∫

β (t2)

0
k(t1,s)g(t1,s,x(γ1(s)),x(γ2(s)))ds

+
∫

β (t2)

0
k(t1,s)g(t1,s,x(γ1(s)),x(γ2(s)))ds

−
∫

β (t1)

0
k(t1,s)g(t1,s,x(γ1(s)),x(γ2(s)))ds

∣∣∣∣
≤ ω

T (h,ε)+

Lmax{ωT (x,ωT (α1,ε)),ω
T (x,ωT (α2,ε))}

M+max{ωT (x,ωT (α1,ε)),ωT (x,ωT (α2,ε))}

+ω
T
r ( f ,ε)+N

∫
βT

0
ω

T
r (g,ε)ds

+
∫

β (t2)

0
|k(t2,s)− k(t1,s)||g(t1,s,x(γ1(s)),x(γ2(s)))|ds

+
∫

β (t2)

βt1

|k(t1,s)||g(t1,s,x(γ1(s)),x(γ2(s)))|ds

≤ ω
T (h,ε)+

Lmax{ωT (x,ωT (α1,ε)),ω
T (x,ωT (α2,ε))}

M+max{ωT (x,ωT (α1,ε)),ωT (x,ωT (α2,ε))}

+ω
T
r ( f ,ε)+N

∫
βT

0
ω

T
r (g,ε)ds

+
∫

βT

0
ω

T
r (k,ε)V ds+N

∫
βT

0
ω

T
r Gr

T ds

ω
T (KX ,ε) ≤ ω

T (h,ε)

+
Lmax{ωT (X ,ωT (α1,ε)),ω

T (X ,ωT (α2,ε))}
M+max{ωT (X ,ωT (α1,ε)),ωT (X ,ωT (α2,ε))}

+ω
T
r ( f ,ε)+N

∫
βT

0
ω

T
r (g,ε)ds

+
∫

βT

0
ω

T
r (k,ε)V ds+N

∫
βT

0
Gr

T ds

(3.11)

where

A =
Lmax{|x(α1(t2))− x(α1(t1))|, |x(α2(t2))− x(α2(t1))|}

M+max{|x(α1(t2))− x(α1(t1))|, |x(α2(t2))− x(α2(t1))|}

ω
T (h,ε) = sup{|q(t2)−q(t1)|

: t1, t2 ∈ [0,T ], |t2− t1| ≤ ε},

ω
T
r ( f ,ε) = sup{| f (t2,x,y)− f (t1,x,y)|

: t1, t2 ∈ [0,T ], |t2− t1| ≤ ε,x,y ∈ [−r,r]},

ω
T
r (k,ε) = sup{|k(t2,s)− k(t1,s)|

: t1, t2 ∈ [0,T ],s ∈ [0,βT ], |t2− t1| ≤ ε},

ω
T
r (g,ε) = sup{|g(t2,s,x,y)−g(t1,s,x,y)|

: t1, t2 ∈ [0,T ],s ∈ [0,βT ]|,
t2− t1| ≤ ε,x,y ∈ [−r,r]},

GT
r = sup{|g(t,s,x,y)|

: t ∈ [0,T ],s ∈ [0,βT ],x ∈ [−r,r]}.

From the above estimate, we have

ω
T (KX ,ε)≤ ω

T (h,ε)

+
Lmax{ωT (X ,ωT (α1,ε)),ω

T (X ,ωT (α2,ε))}
M+max{ωT (X ,ωT (α1,ε)),ωT (X ,ωT (α2,ε))}

+ω
T
r ( f ,ε)+N

∫
βT

0
ω

T
r (g,ε)ds

+
∫

βT

0
ω

T
r (k,ε)V ds+N

∫
βT

0
Gr

T ds (3.12)
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By the uniform continuity of the functions h, f ,k and g on the
sets [0,T ], [0,T ]× [−r,r]× [−r,r], [0,T ]× [0,βT ] and [0,T ]×
[0,βT ]× [−r,r]× [−r,r], respectively, we have ωT (h,ε)→ 0,
ωT ( f ,ε)→ 0, ωT (k,ε)→ 0 and ωT (g,ε)→ 0. It is obvious
that Gr

T is finite and ωT (α1,ε)→ 0,ωT (α2,ε)→ 0,ωT (β ,ε)→
0, as ε → 0. Thus,

ω
T
0 ≤

LωT
0 (X)

M+ωT
0 (X)

(3.13)

For arbitrarily fixed t ∈ R+ and x1,x2,y1,y2 ∈ X , we have

|(Kx)(t)− (Ky)(t)| ≤ | f (t,x(α1(t)),x(α2(t)))

− f (t,y(α1(t)),y(α2(t)))|

+
∫

β (t)

0
|g(t,s,x(γ1(s)),x(γ2(s)))

−g(t,s,y(γ1(s)),y(γ2(s)))|ds

≤ A+ |g(t,s,x(γ1(s)),x(γ2(s)))

−g(t,s,y(γ1(s)),y(γ2(s)))|ds

≤ Lmax{X(α1(t)),X(α2(t))}
M+max{X(α1(t)),X(α2(t))}
+2v(t)N

diam(KX)(t) ≤ Lmax{X(α1(t)),X(α2(t))}
M+max{X(α1(t)),X(α2(t))}
+2v(t)N

limsup
t→∞

diam(KX)(t) ≤ L limsupt→∞ diamX(t)
M+ limsupt→∞ diamX(t)

(3.14)

where

A =
Lmax{|x(α1(t))− y(α1(t))|,x(α2(t))− y(α2(t))|}

M+max{|x(α1(t))− y(α1(t))|,x(α2(t))− y(α2(t))|}

Using measure of noncompactness µa,

µa(KX) = max{ω0(KX), limsup
t→∞

KX(t)}

≤ max
{

Lω0(X)

M+ω0(X)
,

L limsupt→∞ X(t)
M+ limsupt→∞ X(t)

}
≤ Lmax{ω0(X), limsupt→∞ X(t)}

M+max{ω0(X), limsupt→∞ X(t)}

≤ Lµa(X)

M+µa(X)
.

(3.15)

Since L≤M,
µa(KX) = φ(µa(X)),

where Lr
M+r for r > 0. Hence we apply Theorem (2.1) to de-

duce that operator K has a fixed point x in the ball Br(0). Thus
x is solution of the FIE (3.1). On taking account that the image
of the space BC(R+,R) under the operator K is contained in

the ball Br(0) because the set Fix(K) of all fixed points of K
is contained Br(0). The set Fix(K) contain all solutions of
the FIE (3.1. On the other hand, from Remark 2.1 we con-
clude that the set Fix(K) belongs to the family kerµa. Now,
taking account the description of sets belonging to kerµa, we
have that all solutions for the FIE (3.1) are globally uniformly
attractive on R+.

Uniform global attractivity and positivity of solutions

To prove next result concerning the asymptotic positivity of
the attractive solutions, we need following hypothesis in the
sequel.
(K6) The functions h and f satisfy

lim
t→∞

[|h(t)|−h(t)] = 0

and
lim
t→∞

[| f (t,x,y)|− f (t,x,y)] = 0

for all x,y ∈ R.

Theorem 3.2. Under the hypotheses of Theorem (3.1) and
(K6), the FIE (3.1) has atleast one solution on R+. Moreover,
solutions of the FIE (3.1) are uniformly globally attractive
and ultimately positive on R+.

Proof. Consider the closed ball Br(0) in the Banach space
BC(R+,R), where the real number r is given as in the proof of
Theorem (3.1) and define a map K : BC(R+,R)→ BC(R+,R)
by (3.1). In proof of Theorem (3.1), we have shown that K
is a continuous mapping from the space BC(R+,R) from the
space Br(0). In particular, K maps Br(0) into itself.

Now we will show that K is a nonlinear-set-contraction
with respect to measure µad of noncompactness in BC(R+,R).
For any x,y ∈ R, we have

|x|+ |y| ≥ |x+ y| ≥ x+ y,

therefore∣∣|x+ y|− (x+ y)
∣∣≤ ∣∣|x|+ |y|− (x+ y)

∣∣≤ ∣∣|x|− x
∣∣+ ∣∣|y|− y

∣∣
for all x,y ∈ R.
For any x ∈ Br(0), we have∣∣|Kx(t)| − Kx(t)

∣∣≤ ∣∣|h(t)|−h(t)
∣∣

+
∣∣| f (t,x(α1(t)),x(α2(t))

∣∣
− f (t,x(α1(t)),x(α2(t))|

+
∣∣|∫ β (t)

0
k(t,s)g(t,s,x(γ1(s)),x(γ2(s)))ds

∣∣
−
∫

β (t)

0
k(t,s)g(t,s,x(γ1(s)),x(γ2(s)))ds

≤ δT (h)+δT ( f )+2Nv(t)

≤ δT (h)+δT ( f )+2NVT ,
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where VT = supt≥T v(t). Thus we have

δT (X)≤ δT (h)+δT ( f )+2NVT

for all closed X ⊂ Br(0).
Taking the limit superior as T → ∞, we have

limsup
T→∞

δT (X) ≤ limsup
T→∞

δT (h)

+ limsup
T→∞

δT ( f )+2limsup
T→∞

NVT

= 0 (3.16)

for all closed X ⊂ Br(0). Hence,

δ (KX) = lim
T→∞

(X) = 0

for all closed X ⊂ Br(0). By the measure of noncompactness
µa, we have

µad(KX) = max{µad(KX),δ (KX)}

≤ max{ Lµa(X)

M+µa(X)
,0}

=
Lµa(X)

M+µa(X)

≤ Lµad(X)

M+µad(X)
(3.17)

since L≤M, therefore we have

µad(KX)≤ φ(µad(X)),

where φ(r) = Lr
M+r for r > 0. By Theorem (2.1), the operator

K has a fixed point x in the ball Br(0) and x is a solution
of FIE (3.1). The image of the space BC(R+,R) under the
operator K is contained in Br(0) because the set Fix(K) of all
fixed points of K is contained Br(0). The set Fix(K) contain
all solutions of the FIE (3.1. On the other hand, from Remark
2.1 we conclude that the set Fix(K) belongs to the family
kerµad . Now, taking account the description of sets belonging
to kerµad , we have that all solutions for the FIE (3.1) are
globally uniformly attractive and ultimately positive on R+.

Uniform global asymptotical attractivity of solutions
Next we prove that the global asymptotic attractivity results
the FIE (3.1). We need the following hypotheses in the sequel.
(K7) The function h :R+→R is continuous and limt→∞ h(t)=
c.
(K8) f(t,0,0)= 0 for all t ∈ R+, and
(K9) limt→∞ l(t) = 0, where the function l is defined as in
hypothesis (K2).

Theorem 3.3. Under the hypothesis (K0)- (K9), the FIE (3.1)
has atleast one solution in the space BC(R+,R). Moreover,
solutions are uniformly globally asymptotically attractive on
R+.

Proof. Consider the closed ball Br(0) in the space BC(R+,R),
where the real number r is given as in the proof of Theorem
(3.1) and define a map K : BC(R+,R)→ BC(R+,R) by (3.1).
In proof of Theorem (3.1), we have shown that K is a continu-
ous mapping from the space BC(R+,R) from the space Br(0).
In particular, K maps Br(0) into itself.

Now we will show that K is a nonlinear-set-contraction
with respect to measure µc of noncompactness in BC(R+,R).
For any x ∈ Br(0), we have

|Kx(t)− c| ≤ |h(t)− c|+ | f (t,x(α1(t)),x(α2(t)))|

+
∫

β (t)

0
|k(t,s)||g(t,s,x(γ1(s)),x(γ2(s)))|ds

≤ |h(t)− c|+ l(t)max{|x(α1(t)),x(α2(t))|}
M+max{|x(α1(t)),x(α2(t))|}

+2Nv(t)

≤ |h(t)− c|+ l(t)||x||
M+ ||x||

+2Nv(t)

≤ |h(t)− c|+ l(t)r
M+ r

+2Nv(t)

≤ |h(t)− c|+ l(t)+2Nv(t)

for all t ∈ R+. Thus we have

||Kx(t)− c|| ≤ |h(t)− c|+ l(t)+2Nv(t)

On taking the limit superior, we have

limsup
t→∞

||Kx(t)− c|| ≤ limsup
t→∞

|h(t)− c|+ limsup
t→∞

l(t)

+2N limsup
t→∞

v(t)

= 0. (3.18)

Using the measure of noncompactness µc, we have

µc(KX) = max{ω0(KX), limsup
t→∞

||Kx(t)− c||}

≤ max{ Lω0(X)

M+ω0(X)
,0}

≤ Lmax{ω0(X),0}
M+max{ω0(X),0}

=
Lµc(X)

M+µc(X)
. (3.19)

Since L≤M, therefore we have

µc(KX)≤ φ(µc(X)),

where φ(r) = Lr
M+r for r > 0. By Theorem (2.1), the operator

K has a fixed point x in the ball Br(0) and x is a solution
of FIE (3.1). The image of the space BC(R+,R) under the
operator K is contained in Br(0) because the set Fix(K) of all
fixed points of K is contained Br(0). The set Fix(K) contain
all solutions of the FIE (3.1). On the other hand, from Remark
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2.1 we conclude that the set Fix(K) belongs to the family
kerµc. Now, taking account the description of sets belonging
to kerµc, we have that all solutions for the FIE (3.1) are
globally uniformly asymptotically attractive on R+.

4. Conclusions
In this paper, we proved the existence of solution of the

nonlinear functional integral equation via Dhage’s fixed point
theorem and the most powerful tool measure of noncompact-
ness. Also we discuss the qualitative behaviour of solutions
such as global attractivity, uniform global attractivity, uniform
global asymptotical attractivity and ultimate positivity of the
nonlinear functional integral equation.
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