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New oscillation criteria for forced superlinear neutral type
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Abstract

Some new oscillation criteria are established for the neutral type differential equation

(a(t)((x(t) + p(t)x(τ(t)))′)α)′ + q(t)xβ(t) = e(t), t ≥ t0,

which are applicable to equations with nonnegative forcing term. Examples are provided to illustrate the results.
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1 Introduction

Consider the forced second order neutral type differential equation of the form

(a(t)((x(t) + p(t)x(τ(t)))′)α)′ + q(t)xβ(t) = e(t), t ≥ t0, (1.1)

where α > 0, β > 0 are the quotient of odd positive integers, a(t), p(t), q(t), τ(t),

e(t) ∈ C([t0,∞)) and a(t) > 0,
∞∫
t0

1

a
1
α (t)

dt = ∞, 0 ≤ p(t) ≤ p < 1, q(t) > 0, e(t) ≥ 0, τ(t) ≤ t, τ ′(t) ≥

0 and lim
t→∞

τ(t) = ∞.

Set z(t) = x(t) + px(τ(t)). By a solution of equation (1.1) we mean a function x(t) ∈ C([Tx,∞)), Tx ≥
t0, which has the properties z(t) ∈ C1([Tx,∞)), a(t)(z′(t))α ∈ C1([Tx,∞)) , and satisfies equation (1.1) on
[Tx,∞).
We consider only those solutions x(t) of equation (1.1) which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx.

We assume that equation (1.1) possess such a solution. A solution of equation (1.1) is called oscillatory if it
has infinitely many zeros on [tx,∞) and otherwise it is said to be nonoscillatory. Also a solution x(t) is said
to be almost oscillatory if either x(t) is oscillatory or x′(t) is oscillatory or x(t) → 0 as t →∞.

When p(t) = 0 and α = 1 then equation (1.1) reduces to the following equation

(a(t)x′(t))′ + q(t)xβ(t) = e(t), t ≥ t0. (1.2)

The oscillatory behavior of solutions of equation (1.2) has been discussed in many papers, see for example
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] and the references cited therein. In [2, 14], the authors studied
oscillatory behavior of equation (1.1) or (1.2) with the assumption that e(t) changes sign and therefore in this
paper we establish conditions for the oscillatory behavior of equation (1.1) when e(t) does not changes sign.

In Section 2, we present some oscillation criteria for equation (1.1) and in Section 3, we provide several
examples to illustrate our main results.

In the sequel, when we write a functional inequality without specifying its domain of validity we assume
that it holds for all sufficiently large t.
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2 Oscillation Results

We begin with a lemma which can be easily proved using differential calculus.

Lemma 2.1. Set F (x) = axβ−α + b
xα for x > 0. If a ≥ 0, b ≥ 0 and β > α ≥ 1 then F (x) attains its

minimum with

Fmin =
βa

α
β b1−α

β

α
α
β (β − α)1−

α
β

.

Theorem 2.1. Assume that there exists a real valued positive function ρ(t) such that

lim
t→∞

sup

t∫
t0

(
ρ(s)Q∗(s)− a(s)(ρ′(s))α+1

(α + 1)α+1ρα(s)

)
ds = ∞, (2.1)

and

lim
t→∞

sup

t∫
t0

 s∫
t0

(Mq(u)± e(u))du

 ds = ∞ (2.2)

where

Q(t) =
βq

α
β (t)e1−α

β (t)(1− p)α

α
α
β (β − α)1−

α
β

,

Q∗(t) = min{Q(t), d(β−α)q(t)(1− p)β − d−αe(t)},

M > 0 and d > 0. Then every solution of equation (1.1) is almost oscillatory.

Proof. Suppose that x(t) is not almost oscillatory.Then there is a positive solution of equation (1.1) such
that x(τ(t)) > 0 and x(t) > 0 for all t ≥ t1 ≥ t0. Then by the definition of not almost oscillatory there are two
possibilities to consider: (I) x′(t) > 0 for all t ≥ t1 and (II) x′(t) < 0 for all t ≥ t1.

Case (I). Assume that x′(t) > 0 for all t ≥ t1. Set

z(t) = x(t) + p(t)x(τ(t)) (2.3)

then z′(t) > 0 for allt ≥ t1, and x(t) ≥ (1− p)z(t). Then from equation (1.1), we have

(a(t)(z′(t))α)′ + q(t)(1− p)βzβ(t) ≤ e(t). (2.4)

Define

w(t) =
ρ(t)a(t)(z′(t))α

zα(t)
, t ≥ t1. (2.5)

Then inview of (2.4), we obtain

w′(t) ≤ −ρ(t)
(

q(t)(1− p)βzβ−α(t)− e(t)
zα(t)

)
+

ρ′(t)
ρ(t)

w(t)− α

(a(t)ρ(t))
1
α

w1+ 1
α (t). (2.6)

Set F (u) = q(t)(1 − p)βu(β−α) − e(t)
uα . Then, since u is increasing , there is a constant d > 0 such that

u ≥ d > 0 and

F (u) ≥ dβ−α(1− p)βq(t)− d−αe(t). (2.7)

Using the inequality

Bu−Au1+ 1
α ≤ αα

(α + 1)α+1

Bα+1

Aα
, A > 0, (2.8)

we have
ρ′(t)
ρ(t)

w(t)− α

(a(t)ρ(t))
1
α

w1+ 1
α (t) ≤ a(t)(ρ′(t))α+1

(α + 1)α+1ρα(t)
. (2.9)

From (2.6),(2.7) and (2.9), we have

w′(t) ≤ −
[
ρ(t)Q∗(t)− a(t)(ρ′(t))α+1

(α + 1)α+1ρα(t)

]
. (2.10)
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Integrating (2.10) from t1 to t , we obtain

t∫
t1

(
ρ(s)Q∗(s)− a(s)(ρ′(s))α+1

(α + 1)α+1ρα(s)

)
ds ≤ w(t1)− w(t) ≤ w(t1)

for all large t, and this contradicts (2.1). Next, assume x(t) < 0 for all t ≥ t1, and we use the transformation y(t) =
−x(t), then we have y(t) is an eventually positive solution of the equation

(a(t)((y(t) + p(t)y(τ(t)))′)α)′ + q(t)yβ(t) = −e(t).

Define

w(t) = ρ(t)
a(t)(z′(t))α

zα(t)
, t ≥ t1, (2.11)

where z(t) = y(t) + p(t)y(τ(t)). Then w(t) > 0 and satisfies

w′(t) ≤ −ρ(t)
(

q(t)(1− p)βzβ−α(t) +
e(t)
zα(t)

)
+

ρ′(t)
ρ(t)

w(t)− αw1+ 1
α (t)

(a(t)ρ(t))
1
α

. (2.12)

Set F (u) = q(t)(1− p)βuβ−α + e(t)
uα . Using Lemma 2.1, we see that

F (u) ≥ βq
α
β (t)e1−α

β (t)
α

α
β (β − α)1−

α
β

(1− p)α

and also (2.8) holds. Then the rest of the proof is similar to that of the above and hence is omitted.
Case (II). Assume that x′(t) is negative for all t ≥ t1. From the definition of z(t) we obtain z′(t) =

x′(t) + px′(τ(t))τ ′(t). Since p ≥ 0 and τ ′(t) > 0 we have z′(t) < 0 for all t ≥ t1. From x′(t) < 0 we
obtain lim

t→∞
x(t) = b. We assert that b = 0. If not then xβ(t) → bβ > 0 as t → ∞, and hence there exists a

t2 ≥ t1 such that xβ(t) ≥ bβ for t ≥ t2. Therefore, we have

(a(t)(z′(t))α)′ ≤ −q(t)bβ + e(t).

Integrating the last inequality from t2 to t, we obtain

a(t)(z′(t))α < a(t)(z′(t))α − a(t2)(z′(t2))α ≤ −
t∫

t2

(bβq(s)− e(s))ds

and then

z′(t) ≤ −

 1
a(t)

t∫
t2

(bβq(s)− e(s))ds


1
α

, t ≥ t2.

Again integrating the above inequality from t2 to t, we obtain

z(t) ≤ z(t2)−
t∫

t2

 1
a(s)

s∫
t2

(bβq(u)− e(u))du

 1
α

ds.

Condition (2.2) implies that z(t) is negative for all t ≥ t2, a contradiction. Finally, for x(t) < 0 for all t ≥ t1,
we use the transformation y(t) = −x(t) then we have y(t) is an eventually positive solution of the equation

(a(t)(z′(t))α)′ + q(t)yβ(t) = −e(t)

where z(t) = y(t) + p(t)y(τ(t)) > 0. The rest of the proof is similar to the above and hence omitted. The proof
is now complete.

Corollary 2.1. Assume that all the conditions of Theorem 2.2 hold, except the condition (2.1) is replaced by

lim
t→∞

sup

t∫
t0

ρ(s)Q∗(s)ds = ∞,
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and

lim
t→∞

sup

t∫
t0

a(s)(ρ′(s))α+1

ρα(s)
ds < ∞.

Then every solution of equation (1.1) is almost oscillatory.

In the following theorem, we provide another sufficient condition for almost oscillation of equation (1.1).

Definition 2.1. Consider the sets D0 = {(t, s) : t > s ≥ t0} and D = {(t, s) : t ≥ s ≥ t0}. Assume that
H ∈ C(D,R) satisfies the following assumptions:
(A1) H(t, t) = 0, t ≥ t0; H(t, s) > 0, (t, s) ∈ D0;
(A2) H has a nonpositive continuous partial derivative with respect to the second variable in D0.
Then the function H has the property P .

Theorem 2.2. Assume that condition (2.2) holds. Further assume that H ∈ C(D,R) has the property P and
there exists a function ρ ∈ C ′([t0,∞), (0,∞)) such that for all sufficiently large t1 ≥ t0

lim
t→∞

sup
1

H(t, t1)

t∫
t1

[
H(t, s)ρ(s)Q∗(s)− a(s)ρ(s)

(α + 1)α+1

(
ρ′(s)
ρ(s)

H
1

α+1 (t, s)− h(t, s)
)α+1

]
ds = ∞,

(2.13)

where h(t, s) = 1

H
α

α+1 (t,s)

∂
∂sH(t, s), (t, s) ∈ D0. Then every solution of equation (1.1) is almost oscillatory.

Proof. Proceeding as in the proof of Theorem 2.1 we have two cases to consider. First assume that x′(t) > 0
for all t ≥ t1. Define w(t) by (2.5) , then w(t) > 0 and satisfies

w′(t) ≤ −ρ(t)Q∗(t) +
ρ′(t)
ρ(t)

w(t)− α

(a(t)ρ(t))
1
α

w1+ 1
α (t). (2.14)

In (2.14), replace t by s and then multiply both sides by H(t, s), and integrate with respect to s from t1 to
t, we have

t∫
t1

H(t, s)ρ(s)Q∗(s)ds ≤ −
t∫

t1

H(t, s)w′(s)ds +

t∫
t1

H(t, s)
ρ′(s)
ρ(s)

w(s)ds− α

t∫
t1

H(t, s)
(a(s)ρ(s))

1
α

w1+ 1
α (s)ds.

Thus we obtain

t∫
t1

H(t, s)ρ(s)Q∗(s)ds ≤ H(t, t1)w(t1)−
t∫

t1

[
− ∂

∂s
H(t, s)− ρ′(s)

ρ(s)
H(t, s)

]
w(s)ds

− α

t∫
t1

H(t, s)
(a(s)ρ(s))

1
α

w1+ 1
α (s)ds. (2.15)

From the last inequality and (2.8), we obtain

1
H(t, t1)

t∫
t1

[
H(t, s)ρ(s)Q∗(s)− a(s)ρ(s)

(α + 1)α+1

(
ρ′(s)
ρ(s)

H
1

α+1 (t, s)− h(t, s)
)α+1

]
ds

≤ w(t1)

which contradicts (2.13). Next we consider the case when x(t) < 0 for all t ≥ t1 and we use the transformation
y(t) = −x(t) then y(t) is a positive solution of the equation

(a(t)(z′(t))α)′ + q(t)yβ(t) = −e(t)

where z(t) = y(t) + p(t)y(τ(t)). Define w(t) by (2.11), then (2.12) holds. The remainder of the proof is similar
to that of first case and hence omitted. The proof for the case (II) is similar to that of Theorem 2.2. The
proof is now complete.
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Corollary 2.2. Assume that all the conditions of Theorem 2.2 hold except the condition (2.13) is replaced by

lim
t→∞

sup
1

H(t, t1)

t∫
t1

H(t, s)ρ(s)Q∗(s)ds = ∞, (2.16)

and

lim
t→∞

sup
1

H(t, t1)

t∫
t1

a(s)ρ(s)
(

ρ′(s)
ρ(s)

H
1

α+1 (t, s)− h(t, s)
)α+1

ds < ∞. (2.17)

Then the conclusion of Theorem 2.2 holds.

Remark 2.1. By choosing the function H(t, s) in appropriate manners, we can derive several oscillation
criteria for equation (1.1). For example, set

H(t, s) = (t− s)m, m ≥ 1, (t, s) ∈ D0

we have the following result.

Corollary 2.3. Assume that all the conditions of Corollary 2.2 are satisfied except the conditions (2.16) and
(2.17) replaced by

lim
t→∞

sup
1

(t− t1)m

t∫
t1

(t− s)mρ(s)Q∗(s)ds = ∞

and

lim
t→∞

sup
1

(t− t1)m

t∫
t1

a(s)ρ(s)
(

ρ′(s)
ρ(s)

(t− s)
m

α+1 + m(t− s)
m

α+1−11

)α+1

ds < ∞.

Then the conclusion of Theorem 2.1 holds.

3 Examples

In this section we present some examples to illustrate the main results.
Example 3.1 Consider the differential equation

(((x(t) + 2x(t− 2))′)3)′ + tx5(t) =
1
t2

, t ≥ 1. (3.1)

Here p = 2, α = 3, β = 5, τ(t) = t− 2, q(t) = t and e(t) = 1
t2 . By taking ρ(t) = 1, we see that all conditions

of Theorem 2.1 are satisfied. Hence every solution of equation (3.1) is almost oscillatory.

Example 3.2 Consider the differential equation

(t(x(t) +
1
2
x(

t

2
))′)′ + t3(t + 1)x3(t) = t + 1 +

2
t2

, t ≥ 1. (3.2)

Here p = 1
2 , α = 1, β = 3, τ(t) = t

2 , q(t) = t3(t+1) and e(t) = t+1+ 2
t2 . By taking ρ(t) = 1, we see that all

conditions of Theorem 2.1 are satisfied and hence every solution of equation (3.2) is almost oscillatory. Infact
x(t) = 1

t is one such solution of equation (3.2) since it satisfies the equation.

Example 3.3 Consider the differential equation

(x(t) + 2x(
t

2
))′′ + t2x3(t) = t, t ≥ 1. (3.3)

Here p = 2, α = 1, β = 3, τ(t) = t
2 , q(t) = t2 and e(t) = t. By taking ρ(t) = 1 and H(t, s) = (t− s)2 we see

that all conditions of Corollary 2.3 are satisfied, and hence every solution of equation (3.3) is almost oscillatory.

Remark 3.1. Since the forcing terms e(t) in the above examples are positive, the results obtained in [2-14]
cannot be applied to these examples. So our results are new and applicable to neutral differential equations with
positive forcing terms.

Acknowledgements. The authors thank the reviewer for his/her corrections and useful comments that
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