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Abstract

This paper studies the exact solution of the the(2+1)-dimensional hyperbolic nonlinear Schrödinger equa-
tion by the aid of Adomian decomposition method.
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1 Introduction

Nonlinear equations describe fundamental physical phenomena in nature ranging from chaotic behaviour
in biological systems, plasma containment in tokamaks and stellarators for energy generation, to solitonic
fibre optical communication devices. The construction of the exact solutions of nonlinear partial differential
equations (PDEs) is one of the most important and essential tasks which help us for better understanding of
nonlinear complex physical phenomena. In the past couple of decades, there are various mathematical tech-
niques have been developed to carry out the integration of these equations. Some of these commonly studied
techniques are Inverse Scattering Transform [5], bilinear transformation[4], the tanh-sech method[6, 7], ado-
mian decomposition method [3], the tanh-coth method[8], homogeneous balance method[9], Exp-function
method [10], and many others.
The Adomian decomposition method was introduced and developed by George Adomian in [11, 12] and is
well addressed in the literature. A reliable modification of the Adomian decomposition method developed by
Wazwaz and presented in [3]. A considerable amount of research work has been invested recently in apply-
ing this method to a wide class of linear and nonlinear equations for detail see [13, 14, 15, 16, 17, 18] and the
references therein.

In this paper the Adomian decomposition method will determine exact solution to (2+1)-dimensional hy-
perbolic nonlinear Schrödinger equation. In Section 2, we described this method for finding exact solutions for
nonlinear PDEs. In Section 3, we illustrated this method in detail with the hyperbolic Schrödinger equation.
In Section 4, we gave some conclusions.

2 Adomian decomposition method for nonlinear PDEs

We first consider the nonlinear partial differential equation given in an operator form

Lxu(x, y) + Lyu(x, y) + R(u(x, y)) + F(u(x, y)) = g(x, y), (2.1)
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where Lx is the highest order differential in x, Ly is the highest order differential in y, R contains the remaining
linear terms of lower derivatives, F(u(x, y)) is an analytic nonlinear term, and g(x, y) is an inhomogeneous or
forcing term. the decision as to which operator Lx or Ly should be used to solve the problem depends mainly
on two bases: (i) The operator of lowest order should be selected to minimize the size of computational work.
(ii) The selected operator of lowest order should be of best known conditions to accelerate the evaluation of
the components of the solution.For more detail see[3]. Assume that Ly meet these two conditions, therefore
we set

Lyu(x, y) = g(x, y)− Lxu(x, y)− R(u(x, y))− F(u(x, y)). (2.2)

Applying L−1
y to both sides of (2.2) gives

u(x, y) = Φ0 − L−1
y g(x, y)− L−1

y Lxu(x, y)− L−1
y R(u(x, y))− L−1

y F(u(x, y)), (2.3)

where

Φ0 =


u(x, 0)
u(x, 0) + yuy(x, 0)
u(x, 0) + yuy(x, 0) + 1

2! y
2uyy(x, 0)

u(x, 0) + yuy(x, 0) + 1
2! y

2uyy(x, 0) + 1
3! y

3uyyy(x, 0)

L = ∂
∂y ,

L = ∂2

∂y2 ,

L = ∂3

∂y3 ,

L = ∂4

∂y4 ,

Take the solution u(x, y) in a series form

u(x, y) =
∞

∑
n=0

un(x, y), (2.4)

and the nonlinear term F(u(x, y)) by

F(u(x, y)) =
∞

∑
n=0

An, (2.5)

where An are Adomian polynomials that can be generated for all forms of nonlinearity and can be evaluated
by using the following expression

An =
1
n!

dn

dλn

[
F

(
n

∑
i=0

λiui

)]
λ=0

, n = 0, 1, 2 (2.6)

Based on these assumptions, Eq. (2.3) become
∞
∑

n=0
un(x, y) = Φ0 − L−1

y g(x, y)− L−1
y Lx

(
∞
∑

n=0
un(x, y)

)
−L−1

y R
(

∞
∑

n=0
un(x, y)

)
− L−1

y

(
∞
∑

n=0
An

)
.

(2.7)

The components un(x, y), n ≥ 0 of the solution u(x, y) can be recursively determined by using the relation

u0(x, y) = Φ0 − L−1
y g(x, y),

uk+1(x, y) = −L−1
y Lxuk − L−1

y R(uk)− L−1
y (Ak), k ≥ 0.

(2.8)

Next find the components of
∞
∑

n=0
un(x, y) by

u0(x, y) = Φ0 − L−1
y g(x, y),

u1(x, y) = −L−1
y Lxu0(x, y)− L−1

y R (u0(x, y))− L−1
y A0,

u2(x, y) = −L−1
y Lxu1(x, y)− L−1

y R (u1(x, y))− L−1
y A1,

u3(x, y) = −L−1
y Lxu2(x, y)− L−1

y R (u2(x, y))− L−1
y A2,

u4(x, y) = −L−1
y Lxu3(x, y)− L−1

y R (u3(x, y))− L−1
y A3,

.

.

.

where each component can be determined by using the preceding component. Having the calculated the
components un(x, y), n ≥ 0, the solution in a series form is readily obtained.
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3 Exact solutions for(2+1)-dimensional hyperbolic Schrödinger equation

In this section we obtain exact solution of (2+1)-dimensional hyperbolic nonlinear Schrödinger equation
by using the decomposition method. The hyperbolic nonlinear Schrödinger equation given by[1] is

iut +
1
2

uxx −
1
2

uyy + |u|2u = 0 (3.1)

where u is a complex valued function, while x, y and t are the independent variables. In order to seek exact
solution, we assume that u(x, y, 0) = ei(mx+ny) Multiplying Eq.(3.1) by i, we may express this equation in an
operator form as follows

Ltu(x, y, t) =
i
2

Lxxu(x, y, t)− i
2

Lyyu(x, y, t) + i|u(x, y, t)|2u(x, y, t) (3.2)

where Lt is defined by Lt = ∂
∂t and the inverse operator L−1

t is identified by

L−1
t (·) =

t∫
0

(·)dt

Applying L−1
t to both sides of (3.2) and using the initial condition we obtain

u(x, y, t) = ei(mx+ny) +
i
2

L−1
t (u(x, y, t))xx −

i
2

L−1
t (u(x, y, t))yy + iL−1

t |u(x, y, t)|2u(x, y, t), (3.3)

where |u(x, y, t)|2u(x, y, t)is nonlinear term.
Substituting

u(x, y, t) =
∞

∑
n=0

un(x, y, t) (3.4)

and nonlinear term

|u(x, y, t)|2u(x, y, t) =
∞

∑
n=0

An (3.5)

into (3.3) gives

∞

∑
n=0

un(x, y, t) = ei(mx+ny) +
i
2

L−1
t

(
∞

∑
n=0

un(x, y, t)

)
xx

− i
2

L−1
t

(
∞

∑
n=0

un(x, y, t)

)
yy

+ iL−1
t

(
∞

∑
n=0

An

)
(3.6)

Adomian’s analysis introduces the recursive relation

u0(x, y, t) = ei(mx+ny),
uk+1(x, y, t) = i

2 L−1
t (uk)xx − i

2 L−1
t (uk)yy + iL−1

t (Ak) , k ≥ 0.
(3.7)

since u is a complex function so we can write

|u|2 = uū (3.8)

where ū is the conjugate of u. this means that (3.5) can be written as

u2ū =
∞

∑
n=0

An (3.9)

By using formal technique to find adomian polynomial used in [3] we find that (3.9)has the following poly-
nomial representation

A0 = u2
0ū0,

A1 = 2u0u1ū0 + u2
0ū1,

A2 = 2u0u2ū0 + u2
1ū0 + 2u0u1ū1 + u2

0ū2,
A3 = 2u0u3ū0 + 2u1u2ū0 + 2u0u2ū1 + u2

1ū1 + 2u0u1ū2 + u2
0ū3

(3.10)
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that in turn gives the first few components by

u0(x, y, t) = ei(mx+ny),

u1(x, y, t) = i
2 L−1

t (u0xx )−
i
2 L−1

t

(
u0yy

)
+ iL−1

t (A0),

u2(x, y, t) = i
2 L−1

t
(
u1xx

)
− i

2 L−1
t

(
u1yy

)
+ iL−1

t (A1),

u3(x, y, t) = i
2 L−1

t (u2xx )−
i
2 L−1

t

(
u2yy

)
+ iL−1

t (A2),

(3.11)

we obtain

u0(x, y, t) = ei(mx+ny), A0 = u2
0ū0 = ei(mx+ny),

u1(x, y, t) = i
2 L−1

t

(
−m2ei(mx+ny)

)
− i

2 L−1
t

(
−n2ei(mx+ny)

)
+ iL−1

t (ei(mx+ny)) = it( n2

2 − m2

2 + 1)ei(mx+ny),

u2(x, y, t) = i
2 L−1

t
(
u1xx

)
− i

2 L−1
t

(
u1yy

)
+ iL−1

t (A1) = (it)2

2!

(
n2

2 − m2

2 + 1
)2

ei(mx+ny)

u3(x, y, t) = i
2 L−1

t (u2xx )−
i
2 L−1

t

(
u2yy

)
+ iL−1

t (A2) = (it)3

3!

(
n2

2 − m2

2 + 1
)3

ei(mx+ny)

(3.12)

Accordingly, the series solution is given by

u(x, y, t) =
∞

∑
n=0

un(x, y, t) = u1 + u2 + u3 + ...

u(x, y, t) = ei(mx+ny)

[
1 +

it
1!

(
n2

2
− m2

2
+ 1
)

+
(it)2

2!

(
n2

2
− m2

2
+ 1
)2

+ ...

]
(3.13)

that gives exact solution of (3.1) in closed form

u(x, y, t) = ei
(

mx+ny+
(

n2
2 −m2

2 +1
)

t
)

(3.14)

.

4 Conclusion

The Adomian decomposition method is successfully used to establish new exact solution. The perfor-
mance of this method is found to be reliable and effective and can give more solutions, which may be impor-
tant for the explanation of some nonlinear complex physical phenomena.
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