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Fractional integral inequalities for continuous random variables
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Abstract

By introducing new concepts on the probability theory, new integral inequalities are established for the
fractional expectation and the fractional variance for continuous random variables. These inequalities gener-
alize some interested results in [N.S. Barnett, P. Cerone, S.S. Dragomir and J. Roumeliotis: Some inequalities for
the dispersion of a random variable whose p.d.f. is defined on a finite interval, J. Inequal. Pure Appl. Math., Vol. 2
Iss. 1 Art. 1 (2001), 1-18].
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1 Introduction

It is well known that the integral inequalities play a fundamental role in the theory of differential equations
and applied sciences. Significant development in this theory has been achieved for the last two decades. For
details, we refer to [4, 7, 11, 16, 19, 20, 21, 23] and the references therein. Moreover, the study of fractional
type inequalities is also of great importance. We refer the reader to [2, 3, 6, 8, 10] for further information and
applications. Let us introduce now the results that have inspired our work. The first one is given in [5]; in
their paper, using Korkine identity and Holder inequality for double integrals, N.S. Barnett et al. established
several integral inequalities for the expectation E(X) and the variance σ2(X) of a random variable X having a
probability density function (p.d.f.) f : [a, b] → R+. In [13, 14], P. Kumar presented new inequalities for the
moments and for the higher order central moments of a continuous random variable. In [15], Y. Miao and G.
Yang gave new upper bounds for the standard deviation σ(X), for the quantity σ2(X) + (t− E(X))2, t ∈ [a, b]
and for the Lp absolute deviation of a random variable X. Recently, G.A. Anastassiou et al. [2] proposed a
generalization of the weighted Montgomery identity for fractional integrals with weighted fractional Peano
kernel. More recently, M. Niezgoda [18] proposed new generalizations of the results of P. Kumar [14], by
applying some Ostrowski-Gruss type inequalities. Other paper deal with these probability inequalities can be
found in [1, 17, 22].

In this paper, we introduce new concepts on ”fractional random variables”. Then, we obtain new inte-
gral inequalities for the fractional dispersion and the fractional variance functions of a continuous random
variable X having the probability density function (p.d. f .) f : [a, b] → R+. We also present new results for
the ”fractional expectation and the fractional variance”. For our results, some classical integral inequalities of
Barnet et al. [5] can be deduced as some special cases.
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2 Preliminaries

Definition 2.1. [12] The Riemann-Liouville fractional integral operator of order α ≥ 0, for a continuous function h on
[a, b] is defined as

Jα[h(t)] = 1
Γ(α)

∫ t
a (t− τ)α−1h(τ)dτ; α > 0, a < t ≤ b,

J0[h(t)] = h(t),
(2.1)

where Γ(α) :=
∫ ∞

0 e−uuα−1du.

We give the following properties:

Jα Jβ[h(t)] = Jα+β[h(t)], α ≥ 0, β ≥ 0, (2.2)

and
Jα Jβ[h(t)] = Jβ Jα[h(t)], α ≥ 0, β ≥ 0. (2.3)

We introduce also the following new concepts and definitions:

Definition 2.2. The fractional expectation function of order α ≥ 0, for a random variable X with a positive p.d. f . f
defined on [a, b] is defined as

EX,α(t) := Jα[t f (t)] = 1
Γ(α)

∫ t
a (t− τ)α−1τ f (τ)dτ; α ≥ 0, a < t ≤ b. (2.4)

In the same way, we define the fractional expectation function of X − E(X) by:

Definition 2.3. The fractional expectation function of order α ≥ 0, for a random variable X − E(X) is defined as

EX−E(X),α(t) := 1
Γ(α)

∫ t
a (t− τ)α−1(τ − E(X)) f (τ)dτ; α ≥ 0, a < t ≤ b, (2.5)

where f : [a, b] → R+ is the p.d.f. of X.

For t = b, we introduce the following concept:

Definition 2.4. The fractional expectation of order α ≥ 0, for a random variable X with a positive p.d.f. f defined on
[a, b] is defined as

EX,α = EX,α = 1
Γ(α)

∫ b
a (b− τ)α−1τ f (τ)dτ; α ≥ 0. (2.6)

For the fractional variance of X, we introduce the two definitions:

Definition 2.5. The fractional variance function of order α ≥ 0 for a random variable X having a p.d.f. f : [a, b] → R+

is defined as
σ2

X,α(t) := Jα[(t− E(X))2 f (t)] = 1
Γ(α)

∫ t
a (t− τ)α−1(τ − E(X))2 f (τ)dτ;

α ≥ 0, a < t ≤ b.
(2.7)

where E(X) :=
∫ b

a τ f (τ)dτ is the classical expectation of X.

Definition 2.6. The fractional variance of order α ≥ 0, for a random variable X with a p.d.f. f : [a, b] → R+ is defined
as

σ2
X,α = 1

Γ(α)

∫ b
a (b− τ)α−1(τ − E(X))2 f (τ)dτ; α >≥ 0. (2.8)

We give the following important properties:

(P1∗) : If we take α = 1 in Definition 2.4, we obtain the classical expectation: EX,1 = E(X).
(P2∗) : If we take α = 1 in Definition 2.6, we obtain the classical variance: σ2

X,1 = σ2(X) =
∫ b

a (τ−E(X))2 f (τ)dτ.

(P3∗) : For α > 0, the p.d. f . f satisfies Jα[ f (b)] = (b−a)α−1

Γ(α) .
(P4∗) : For α = 1, we have the well known property Jα[ f (b)] = 1.
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3 Main Results

In this section, we present new results for fractional continuous random variables. The first main result is
the following theorem:

Theorem 3.1. Let X be a continuous random variable having a p.d.f. f : [a, b] → R+. Then we have:
(a) : For all a < t ≤ b, α ≥ 0,

Jα[ f (t)]σ2
X,α(t)− (EX−E(X),α(t))2 ≤ || f ||2∞

[ (t− a)α

Γ(α + 1)
Jα[t2]− (Jα[t])2

]
, (3.9)

provided that f ∈ L∞[a, b].
(b) : The inequality

Jα[ f (t)]σ2
X,α(t)− (EX−E(X),α(t))2 ≤ 1

2
(t− a)2(Jα[ f (t)])2 (3.10)

is also valid for all a < t ≤ b, α ≥ 0.

Proof. Let us define the quantity

H(τ, ρ) := (g(τ)− g(ρ))(h(τ)− h(ρ)); τ, ρ ∈ (a, t), a < t ≤ b. (3.11)

Taking a function p : [a, b] → R+, multiplying (3.11) by (t−τ)α−1

Γ(α) p(τ); τ ∈ (a, t), then integrating the resulting
identity with respect to τ from a to t, we can state that

1
Γ(α)

∫ t

a
(t− τ)α−1 p(τ)H(τ, ρ)dτ

= Jα[pgh(t)]− g(ρ)Jα[ph(t)]− h(ρ)Jα[pg(t)] + g(ρ)h(ρ)Jα[p(t)].

(3.12)

Now, multiplying (3.12) by (t−ρ)α−1

Γ(α) p(ρ); ρ ∈ (a, t) and integrating the resulting identity with respect to ρ over
(a, t), we can write

1
Γ2(α)

∫ t

a

∫ t

a
(t− τ)α−1(t− ρ)α−1 p(τ)p(ρ)H(τ, ρ)dτdρ

= 2Jα[p(t)]Jα[pgh(t)]− 2Jα[pg(t)]Jα[ph(t)].

(3.13)

In (3.13), taking p(t) = f (t), g(t) = h(t) = t− E(X), t ∈ (a, b), we have

1
Γ2(α)

∫ t

a

∫ t

a
(t− τ)α−1(t− ρ)α−1 f (τ) f (ρ)(τ − ρ)2dτdρ

= 2Jα[ f (t)]Jα[ f (t)(t− E(X))2]− 2
(

Jα[ f (t)(t− E(X))]
)2

.

(3.14)

On the other hand, we have

1
Γ2(α)

∫ t

a

∫ t

a
(t− τ)α−1(t− ρ)α−1 f (τ) f (ρ)(τ − ρ)2dτdρ

≤ || f ||2∞ 1
Γ2(α)

∫ t
a

∫ t
a (t− τ)α−1(t− ρ)α−1(τ − ρ)2dτdρ

≤ || f ||2∞
[
2 (t−a)α

Γ(α+1) Jα[t2]− 2(Jα[t])2
]
.

(3.15)

Thanks to (3.14), (3.15), we obtain the part (a) of Theorem 3.1.
For the part (b), we have

1
Γ2(α)

∫ t

a

∫ t

a
(t− τ)α−1(t− ρ)α−1 f (τ) f (ρ)(τ − ρ)2dτdρ

≤ supτ,ρ∈[a,t] |(τ − ρ)|2(Jα[ f (t)])2 = (t− a)2(Jα[ f (t)])2.

(3.16)

Then, by (3.14) and (3.16), we get the desired inequality (3.10).
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We give also the following corollary:

Corollary 3.1. Let X be a continuous random variable with a p.d.f. f defined on [a, b]. Then:
(i) : If f ∈ L∞[a, b], then for any α ≥ 0, we have

(b− a)(α−1)

Γ(α)
σ2

X,α − E2
X,α ≤ || f ||

2
∞

[ 2(b− a)2α+2

Γ(α + 1)Γ(α + 3)
−

( (b− a)α+1

Γ(α + 2)

)2]
. (3.17)

(ii) : The inequality
(b− a)(α−1)

Γ(α)
σ2

X,α − E2
X,α ≤

1
2

(b− a)2α

Γ2(α)
(3.18)

is also valid for any α ≥ 0.

Remark 3.1. (r1) : Taking α = 1 in (i) of Corollary 3.1, we obtain the first part of Theorem 1 in [5].
(r2) : Taking α = 1 in (ii) of Corollary 3.1, we obtain the last part of Theorem 1 in [5].

We shall further generalize Theorem 3.1 by considering two fractional positive parameters:

Theorem 3.2. Let X be a continuous random variable having a p.d.f. f : [a, b] → R+. Then we have:
(a∗) : For all a < t ≤ b, α ≥ 0, β ≥ 0,

Jα[ f (t)]σ2
X,β(t) + Jβ[ f (t)]σ2

X,α(t)− 2(EX−E(X),α(t))(EX−E(X),β(t))

≤ || f ||2∞
[

(t−a)α

Γ(α+1) Jβ[t2] + (t−a)β

Γ(β+1) Jα[t2]− 2(Jα[t])(Jβ[t])
]
,

(3.19)

where f ∈ L∞[a, b].
(b∗) : The inequality

Jα[ f (t)]σ2
X,β(t) + Jβ[ f (t)]σ2

X,α(t)− 2(EX−E(X),α(t))(EX−E(X),β(t))

≤ (t− a)2 Jα[ f (t)]Jβ[ f (t)]
(3.20)

is also valid for any a < t ≤ b, α ≥ 0, β ≥ 0.

Proof. Using (3.11), we can write

1
Γ(α)Γ(β)

∫ t

0

∫ t

0
(t− τ)α−1(t− ρ)β−1 p(τ)p(ρ)H(τ, ρ)dτdρ

= Jα[p(t)]Jβ[pgh(t)] + Jβ[p(t)]Jα[pgh(t)]

−Jα[ph(t)]Jβ[pg(t)]− Jβ[ph(t)]Jα[pg(t)].

(3.21)

Taking p(t) = f (t), g(t) = h(t) = t− E(X), t ∈ (a, b) in the above identity, yields

1
Γ(α)Γ(β)

∫ t

0

∫ t

0
(t− τ)α−1(t− ρ)β−1 f (τ) f (ρ)(τ − ρ)2dτdρ

= Jα[ f (t)]Jβ[ f (t)(t− E(X))2] + Jβ[ f (t)]Jα[ f (t)(t− E(X))2]

−2Jα[ f (t)(t− E(X))]Jβ[ f (t)(t− E(X))].

(3.22)

We have also
1

Γ(α)Γ(β)

∫ t

0

∫ t

0
(t− τ)α−1(t− ρ)β−1 f (τ) f (ρ)(τ − ρ)2dτdρ

≤ || f ||2∞ 1
Γ(α)Γ(β)

∫ t
a

∫ t
a (t− τ)α−1(t− ρ)β−1(τ − ρ)2dτdρ

≤ || f ||2∞
[

(t−a)α

Γ(α+1) Jβ[t2] + (t−a)β

Γ(β+1) Jα[t2]− 2Jα[t]Jβ[t]
]
.

(3.23)
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Thanks to (3.22) and (3.23), we obtain (a∗).
To prove (b∗), we use the fact that supτ,ρ∈[a,t] |(τ − ρ)|2 = (t− a)2. We obtain

1
Γ(α)Γ(β)

∫ t

0

∫ t

0
(t− τ)α−1(t− ρ)β−1 f (τ) f (ρ)(τ − ρ)2dτdρ

≤ (t− a)2 Jα[ f (t)]Jβ[ f (t)].

(3.24)

And, by (3.22) and (3.24), we get (3.20).

Remark 3.2. (r1) : Applying Theorem 3.2 for α = β, we obtain Theorem 3.1.
(r2) : Taking α = β = 1 in (a∗) of Theorem 3.4, we obtain the first inequality of Theorem 1 in [5].
(r3) : Taking α = β = 1 in (b∗) of Theorem 3.2, we obtain the last part of Theorem 1 in [5].

We give also the following fractional integral result:

Theorem 3.3. Let f be the p.d.f. of X on [a, b]. Then for all a < t ≤ b, α ≥ 0, we have:

Jα[ f (t)]σ2
X,α(t)− (EX−E(X),α(t))2 ≤ 1

4
(b− a)2(Jα[ f (t)])2. (3.25)

Proof. Using Theorem 3.1 of [9], we can write∣∣∣Jα[p(t)]Jα[pg2(t)]− (Jα[pg(t)])2
∣∣∣

≤ 1
4

(
Jα[p(t)]

)2
(M−m)2.

(3.26)

Taking p(t) = f (t), g(t) = t − E(X), t ∈ [a, b], then M = b − E(X), m = a − E(X). Hence, (3.25) allows us to
obtain

0 ≤ Jα[ f (t)]Jα[ f (t)(t− E(X))2]−
(

Jα[ f (t)(t− E(X))]
)2

≤ 1
4 (Jα[ f (t)])2(b− a)2.

(3.27)

This implies that

Jα[ f (t)]σ2
X,α(t)− (EX−E(X),α(t))2 ≤ 1

4
(Jα[ f (t)])2(b− a)2. (3.28)

Theorem 3.3 is thus proved.

For t = b, we propose the following interesting inequality:

Corollary 3.2. Let f be the p.d.f. of X on [a, b]. Then for any α ≥ 0, we have:

(b− a)(α−1)

Γ(α)
σ2

X,α − (EX−E(X),α)2 ≤ 1
4Γ2(α)

(b− a)2α. (3.29)

Remark 3.3. Taking α = 1 in Corollary 3.2, we obtain Theorem 2 of [5].

We also present the following result for the fractional variance function with two parameters:

Theorem 3.4. Let f be the p.d.f. of the random variable X on [a, b]. Then for all a < t ≤ b, α ≥ 0, β ≥ 0, we have:

Jα[ f (t)]σ2
X,β(t) + Jβ[ f (t)]σ2

X,α(t)

+2(a− E(X))(b− E(X))Jα[ f (t)]Jβ[ f (t)]

≤ (a + b− 2E(X))
(

Jα[ f (t)](EX−E(X),β(t)) + Jβ[ f (t)](EX−E(X),α(t))
)

.

(3.30)
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Proof. Thanks to Theorem 3.4 of [9], we can state that:[
Jα[p(t)]Jβ[pg2(t)] + Jβ[p(t)]Jα(pg2(t)]− 2Jα[pg(t)]Jβ[pg(t)]

]2

≤
[(

MJα[p(t)]− Jα[pg(t)]
)(

Jβ[pg(t)]−mJβ[p(t)]
)
+

(
Jα[pg(t)]−mJα[p(t)]

)(
MJβ[p(t)]− Jβ[pg(t)]

)]2
.

(3.31)

In (3.31), we take p(t) = f (t), g(t) = t− E(X), t ∈ [a, b]. We obtain[
Jα[ f (t)]Jβ[ f (t)(t− E(X))2] + Jβ[ f (t)]Jα[ f (t)(t− E(X))2]

−2Jα[ f (t)(t− E(X))]Jβ[ f (t)(t− E(X))]
]2

≤
[(

MJα[ f (t)]− Jα[ f (t)(t− E(X))]
)(

Jβ[ f (t)(t− E(X))]−mJβ[ f (t)]
)
+

(
Jα[ f (t)(t− E(X))]−mJα[ f (t)]

)(
MJβ[ f (t)]− Jβ[ f (t)(t− E(X))]

)]2
.

(3.32)

Combining (3.22) and (3.32) and taking into account the fact that the left hand side of (3.22) is positive, we
get:

Jα[ f (t)]Jβ[ f (t)(t− E(X))2] + Jβ[ f (t)]Jα[ f (t)(t− E(X))2]

−2Jα[ f (t)(t− E(X))]Jβ[ f (t)(t− E(X))]

≤
(

MJα[ f (t)]− Jα[ f (t)(t− (EX))]
)(

Jβ[ f (t)(t− E(X))]−mJβ[ f (t)]
)
+

(
Jα[ f (t)(t− E(X))]−mJα[ f (t)]

)(
MJβ[ f (t)]− Jβ[ f (t)(t− E(X))]

)
.

(3.33)

Therefore,
Jα[ f (t)]Jβ[ f (t)(t− E(X))2] + Jβ[ f (t)]Jα[ f (t)(t− E(X))2]

≤ M
(

Jα[ f (t)](EX−E(X),β(t)) + Jβ[ f (t)](EX−E(X),α(t))
)

+m
(

Jα[ f (t)](EX−E(X),β(t)) + Jβ[ f (t)](EX−E(X),α(t))
)

−2mMJα[ f (t)]Jβ[ f (t)].

(3.34)

Substituting the values of m and M in (3.28) , then a simple calculation allows us to obtain (3.30). Theorem
3.4 is thus proved.

To finish, we present to the reader the following corollary:

Corollary 3.3. Let f be the p.d.f. of X on [a, b]. Then for all a < t ≤ b, α ≥ 0, the inequality

σ2
X,α(t) + (a− E(X))(b− E(X))Jα[ f (t)]

≤ (a + b− 2E(X))EX−E(X),α(t)
(3.35)

is valid.



178 Zoubir Dahmani / Fractional inequalities for random...

References

[1] A.M. Acu, F. Sofonea, C.V. Muraru, Gruss and Ostrowski type inequalities and their applications, Scien-
tific Studies and Research: Series Mathematics and Informatics, 23(1)(2013), 5-14.

[2] G.A. Anastassiou, M.R. Hooshmandasl, A. Ghasemi, F. Moftakharzadeh, Montgomery identities for frac-
tional integrals and related fractional inequalities, J. Inequal. Pure Appl. Math., 10(4)(2009), 1-6.

[3] G.A. Anastassiou, Fractional Differentiation Inequalities, Springer Science, LLC, 2009.

[4] N.S. Barnett, P. Cerone, S.S. Dragomir, J. Roumeliotis, Some inequalities for the expectation and variance
of a random variable whose PDF is n-time differentiable, J. Inequal. Pure Appl. Math., 1(21)(2000), 1-29.

[5] N.S. Barnett, P. Cerone, S.S. Dragomir and J. Roumeliotis, Some inequalities for the dispersion of a ran-
dom variable whose PDF is defined on a finite interval, J. Inequal. Pure Appl. Math., 2(1)(2001), 1-18.

[6] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math.,
10(3)(2009), 1-12.

[7] P.L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les
memes limites, Proc. Math. Soc. Charkov, 2(1882), 93-98.

[8] Z. Dahmani, New inequalities in fractional integrals, International Journal of Nonlinear Sciences, 9(4)(2010),
493-497.

[9] Z. Dahmani, L. Tabharit, On weighted Gruss type inequalities via fractional integrals, JARPM, Journal of
Advanced Research in Pure Mathematics, 2(4)(2010), 31-38.

[10] Z. Dahmani, On Minkowski and Hermite-Hadamad integral inequalities via fractional integration, Ann.
Funct. Anal., 1(1)(2010, 51-58.

[11] S.S. Dragomir, A generalization of Gruss’s inequality in inner product spaces and applications, J. Math.
Annal. Appl., 237(1)(1999), 74-82.

[12] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order,
Springer Verlag, Wien, (1997), 223-276.

[13] P. Kumar, Moment inequalities of a random variable defined over a finite interval, J. Inequal. Pure Appl.
Math., 3(3)(2002), 1-24.

[14] P. Kumar, Inequalities involving moments of a continuous random variable defined over a finite interval,
Computers and Mathematics with Applications, 48(2004), 257-273.

[15] Y. Miao, G. Yang, A note on the upper bounds for the dispersion, J. Inequal. Pure Appl. Math., 8(3)(2007),
1-13.

[16] D.S. Mitrinovic, J.E. Pecaric, A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic
Publishers, Dordrecht, 1993.

[17] T.F. Mori, Sharp inequalities between centered moments, J. Math. Annal. Appl., 10(4)(2009), 1-19.

[18] M. Niezgoda, New bounds for moments of continuous random varialbes, Comput. Math. Appl.,
60(12)(2010), 3130-3138.

[19] B.G. Pachpatte, On multidimensional Gruss type integral inequalities, J. Inequal. Pure Appl. Math., 32
(2002), 1-15.

[20] F. Qi, A.J. Li, W.Z. Zhao, D.W. Niu, J. Cao, Extensions of several integral inequalities, J. Inequal. Pure Appl.
Math., 7(3)(2006), 1-6.

[21] F. Qi, Several integral inequalities, J. Inequal. Pure Appl. Math., 1(2)(2000), 1-9.



Zoubir Dahmani / Fractional inequalities for random... 179

[22] R. Sharma, S. Devi, G. Kapoor, S. Ram, N.S. Barnett, A brief note on some bounds connecting lower order
moments for random variables defined on a finite interval, Int. J. Theo. Appl. Sci., 1(2)(2009), 83-85.

[23] M.Z. Sarikaya, N. Aktan, H. Yildirim, On weighted Chebyshev-Gruss like inequalities on time scales, J.
Math. Inequal., 2(2)(2008), 185-195.

Received: January 3, 2014; Accepted: March 04, 2014

UNIVERSITY PRESS

Website: http://www.malayajournal.org/


	Introduction
	Preliminaries
	Main Results

