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Abstract

For integer k ≥ 1, a (p, q)-graph G = (V, E) is said to admit an AL(k)-traversal if there exist a sequence of

vertices (v1, v2, . . . , vp) such that for each i = 1, 2, . . . , p − 1, the distance between vi and vi+1 is k. We call a

graph k-step Hamiltonian (or admits a k-step Hamiltonian tour) if it admits an AL(k)-traversal and d(v1, vp) =
k. In this paper we consider k-step Hamiltonicity of bipartite and tripartite graphs. As an application, we

found that a 2-step Hamiltonian tour of a graph could sometimes induce a super-edge-magic labeling of the

graph.
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1 Introduction

In 1856, Kirkman wrote a paper [13] in which he considered graphs with a cycle which passes through

every vertex exactly once. The dodecahedron (see Figure 1) is a graph with such property that Hamilton

played cycle games. Hence, such a graph is said to be Hamiltonian. The Hamiltonicity of a graph is the

problem of determining for a given graph whether it contains a path/cycle that visits every vertex exactly

once.

Figure 1: Dodecahedron.

There is no simple characterization on Hamiltonian graphs though they are related to the traveling sales-

man problem. So there are potential practical applications. In general we know very little about Hamiltonian

graphs though their properties have been widely studied. A good reference for recent developments and open

problems is [9].

In this paper we consider simple graphs with no loops. For integer k ≥ 1, a (p, q)-graph G = (V, E) is said

to admit an AL(k)-traversal if there exist a sequence (v1, v2, . . . , vp) such that for each i = 1, 2, . . . , p − 1, the
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distance between vi and vi+1 is k. We call a graph k-step Hamiltonian (or admits a k-step Hamiltonian tour) if

it admits an AL(k)-traversal and d(v1, vp) = k.

For example, the cubic graph in Figure 2 is 2-step Hamiltonian and two others admit an AL(2)-traversal

but are not 2-step Hamiltonian.
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Figure 2: Example on 2-step Hamiltonicity.

There has been much research on Hamiltonicity of bipartite graphs [1, 2, 6, 10, 11, 14]. Clearly, 1-step

Hamiltonian is Hamiltonian. In this paper we consider bipartite and tripartite graphs. As an application, we

found that a 2-step Hamiltonian tour of a graph could sometimes induce a super-edge-magic labeling of the

graph. For terms used but not defined, we refer to [3].

Definition 1.1. For a graph G, let Dk(G) denote the graph generated from G such that V(Dk(G)) = V(G) and

E(Dk(G)) = {uv|d(u, v) = k in G.}.

Lemma 1.1. A graph G is k-step Hamiltonian or admits an AL(k)-traversal if and only if Dk(G) is Hamiltonian or

has a Hamiltonian path, respectively.

Proof. It follows directly from Definition 1.1.

2 Main Results

We first give a sufficient condition for a graph to admit no k-step Hamiltonian tour.

Theorem 2.1. Suppose G has a clique subgraph Kp. If |V(G\Kp)| < p, then G is not k-step Hamiltonian for all k ≥ 2.

Proof. Observe that for any 2 vertices u, v in the clique subgraph Kp of G, d(u, v) = 1. Hence, Kp induces an

empty graph in Dk(G). If Dk(G) is Hamiltonian, then these p vertices must be not adjacent in a Hamiltonian

tour of Dk(G). This implies that we need at least p more vertices to form such a Hamiltonian tour. Since

|V(G\Kp)| < p, it follows that no Hamiltonian tour exists in Dk(G). By Lemma 1.1, the theorem follows.

Theorem 2.2. The vertex gluing of a graph G and an end-vertex of a path of length n ≥ k is not k-step Hamiltonian.

Proof. Let G(Pn) denote the graph such obtained. Observe that Dk(G(Pn)) has a cut-vertex and is not Hamil-

tonian.

Theorem 2.3. If graphs G and H are both k-step Hamiltonian, then so is G × H.

Proof. By Lemma 1.1, G is k-step Hamiltonian if and only if Dk(G) is Hamiltonian. We show that Dk(G) ×

Dk(H) is a subgraph of Dk(G × H). Then any Hamiltonian cycle in Dk(G)× Dk(H) will also exist in Dk(G ×
H) and implies that G × H is also k-step Hamiltonian. Suppose that edge e = (u, v)(u, w) is an edge in

Dk(G) × Dk(H). Then (v, w) must be an edge in Dk(H), so the distance between v and w in H is k. Let

v = v0, v1, v2, . . . , vk = w be a length k path from v to w in H. Then (u, v), (u, v1), (u, v2),. . ., (u, w) is

a length k path from (u, v) to (u, w) in G × H, so the distance from (u, v) to (u, w) within G × H is no

more than k. Suppose, however, that the distance from (u, v) to (u, w) is less than k in G × H, and let

e1, e2, . . . , em, be a sequence of edges from (u, v) to (u, w) with m < k. All edges in this sequence will ei-

ther be of the form (z, x)(z, y) where xy is an edge in H, or (x, z)(y, z) where xy is an edge in G. Consider

the subsequence of edges which are of the first type, (z, x)(z, y). This subsequence must be of the form

(z1, x0)(z1, x1), (z2, x1)(z2, x2), . . . , (zn, xn?)(zn, xn), where x0 = v, xn = w, and n = m < k. Furthermore,

x0 x1, x1 x2, . . . , xn? xn must be a sequence of edges in H from v = x0 to w = xn , which has length n, where

n < k. This contradicts the fact that the distance from v to w in H is actually k. Therefore the distance from
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(u, v) to (u, w) in G × H is also k, and so e = (u, v)(u, w) is also an edge of Dk(G × H); the argument for edges

of the form e = (u, v)(w, v) is identical. Since all edges and vertices of Dk(G)× Dk(H) are also in Dk(G × H),

Dk(G) × Dk(H) is a subgraph of Dk(G× H). Since G and H are k-step Hamiltonian, Dk(G) × Dk(H) is Hamil-

tonian, and so is Dk(G × H), implying that G × H is k-step Hamiltonian.

A Hamiltonian graph need not be 2-step Hamiltonian. The simplest example is the complete bipartite

graph K(2, 2) that does not admit an AL(2)-Hamiltonian traversal, and hence cannot be 2-step Hamiltonian.

Theorem 2.4. All bipartite graphs are not k-step Hamiltonian for even k ≥ 2.

Proof. Suppose G = (V, E) is bipartite graph with bipartition (X, Y). If k ≥ 2 is even, the vertex in X cannot

connect with vertex in Y, vice versa, in Dk(G). Thus Dk(G) is a disconnected graph with two components X

and Y. Hence Dk(G) cannot have a Hamiltonian path. By Lemma 1.1, G is not k-step Hamiltonian.

We now give a necessary and sufficient condition for cycles to admit a k-step Hamiltonian tour.

Theorem 2.5. For integers n ≥ 3 and k ≥ 2, the cycle Cn is k-step Hamiltonian if and only if n ≥ 2k + 1 and

gcd(n, k) = 1.

Proof. If n ≤ 2k, we have either diam(Cn) < k or Dk(Cn) is disconnected. Hence, Cn is not k-step Hamiltonian.

We may now assume that n ≥ 2k + 1.

Without loss of generality, we may assume that a k-step Hamiltonian tour of Cn is given by the sequence

u1, uk+1 , u2k+1, . . . , u(n−1)k+1 . Note that {1, k + 1, 2k + 1, 3k + 1, . . . , (n − 1)k + 1} (mod n) is a set of distinct

integers if and only if ik + 1 6≡ jk + 1 (mod n) for 0 ≤ i < j ≤ n − 1 if and only if (j − i)k 6≡ 0 (mod n) if and

only if k/n 6= r/(j− i) for some integer r if and only if gcd(n, k) = 1. Hence, the theorem holds and the k-step

Hamiltonian tour of Cn is obtained.

Theorem 2.6. The cylinder graph Cn × Pm is 2-step Hamiltonian for odd n ≥ 3 and all m ≥ 3.

Proof. Case 1. n = 3. This case is handled separately since the three vertices in any 3-cycle within C3 × Pm are

distance 1 from each other. Figure 3 shows 2-step Hamiltonian tours for C3 × P2 and C3 × P3. Figure 4 shows

2-step Hamiltonian tours for C3 × P4k. It is based on the 2-step Hamiltonian tour for C3 × P2. Here vertices

are labeled (a, b) and we may denote edges by listing their vertices: (a, b)(c, d). Then to modify the 2-step

Hamiltonian tour for C3 × P4k to one for C3 × P4k−2, replace edge (1, 4k −2)(2, 4k −1) by (1, 4k −3)(2, 4k −2),

shown as a dotted line, and also remove edge (2, 4k − 2)(2, 4k). The cases in which n = 3 and m is odd are

handled with similar constructions, based instead on the 2-step Hamiltonian tour for C3 × P3 also as shown

below. The diagram shows the 2-step Hamiltonian tour for C3 × P4k+3 which may be modified for the cases

C3 × P4k−1 by adding edge (1, 4k)(2, 4k− 1), again shown shown as a dotted line.
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Figure 3: A 2-step Hamiltonian tour in C3 × Pm, m = 2, 3.

Case 2. n = 2k + 1 ≥ 5. In this case, we consider two subcases.

Subcase 2.1. m = 2j + 1 ≥ 3. Figure 5 gives a 2-step Hamiltonian cycle of this subcase. Note that we

have partitioned the vertices in a checkerboard pattern so those whose coordinates have even sum are shown

by circular vertices, and those whose coordinates have odd sum are shown by square vertices. The circular

vertices compose one cycle and the square vertices compose another, except that the two cycles cross over and

connect through the edges (2j + 1, 2k + 1)(2j, 1) and (2j + 1, 2k)(2j + 1, 1).
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Figure 4: A 2-Hamiltnoian tour in C3 × Pm.
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Subcase 2.2. m = 2j ≥ 2. Figure 6 gives a 2-step Hamiltonian cycle of this subcase. We have again partitioned

the vertices in a checkerboard pattern so those whose coordinates have even sum are shown by circular ver-

tices, and those whose coordinates have odd sum are shown by square vertices. The circular vertices compose

one cycle and the square vertices compose another, except in this case the two cycles cross over and connect

through the edges (2j, 2k)(2j, 1) and (2j − 1, 2k + 1)(2j− 2, 1). Note that the vertices shown in the rightmost

column are identical to those at the bottom of the first column.
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Figure 6: A 2-step Hamiltonian tour in C2k+1 × P2j.

Since Cn × Pm is a subgraph of Cn × Cm, the same 2-step Hamiltonian cycles work for Cn × Cm, when n is odd,

and we have

Corollary 2.1. . The graph Cn × Cm is 2-step Hamiltonian for odd n and all m.

Let D(n) denote the tripartite donut graph shown in Figure 7 with a given vertex labeling.
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Figure 7: A 2-step Hamiltonian tour in D(n).

Theorem 2.7. The vertex labeling in graph D(n) gives a 2-step Hamiltonian tour for all n = 3k, k ≥ 4.

A ring-worm is a unicyclic graph Un(a1, a2, . . . , an) obtained from a cycle Cn with V(Cn) = {v1, v2, . . . , vn}

by identifying vertex vi to the center, ci of a star Si having ai + 1 ≥ 1 vertices, {ci, ui,1, ui,2, . . . , ui,ai
}. The ring-

worm has n + a1 + a2 + . . . + an vertices and edges, respectively. We can arrange the vertices of the ring-worm

as in Figure 8.
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Figure 8: Ring worm graph.

Theorem 2.8. If n = 3 and ai > 0 (i = 1, 2, 3), or n ≥ 5 is odd and ai ≥ 0 (1 ≤ i ≤ n), the ring worm

Un(a1, a2, . . . , an) is 2-step Hamiltonian.

Proof. The case n = 3 is obvious. Without loss of generality, we assume that n ≥ 5 and not all ai = 0.

Suppose n = 2s + 1, s ≥ 2. We can label the vertices by consecutive integers as described below to get a 2-step

Hamiltonian tour for the graph:

f (c2i+1) = a2 + a4 + . . . + a2i + i + 1, for i = 0, 1, 2, . . . , s,

f (c2i+2) = f (c2s+1) + a1 + a3 + . . . + a2i+1 + i + 1 for i = 0, 1, 2, . . . , s − 1,

f (u2i+2,j) = f (c2i+1) + j for i = 0, 1, 2, . . . , s − 1, j = 1, 2, . . . , a2i+2,

f (u1,j) = f (c2s+1) + j, j = 1, 2, . . . , a1,

f (u2i+1,j) = f (c2i) + j for i = 1, 2, . . . , s − 1, j = 1, 2, . . . , a2i+1.

We next define two families of cubic graphs. Let n be a positive integer. The Möbius ladder (also known

as the Möbius wheel) is the cycle C2n, with n additional edges joining diagonally opposite vertices. We will

denote this graph by M2n, and its vertices by v1, v2, . . . , v2n. Then the edges are v1v2, v2v3, . . . , v2nv1 of the

cycle, and the n diagonals are v1vn+1, v2vn+2, . . . , vnv2n. Figure 9 shows the Möbius ladder M2n for n = 3, 4,

drawn in both the circulant form and the ladder form.
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v8 v1

v2

v3

v4v5

v6

v1 v2 v3

v4 v5 v6

v1 v2 v3 v4

v5 v6 v7 v8

Figure 9: Möbius ladder for n = 3, 4.

Observe that for odd n, M2n is not 2-step Hamiltonian since it is bipartite. For even n, M2n is tripartite.

Theorem 2.9. For m ≥ 1, M4m is 2-step Hamiltonian.

Proof. A 2-step Hamiltonian tour is given by the sequence v1, v3, v5, . . . , v4m−1, v2m, v2m−2, . . ., v2, v4m, v4m−2,

. . ., v2m+2, v1.

We now consider the cubic turtle shell graph, TS(n), n even, with a given vertex labeling as shown in

Figure 10.

Theorem 2.10. The vertex labeling of the graph TS(n) is a 2-step Hamiltonian tour for all n = 2k, k ≥ 3.
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Figure 10: Graph TS(n), n even.

3 An Application

For a (p, q)-graph G, a labeling of the vertices and edges of G given by bijections f : V(G) → {1, 2, . . . , p}

and f + : E(G) → {p + 1, p + 2, . . . , p + q} is called a super-edge-magic (SEM) labeling if f (u)+ f (v)+ f +(uv)

is a constant for every edge uv in E(G). Such a graph is called SEM.

Theorem 3.11. ([4, 7]) A graph G is SEM if and only if it admits a bijection f (V(G)) such that { f (u)+ f (v)} consists

of q consecutive integers.

Observe that a 2-step Hamiltonian labeling for each odd cycle and the ring worm with odd cycle corre-

spond to a vertex labeling that induces an edge labeling f + such that the edge labels form a sequence of

consecutive integers. However, we are not able to find another 2-step Hamiltonian labeling that corresponds

to a SEM labeling.

Problem 1. Does there exist infinitely many families of 2-step Hamiltonian graphs whose labeling corresponds to a

SEM labeling?

The problem of determining whether a graph is Hamiltonian is NP-complete even for planar graphs. In

1972, Karp [12] proved that finding such a path in a directed or undirected graph is NP-complete. Later,

Garey and Johnson [8] proved that the directed version restricted to planar graphs is also NP-complete, and

the undirected version remains NP-complete even for cubic planar graphs. In 1980, Akiyama, Nishizeki, and

Saito [1] showed that the problem is NP-complete even when restricted to bipartite graphs. We end this paper

with the following conjecture and problem.

Conjecture 1. The 2-step Hamiltonian problem for tripartite graphs is NP-complete.

Problem 2. Study the k-step Hamiltonicity of complete multipartite graph with certain edges deleted.
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