

https://doi.org/10.26637/MJM0S20/0101

A note on mixed super quasi Einstein manifold

Ananta Patra¹ and Akshoy Patra^{2*}

Abstract

Mixed super quasi Einstein manifold $(MS(QE)_n)$ is a generalization of Einstein manifold. In this paper we have studied some geometric properties of $MS(QE)_n$. Also we have studied $MS(QE)_n$)satisfying some curvature restriction and obtained the form of Riemannian curvature tensor. We have studied conformally flat and conformally conservative $MS(QE)_n$. We have deduced a necessary condition for a $MS(QE)_n$, to be conformally conservative. Some basic properties of $MS(QE)_n$ on viscous fluid $MS(QE)_n$ spacetimes are discussed. We have proved that if a viscous fluid $MS(QE)_n$ spacetime admitting heat flux obeys Einstein equation with a cosmological constant then none of the energy density and isotropic pressure of the fluid can be a constant.

Keywords

Mixed super quasi-Einstein manifold, conformally flat, conformally conservative, viscous fluid, heat flux, cosmological constant, energy density, isotropic pressure.

AMS Subject Classification

Primary 53C50, 53C25, 53B30; Secondary 53C80, 53B50.

¹ Department of Mathematics, Kandi Raj College, Kandi-742137, Murshidabad, West Bengal, India.

² Department of Mathematics, Govt.College of Engineering and Textile Technology, Berhampore-742101, Murshidabad, West Bengal, India. *Corresponding author: ² akshoyp@gmail.com

Article History: Received 10 January 2020; Accepted 01 May 2020

Contents

Introduction	. 530
Preliminaries	. 531
Some geometric properties	. 531
Conformally flat and Conformally conservative M	
Ricci-pseudosymmetric <i>MS</i> (<i>QE</i>) _n	. 533
General relativistic viscous fluid spacetime adminerat flux [6]	-
References	. 534
	PreliminariesSome geometric propertiesConformally flat and Conformally conservative M Ricci-pseudosymmetric $MS(QE)_n$ General relativistic viscous fluid spacetime adminent flux [6]

1. Introduction

Let $U_s = \{x \in M : S \neq \frac{r}{n}g, atx\}$, where *S* and *r* are respectively the Ricci tensor and scalar curvature of a Riemannian manifold $(M^n, g), (n \ge 3)$. Then the manifold is said to be a quasi Einstein [4] manifold if on U_s , we have

 $S-ag=bA\otimes A,$

where A is a 1-form on U_s and a, b are some functions on U_s . It is clear that the 1-form A as well as the function b are non zero at every point on U_s . From the above definition it follows that every Einstein manifold is quasi- Einstein. The scalars *a*, *b* are known as the associated scalars of the manifold. Also the 1-form *A* is called the associated 1-form of the manifold defined by g(X,U) = A(X) for any vector field *X*; *U* being a unit vector field, called the generator of the manifold. Such an n-dimensional quasi Einstein manifold is denoted by $(QE)_n$. There are many generalization of $(QE)_n$ in literature([1], [2], [3], [4], [5], [7]). One of them is mixed super quasi-Einstein manifold introduced by A. Bhattacharaya, M. Tarafdar and D. Debnath [2]. According to them a non flat Riemannian manifold is said to be *mixed super quasi-Einstein manifold* if it satisfies the condition

©2020 MJM.

$$S(X,Y) = ag(X,Y)$$
(1.1)
+ $bA(X)A(Y) + cb(X)B(Y)$
+ $d[A(X)B(Y) + A(Y)B(X)]$
+ $eD(X,Y),$

where *a*, *b*, *c*, *d*, *e* are real valued functions on (M^n, g) of which $b \neq 0, c \neq 0, d \neq 0, e \neq 0$ and *A*, *B* are two non zero 1-forms such that

g(X,U) = A(X), g(X,V) = B(X), g(U,U) = 1,g(V,V) = 1, g(U,V) = 0, *D* is a symmetric tensor of type (0,2) with zero trace such that $D(X,U) = 0 \forall X \in \chi(M)$. Here a,b,c,d,e are called the associated scalars, A,B are called the main and the auxilliary generators and D is called the structure tensor. Such a space is denoted by $MS(QE)_n$. The paper is organized as follows. Section 2 is concerned with preliminaries. In section 3 we have obtained some geometric properties of a $MS(QE)_n$. Section 4 deals with conformally flat and conservative $MS(QE)_n$. In section 5 we have studied some properties of pseudo Ricci symmetric $MS(QE)_n$. In the last section 6 we studied viscous fluid $(MSQE)_n$ spacetimes.

2. Preliminaries

Putting $X = Y = e_i$ where $\{e_i : 1 \le i \le n\}$ is an orthonormal basis of the tangent space of the manifold in (1.1) and summing from 1 to *n* we get,

$$r = na + b + c. \tag{2.1}$$

Putting X = Y = U in (1.1)

$$S(U,U) = a + b. \tag{2.2}$$

Setting X = Y = V in (1.1) we get,

$$S(V,V) = a + c + eD(V.V).$$
 (2.3)

Again putting X = U, Y = V in (1.1) we get,

$$S(U,V) = d. \tag{2.4}$$

From above we ca state the following

Theorem 2.1. In $MS(QE)_n$ the scalars a+b and a+c+eD(V,V) are the Ricci curvatures along the generators U and V respectively.

Suppose $S(X,Y) = g(QX,Y), D(X,Y) = g(LX,Y), s^2 = \sum_{i=1}^{n} S(Qe_i, e_i), f^2 = \sum_{i=1}^{n} D(Le_i, e_i)$ From (1.1) we get

$$\sum_{i=1}^{n} S(Qe_{i}, e_{i}) = a(an+b+c)$$

$$+ b(a+b) + c(a+c+eD(V,V))$$

$$+ d(d+d) + e\sum_{i=1}^{n} D(Qe_{i}, e_{i})$$

$$= (n-2)a^{2} + (a+b)^{2} + (a+c)^{2} + 2d^{2}$$

$$+ ceD(V,V) + e\sum_{i=1}^{n} S(Le_{i}, e_{i}).$$
(2.5)

Again from (1.1)

$$\sum_{i=1}^{n} S(Le_{i}, e_{i}) = cD(V, V) + e \sum_{i=1}^{n} D(Le_{i}, e_{i})$$
(2.6)
$$= cD(V, V) + ef^{2}$$

Using (2.5) and (2.6) we get

$$s^{2} = (n-2)a^{2} + (a+b)^{2} + (a+c)^{2} + 2d^{2}$$
(2.7)
+ $ceD(V,V) + ceD(V,V) + e^{2}f^{2}.$

From (2.3) it is clear that

$$s^{2} = na^{2} + b^{2} + c^{2} + 2ab + 2ac$$

$$+ 2ceD(V,V) + e^{2}f^{2} + 2d^{2}$$

$$= na^{2} + b^{2} + c^{2} + 2ab + 2ac$$

$$+ 2ce(S(V,V) - a - c) + e^{2}f^{2} + 2d$$

$$= na^{2} + b^{2} - c^{2} + 2d^{2} + 2cS(V,V) + e^{2}f^{2}.$$
(2.8)

Now, $e > \frac{s}{f}$ (res < 0 or = 0) according as $na^2 + b^2 - c^2 + 2d^2 + 2cS(V,V) < 0$ (res > or = 0). Hence we can state the following

Theorem 2.2. In a $MS(QE)_n$ (n > 2) the associated scalar *e* is less than or equal to or greater than the ratio which the length of the Ricci tensor S bears to the length of the structure tensor D according as, $na^2 + b^2 - c^2 + 2d^2 + 2cS(V,V) > 0$ (res = 0or < 0).

3. Some geometric properties

Let us suppose that in a $MS(QE)_n$ the generator U is parallel vector field. Then $\nabla_X U = 0 \ \forall X$. So R(X,Y)U = 0and $S(X,U) = 0 \ \forall X$

From (1.1), $0 = (a+b)A(X) + dB(X) \forall X$

Putting X = V we obtain d = 0. Again putting X = U we obtain a + b = 0. Hence we have the following

Theorem 3.1. If the generator U of a $MS(QE)_n$ is a parallel vector vector field then either d = 0 or a + b = 0.

Theorem 3.2. In a $MS(QE)_n QU, V$ are orthogonal iff d = 0.

Proof. S(U,V) = d i.e., g(QU,V) = d, which is 0 if and only if d = 0. Hence the theorem.

Theorem 3.3. In a $MS(QE)_n QV$, V are orthogonal iff a + c + eD(V, V) = 0.

Proof.

$$\begin{split} S(V,V) &= a + c + eD(V,V) \quad \text{i.e.,} \\ g(QV,V) &= a + c + eD(V,V). \\ \text{So } g(QV,V) &= 0, \text{iff } a + c + eD(V,V) = 0. \end{split}$$

Hence the theorem.

Theorem 3.4. An $MS(QE)_n$ is a $P(GQE)_n$ if either of the vector field is a parallel vector field.

Proof. If the vector field U is a parallel vector field, then we have $\nabla_X U = 0 \ \forall X$. So R(X,Y)U = 0 and eventually $S(X,U) = 0 \ \forall X$

From (1.1), $0 = (a+b)A(X) + dB(X), \forall X$

Putting X = V we obtain d = 0, i.e the manifold is $P(GQE)_n$ [6].

Again if the vector field *V* is parallel then R(X,Y)V = 0, consequently S(Y,V) = 0 i, $e^{aB(Y)} + e^{B(Y)} + d[A(Y)] + e^{D(Y,V)} = 0$. Putting Y = U we get d = 0. i, $e^{aB(Y)} + d[A(Y)] + e^{A(Y)} = 0$. Hence the theorem.

Theorem 3.5. In a $MS(QE)_n$ 0 is an eigen value of L in the direction of the eigen vector Ui, EU = 0, where L is the symmetric endomorphism of the tangent space at any point of the manifold corresponding to the structure tensor D.

Proof. We have $g(LX,Y) = D(X,Y) \forall X, Y \in \chi(M)$. Putting X = U, we get, $g(LU,Y) = D(U,Y) = 0 \forall Y$. So LU = 0 i,e 0 is an eigen value of *L* in the direction of *U*.

We now consider a compact orientable $MS(QE)_n$ (n > 2) without boundary. From (1.1) we get,

$$S(X,X) = ag(X,X)$$
(3.1)
+ $bA(X)A(X) + cB(X)B(X)$
+ $d[A(X)B(X) + A(X)B(X)] + eD(X,X).$

Let us assume that θ_u be the angel between U and any vector X, θ_v be the angel between V and any vector field X then

$$\cos \theta_{u} = \frac{g(X,U)}{g(X,X)^{\frac{1}{2}}}, \cos \theta_{v} = \frac{g(X,V)}{g(X,X)^{\frac{1}{2}}}$$
(3.2)

Further we assume that $\theta_u \ge \theta_v$, then we have $\cos \theta_u \ge \cos \theta_v$, i.e., $g(X,U) \ge g(X,V)$. Therefore,

$$S(X,X) \ge [a+b+c+2d][g(X,U)]^2$$

when a, b, c, d, e, D(X, X) are positive.

Definition 3.6. A vector field H in a Riemannian manifold (M^n,g) (n > 2) is said to be harmonic [8] if $d\tau = 0$ and $\delta\tau = 0$ where $\tau(X) = g(X,H) \ \forall X$.

It is known from a compact orientable Riemannian manifold the following relations holds $\int_M [S(X,X) - \frac{1}{2}(d\tau)^2 + (\nabla X)^2 - (\delta \tau)^2] dv = 0$, for any vector field X where dv denotes the volume element of M. Now let $X \in \chi(M)$ be harmonic vector field then $\int_M [S(X,X) + (\nabla X)^2] dv = 0$ for any X. Hence if each a, b, c, d, e, D(X,X) is positive then $\int_M [(a+b+c+2d)g(X,U)^2 + (\nabla X)^2] dv \ge 0$, by virtue of a+b+c+2d > 0, g(X,U) = 0 and $\nabla X = 0$ for any vector field X. This follows that X is orthogonal to U and X is a parallel vector field. Similarly if $\theta_v \ge \theta_u$, assuming as before it can be shown g(X,V) = 0 and $\nabla X = 0$ for any vector field X. Thus we have the following theorem

Theorem 3.7. In a compact orientable $MS(QE)_n$ (n > 2) without boundary any harmonic vector field X is parallel and orthogonal to one of the generators of the manifold which makes greatest angle with vector X provided a, b, c, d, e, D(X, X) are positive scalars.

Let us now investigate whether a $MS(QE)_n$ (n > 2) is projectively flat or not.

Theorem 3.8. A $MS(QE)_n$ (n > 2) can not be projectively *flat.*

Proof. Let if possible a $MS(QE)_n(n > 2)$ is projectively flat. Then the Riemannian curvature tensor is given by

$$R(X,Y,Z,W) = \frac{1}{n-1} [S(Y,Z)g(X,W) - S(X,Z)g(Y,W)].$$

Contracting Y and Z and putting W = U we get

$$S(X,U) = \frac{1}{n-1} [rA(X) - S(X,U)].$$

Or,

$$S(X,U) = \frac{r}{n}A(X).$$

Putting X = V, in above we get d = 0, a contradiction. Hence the theorem.

4. Conformally flat and Conformally conservative $MS(QE)_n$

Theorem 4.1. If the main generator of a conformally flat $MS(QE)_n$ is parallel vector field then it is a $(GQE)_n$

Proof. We recall that in a $MS(QE)_n$ the scalar curvature is given by r = an + b + c. Now if the manifold is conformally flat then its Riemannian curvature tensor is given by

$$R[X,Y,Z,W) = \frac{1}{n-2} [S(Y,Z)g(X,W)$$
(4.1)
- $S(X,Z)g(Y,W) + S(X,W)g(Y,Z)$
- $S(Y,W)g(X,Z)] - \frac{r}{(n-1)(n-2)} [g(Y,Z)g(X,W)$
- $g(X,Z)g(Y,W)].$

Now using definition of $MS(QE)_n$ and using r = an + b + cand putting Z = U we get

$$R(X,Y)U = \frac{a+b}{n-1}[A(Y)X - A(X)Y]$$
(4.2)
- $\frac{c}{n-2}[VB(Y) + \frac{1}{(n-1)}[UA(Y) - Y]$
+ $\frac{d}{n-2}[B(Y)X - B(X)Y + B(X)A(Y)U - B(Y)A(X)U]$
+ $\frac{e}{n-2}[A(Y)LX - A(X)LY],$

where g(LX, Y) = D(X, Y). If *U* is a parallel vector field then R(X, Y)U = 0, a+b = d = 0, so the last equation becomes

$$\frac{c}{n-2}[VB(Y) + \frac{1}{(n-1)}[UA(Y) - Y] \qquad (4.3)$$

+ $\frac{e}{n-2}[A(Y)LX - A(X)LY].$

Putting Y = U we get

$$e[LX - A(X)LU] = 0.$$
 (4.4)

But LU = 0, so we have $eLX = 0 \forall X$, Hence e = 0. So, if U is parallel vector field in a conformally flat $MS(QE)_n$, then a + b = d = e = 0, i,e the manifold reduces to $(GQE)_n$.

Theorem 4.2. A necessary condition for a $MS(QE)_n$, to be conformally conservative is (d((n-2)a + (2n-3)b + c)(V) = 2(n-1)(dd)(U)

Proof. A Riemannian manifold is said to be conformally conservative if the the divergence of its conformal curvature tensor is zero.i,e

$$(\nabla_X S)(Y,Z) - (\nabla_Z S)(Y,X)$$
(4.5)
= $\frac{1}{2(n-1)} [dr(X)g(Y,Z) - (dr)(Z)g(X,Y)].$

Now putting X = Y = U and Z = V, in above we get,

$$(\nabla_U S)(U,V) - (\nabla_V S)(U,U))$$
(4.6)
= $\frac{1}{2(n-1)} [dr(U)g(U,V) - (dr)(V)g(U,U)].$

Now using the relations S(U,V) = d, S(U,U) = a + b and r = an + b + c in above we get

$$(dd)(U) - d(a+b)(V) = \frac{1}{2(n-1)} [n(da)(V) + (db)(V) + (dc)(V)].$$

On simplification

$$(dd)(U) - d(a+b)(V)$$

$$= \frac{1}{2(n-1)} [n(da)(V) + (db)(V) + (dc)(V)],$$
(4.7)

or

$$2(n-1)(dd)(U) - 2(n-1)d(a+b)(V) = -[n(da)(V) + (db)(V) + (dc)(V)],$$

or

$$2(n-1)(dd)(U)$$
(4.8)
= $(d((n-2)a + (2n-3)b + c)(V).$

Hence the theorem

5. Ricci-pseudosymmetric $MS(QE)_n$

An n-dimensional Riemannian manifold (M^n, g) is called Ricci-pseudosymmetric if ,

$$(R(X,Y).S)(Z,W) = L_s Q(g,S)(Z,W;X,Y)$$
(5.1)

holds on $U_s = \{x \in M : S \neq \frac{r}{n}g, atx\}$ and L_s is a certain function on U_s . Then we have,

$$S(R(X,Y)Z,W) + S(Z,R(X,Y)W)$$
(5.2)
= $L_s[g(Y,Z)S(X,W) - g(X,Z)S(Y,W)$
+ $g(Y,W)S(Z,X) - g(X,W)S(Y,Z)]$

holds.

Theorem 5.1. In a Ricci-pseudosymmetric $MS(QE)_n$ $n \ge 3$ the following results holds.

$$R(V,U,U,V) = L_s, \tag{5.3}$$

$$D(R(V,U)V,V) = 0,$$
 (5.4)

$$L_s = \frac{D(R(U,V)V,V)}{D(V,V)},$$
(5.5)

provided $D(V,V) \neq 0$.

Proof. We consider Ricci-pseudosymmetric $MS(QE)_n$. Then we have

$$S(R(X,Y)Z,W) + S(Z,R(X,Y)W)$$
(5.6)
= $L_s[g(Y,Z)S(X,W) - g(X,Z)S(Y,W)$
+ $g(Y,W)S(Z,X) - g(X,W)S(Y,Z)],$

or

$$\begin{split} b[A(R(X,Y)Z)A(W) + A(Z)A(R(X,Y)W)] (5.7) \\ + & c[B(R(X,Y)Z)B(W) + B(Z)B(R(X,Y)W)] \\ + & d[A(R(X,Y)Z)B(W) + A(W)B(R(X,Y)Z) \\ + & A(Z)B(R(X,Y)W) + A(R(X,Y)W)B(Z)] \\ + & e[D(R(X,Y)Z,W) + D(Z,R(X,Y)W)] \\ = & L_s[b\{g(Y,Z)A(X)A(W) - g(X,Z)A(Y)A(W) \\ + & g(Y,W)A(Z)A(X) - g(X,W)A(Y)A(Z)\} \\ + & c\{g(Y,Z)B(X)B(W) - g(X,Z)B(Y)B(W) \\ + & g(Y,W)B(Z)B(X) - g(X,W)B(Y)B(Z)\} \\ + & d\{g(Y,Z)[A(X)B(W) + A(W)B(X)] \\ - & g(X,Z)[A(Y)B(W) + A(W)B(Y)] \\ + & g(Y,W)[A(Z)B(X) + A(X)B(Z)] \\ - & g(X,W)[A(Y)B(Z) + A(Z)B(Y)]\} \\ + & e\{g(Y,Z)D(X,W) - g(X,Z)D(Y,W) \\ + & g(Y,W)D(X,Z) - g(X,W)D(Y,Z)\}]. \end{split}$$

Putting Z = U and W = V in (5.7), we get

$$b[R(X,Y,V,U)$$
(5.8)
- $L_s\{A(X)B(Y) - A(Y)B(X)\}]$
+ $c[R(X,Y,U,V) - L_s\{A(Y)B(X) - A(X)B(Y)\}]$
+ $e[D(R(X,Y)U,V) - L_s\{A(Y)D(X,V)$
- $A(X)D(Y,V)\}] = 0.$

Putting Z = W = U in (5.7) we get

$$d[R(X,Y)U,V) - L_s\{A(Y)B(X) - A(X)B(Y)\}] = 0.$$
(5.9)

Since, $d \neq 0$ we get

$$R(X,Y)U,V) - L_{s}\{A(Y)B(X) - A(X)B(Y)\} = 0. \quad (5.10)$$

Similarly, if we take Z = W = V in (5.7) we get,

$$d[R(X,Y)V,V) - L_{s}\{A(Y)B(X)$$

$$- A(X)B(Y)\}] - e[D(R(X,Y)V,V)$$

$$- L_{s}\{B(Y)D(X,V) - B(X)D(Y,V)\}] = 0.$$
(5.11)

Using (5.9) we get

$$e[D(R(X,Y)V,V) - L_s\{B(Y)D(X,V) - B(X)D(Y,V)\}] = 0.$$

Since $e \neq 0$, we have

$$D(R(X,Y)V,V)$$
(5.12)
- $L_s\{[B(Y)D(X,V) - B(X)D(Y,V)\} = 0.$

Putting X = V, Y = U in (5.10) we get (5.3). Again putting X = V, Y = U in (5.12) we get (5.4). Using (5.12) in (5.11) we get

$$D(R(X,Y)U,V)$$
(5.13)
- $L_s\{A(Y)D(X,V) - A(X)D(Y,V)\} = 0.$

Putting X = U, Y = V in above we get (5.5).

6. General relativistic viscous fluid spacetime admitting heat flux [6]

Let (M^n, g) be a connected semi-Riemannian viscous fluid spactime admitting heat flux and satisfying Einstein's equation with a cosmoloical constant λ . Also let U be the unit timelike velocity vector field, V be the unit heat flux vector and D be the anisotropic pressure tensor of the fluid. The we have

$$g(U,U) = -1, g(V,V) = 1, g(U,V) = 0$$
 (6.1)

$$D(X,Y) = D(Y,X), Tr.D = 0, D(X,U) = 0 \forall X.$$
 (6.2)

Let

$$g(X,U) = A(X), g(X,V) = B(X) \ \forall X.$$
 (6.3)

Also let T be the energy-momentum tensor of type (0,2) describing the matter distribution of such fluid and it be of the following form

$$T(X,Y) = pg(X,Y)$$
(6.4)
+ $(\sigma + p)A(X)A(Y) + B(X)B(Y)$
+ $[A(X)B(Y) + A(Y)B(X)] + D(X,Y),$

where σ , *p* are the energy density and isotropic pressure respectively. General relativity flows from Einstein equation given by

$$S(X,Y) = -\frac{r}{2}g(X,Y) + \lambda g(X,Y) = kT(X,Y), \quad (6.5)$$

for all vector fields *X*, *Y*. *S* is the Ricci tensor of type of type (0,2) and *r* is the scalar curvature, λ is a cosmological constant. Thus by virtue of (6.4) above equation can be written as

$$S(X,Y) - \frac{r}{2}g(X,Y) + \lambda g(X,Y)$$
(6.6)
= $k[pg(X,Y) + (\sigma + p)A(X)A(Y) + B(X)B(Y)$
+ $\{A(X)B(Y) + A(Y)B(X)\} + D(X,Y)].$

Putting this in (1.1) we get

$$\begin{aligned} &\frac{2kp - 2\lambda + 2a + b + c}{2}g(X,Y) & (6.7) \\ &= & [b - k(\sigma + p)]A(X)A(Y) + (c - k)B(X)B(Y) \\ &+ & (d - k)[A(X)B(Y) + A(Y)B(X)] + (e - k)D(X,Y). \end{aligned}$$

Putting X = U, Y = V in above we get d = kPutting X = U, Y = U we get

$$\sigma = \frac{2a+3b+c-2\lambda}{2k},\tag{6.8}$$

or,

$$\sigma = \frac{2a+3b+c-2\lambda}{2d}.$$
(6.9)

Again contracting (6.6) we get

$$r - 2r + 4\lambda = k[3p - \sigma + 1),$$
 (6.10)

or,

$$p = \frac{6\lambda - 6a + b - c - 2d}{6d}.$$
(6.11)

Hence we can state the following

Theorem 6.1. If a viscous fluid $MS(QE)_4$ spacetime admitting heat flux obeys Einstein equation with cosmological constant then none of the energy density and isotropic pressure of the fluid can be a constant.

Now if the associated scalars a, b, c, d are constants with d > 0, then from (6.8) and (6.9) σ , p are constants. Since $\sigma > 0$, p > 0 we have from (6.8) and (6.9) we get $\lambda < \frac{2a+3b+c}{2}$ and $\lambda > \frac{6a-b+c-2d}{6}$. And hence

$$\frac{6a - b + c - 2d}{6} < \lambda < \frac{2a + 3b + c}{2}.$$
(6.12)

Thus we have the following

Theorem 6.2. If a viscous fluid $MS(QE)_4$ spacetime admitting heat flux obeys Einstein equation with cosmological constant λ , then λ obeys the above inequality.

References

- [1] A. Bhattacharaya and T. De, On mixed super quasi-Einstein manifolds, *Diff. Geom-Dyn, Syst.*, 9(2007), 40– 46.
- [2] A. Bhattacharya, M. Tarafdar and D. Debnath, On Mixed Super Quasi Einstein Manifold, *Differential Geometry Dynamical System*, 10(2008), 44–57.
- [3] M. C. Chaki, On super quasi-Einstein manifolds, *Publ. Math. Debrecen*, 64(3-4)(2004), 481–485.
- [4] M. C. Chaki and R. K. Maity, On quasi-Einstein manifolds, *Publ. Math. Debrecen*, 57(2000), 297–306.
- [5] B. Pal, A. Bhattacharya and M. Tarafdar, On mixed super quasi-Einstein viscous fluid space time, *Tensor(N.S)*, 74(2013), 164–171.
- [6] A. A. Shaikh and S. K. Jana, On Pseudo Generalized Quasi- Einstein Manifolds, *Tamkang Journal of Mathematics*, 39(1) (2008), 9–24.
- [7] A. A. Shaikh and S. K. Hui, Some classes of generalized quasi Einstein manifolds, *Commun. Korean Math.Soc.*, 24(3) (2009), 415–424.
- [8] K. Yano., Integral Formulas in Riemannian Geometry, Marcel Dekker, Newyork 1970.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

