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A note on mixed super quasi Einstein manifold
Ananta Patra1 and Akshoy Patra2*

Abstract
Mixed super quasi Einstein manifold (MS(QE)n) is a generalization of Einstein manifold. In this paper we have
studied some geometric properties of MS(QE)n. Also we have studied MS(QE)n)satisfying some curvature re-
striction and obtained the form of Riemannian curvature tensor. We have studied conformally flat and conformally
conservative MS(QE)n. We have deduced a necessary condition for a MS(QE)n, to be conformally conservative.
Some basic properties of MS(QE)n on viscous fluid MS(QE)n spacetimes are discussed. We have proved that if
a viscous fluid MS(QE)n spacetime admitting heat flux obeys Einstein equation with a cosmological constant
then none of the energy density and isotropic pressure of the fluid can be a constant.
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1. Introduction
Let Us = {x ∈M : S 6= r

n g,atx}, where S and r are respec-
tively the Ricci tensor and scalar curvature of a Riemannian
manifold (Mn,g), (n≥ 3). Then the manifold is said to be a
quasi Einstein [4] manifold if on Us, we have

S−ag = bA⊗A,

where A is a 1-form on Us and a, b are some functions on Us.
It is clear that the 1-form A as well as the function b are non

zero at every point on Us. From the above definition it follows
that every Einstein manifold is quasi- Einstein. The scalars a,
b are known as the associated scalars of the manifold. Also
the 1-form A is called the associated 1-form of the manifold
defined by g(X ,U) = A(X) for any vector field X ; U being a
unit vector field, called the generator of the manifold. Such an
n-dimensional quasi Einstein manifold is denoted by (QE)n.
There are many generalization of (QE)n in literature([1], [2],
[3], [4], [5], [7]). One of them is mixed super quasi-Einstein
manifold introduced by A. Bhattacharaya, M. Tarafdar and
D. Debnath [2]. According to them a non flat Riemannian
manifold is said to be mixed super quasi-Einstein manifold if
it satisfies the condition

S(X ,Y ) = ag(X ,Y ) (1.1)
+ bA(X)A(Y )+ cb(X)B(Y )

+ d[A(X)B(Y )+A(Y )B(X)]

+ eD(X ,Y ),

where a, b ,c ,d, e are real valued functions on (Mn,g) of
which b 6= 0,c 6= 0,d 6= 0,e 6= 0 and A,B are two non zero 1-
forms such that
g(X ,U) = A(X),g(X ,V ) = B(X),g(U,U) = 1,
g(V,V ) = 1,g(U,V ) = 0 , D is a symmetric tensor of type
(0,2) with zero trace such that D(X ,U) = 0 ∀X ∈ χ(M). Here
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a,b,c,d,e are called the associated scalars, A,B are called
the main and the auxilliary generators and D is called the
structure tensor. Such a space is denoted by MS(QE)n. The
paper is organized as follows. Section 2 is concerned with
preliminaries. In section 3 we have obtained some geometric
properties of a MS(QE)n. Section 4 deals with conformally
flat and conservative MS(QE)n. In section 5 we have studied
some properties of pseudo Ricci symmetric MS(QE)n. In the
last section 6 we studied viscous fluid (MSQE)n spacetimes.

2. Preliminaries
Putting X = Y = ei where {ei : 1≤ i≤ n} is an orthonor-

mal basis of the tangent space of the manifold in (1.1) and
summing from 1 to n we get,

r = na+b+ c. (2.1)

Putting X = Y =U in (1.1)

S(U,U) = a+b. (2.2)

Setting X = Y =V in (1.1) we get,

S(V,V ) = a+ c+ eD(V.V ). (2.3)

Again putting X =U,Y =V in (1.1) we get,

S(U,V ) = d. (2.4)

From above we ca state the following

Theorem 2.1. In MS(QE)n the scalars a+b and a+c+eD(V,V)
are the Ricci curvatures along the generators U and V respec-
tively.

Suppose S(X ,Y ) = g(QX ,Y ),D(X ,Y ) = g(LX ,Y ), s2 =

∑
n
1 S(Qei,ei), f 2 = ∑

n
1 D(Lei,ei)

From (1.1) we get
n

∑
1

S(Qei,ei) = a(an+b+ c) (2.5)

+ b(a+b)+ c(a+ c+ eD(V,V ))

+ d(d +d)+ e
n

∑
1

D(Qei,ei)

= (n−2)a2 +(a+b)2 +(a+ c)2 +2d2

+ ceD(V,V )+ e
n

∑
1

S(Lei,ei).

Again from (1.1)
n

∑
1

S(Lei,ei) = cD(V,V )+ e
n

∑
1

D(Lei,ei) (2.6)

= cD(V,V )+ e f 2

Using (2.5) and (2.6) we get

s2 = (n−2)a2 +(a+b)2 +(a+ c)2 +2d2 (2.7)
+ ceD(V,V )+ ceD(V,V )+ e2 f 2.

From (2.3) it is clear that

s2 = na2 +b2 + c2 +2ab+2ac (2.8)
+ 2ceD(V,V )+ e2 f 2 +2d2

= na2 +b2 + c2 +2ab+2ac

+ 2ce(S(V,V )−a− c)+ e2 f 2 +2d

= na2 +b2− c2 +2d2 +2cS(V,V )+ e2 f 2.

Now, e > s
f (res < 0or = 0) according as na2 + b2− c2 +

2d2 +2cS(V,V )< 0 (res > or = 0). Hence we can state the
following

Theorem 2.2. In a MS(QE)n (n > 2) the associated scalar
e is less than or equal to or greater than the ratio which the
length of the Ricci tensor S bears to the length of the structure
tensor D according as, na2+b2−c2+2d2+2cS(V,V )>
0 (res = 0or < 0).

3. Some geometric properties

Let us suppose that in a MS(QE)n the generator U is
parallel vector field . Then ∇XU = 0 ∀X . So R(X ,Y )U = 0
and S(X ,U) = 0 ∀X
From (1.1), 0 = (a+b)A(X)+dB(X) ∀X
Putting X = V we obtain d = 0. Again putting X = U we
obtain a+b = 0. Hence we have the following

Theorem 3.1. If the generator U of a MS(QE)n is a parallel
vector vector field then either d = 0 or a+b = 0.

Theorem 3.2. In a MS(QE)n QU,V are orthogonal iff d = 0.

Proof. S(U,V ) = d i.e., g(QU,V ) = d, which is 0 if and only
if d = 0. Hence the theorem.

Theorem 3.3. In a MS(QE)n QV, V are orthogonal iff a+c+
eD(V,V ) = 0.

Proof.

S(V,V ) = a+ c+ eD(V,V ) i.e.,
g(QV,V ) = a+ c+ eD(V,V ).

So g(QV,V ) = 0, iff a+ c+ eD(V,V ) = 0.

Hence the theorem.

Theorem 3.4. An MS(QE)n is a P(GQE)n if either of the
vector field is a parallel vector field.

Proof. If the vector field U is a parallel vector field, then we
have ∇XU = 0 ∀X .So R(X ,Y )U = 0 and eventually S(X ,U)=
0 ∀X
From (1.1), 0 = (a+b)A(X)+dB(X), ∀X
Putting X =V we obtain d = 0, i,e the manifold is P(GQE)n
[6] .
Again if the vector field V is parallel then R(X ,Y )V = 0, con-
sequently S(Y,V )= 0 i,e aB(Y )+cB(Y )+d[A(Y )]+eD(Y,V )
= 0. Putting Y =Uwe get d = 0. i,e the manifold is P(GQE)n
. Hence the theorem.
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Theorem 3.5. In a MS(QE)n 0 is an eigen value of L in the
direction of the eigen vector Ui,e LU = 0, where L is the
symmetric endomorphism of the tangent space at any point of
the manifold corresponding to the structure tensor D .

Proof. We have g(LX ,Y ) = D(X ,Y ) ∀X ,Y ∈ χ(M). Putting
X =U , we get, g(LU,Y ) = D(U,Y ) = 0 ∀Y . So LU = 0 i,e 0
is an eigen value of L in the direction of U .

We now consider a compact orientable MS(QE)n (n > 2)
without boundary. From (1.1) we get,

S(X ,X) = ag(X ,X) (3.1)
+ bA(X)A(X)+ cB(X)B(X)

+ d[A(X)B(X)+A(X)B(X)]+ eD(X ,X).

Let us assume that θu be the angel between U and any vector
X , θv be the angel between V and any vector field X then

cosθu =
g(X ,U)

g(X ,X)
1
2
,cosθv =

g(X ,V )

g(X ,X)
1
2

(3.2)

Further we assume that θu ≥ θv, then we have cosθu ≥ cosθv,
i.e., g(X ,U)≥ g(X ,V ). Therefore,

S(X ,X)≥ [a+b+ c+2d][g(X ,U)]2,

when a,b,c,d,e,D(X ,X) are positive.

Definition 3.6. A vector field H in a Riemannian manifold
(Mn,g) (n > 2) is said to be harmonic [8] if dτ = 0 and
δτ = 0 where τ(X) = g(X ,H) ∀X.

It is known from a compact orientable Riemannian man-
ifold the following relations holds

∫
M[S(X ,X)− 1

2 (dτ)2 +

(∇X)2− (δτ)2]dv = 0, for any vector field X where dv de-
notes the volume element of M . Now let X ∈ χ(M) be
harmonic vector field then

∫
M[S(X ,X) + (∇X)2]dv = 0 for

any X . Hence if each a,b,c,d,e,D(X ,X) is positive then∫
M[(a+ b+ c+ 2d)g(X ,U)2 + (∇X)2]dv ≥ 0, by virtue of

a+ b+ c+ 2d > 0, g(X ,U) = 0 and ∇X = 0 for any vector
field X . This follows that X is orthogonal to U and X is a
parallel vector field. Similarly if θv ≥ θu, assuming as before
it can be shown g(X ,V ) = 0 and ∇X = 0 for any vector field
X . Thus we have the following theorem

Theorem 3.7. In a compact orientable MS(QE)n (n > 2)
without boundary any harmonic vector field X is parallel
and orthogonal to one of the generators of the manifold which
makes greatest angle with vector X provided a,b,c,d,e,D(X ,X)
are positive scalars.

Let us now investigate whether a MS(QE)n (n > 2) is
projectively flat or not.

Theorem 3.8. A MS(QE)n (n > 2) can not be projectively
flat.

Proof. Let if possible a MS(QE)n(n > 2) is projectively flat.
Then the Riemannian curvature tensor is given by

R(X ,Y,Z,W ) =
1

n−1
[S(Y,Z)g(X ,W )−S(X ,Z)g(Y,W )].

Contracting Y and Z and putting W =U we get

S(X ,U) =
1

n−1
[rA(X)−S(X ,U)].

Or,

S(X ,U) =
r
n

A(X).

Putting X =V , in above we get d = 0, a contradiction. Hence
the theorem.

4. Conformally flat and Conformally
conservative MS(QE)n

Theorem 4.1. If the main generator of a conformally flat
MS(QE)n is parallel vector field then it is a (GQE)n

Proof. We recall that in a MS(QE)n the scalar curvature is
given by r = an+b+ c. Now if the manifold is conformally
flat then its Riemannian curvature tensor is given by

R[X ,Y,Z,W ) =
1

n−2
[S(Y,Z)g(X ,W ) (4.1)

− S(X ,Z)g(Y,W )+S(X ,W )g(Y,Z)

− S(Y,W )g(X ,Z)]− r
(n−1)(n−2)

[g(Y,Z)g(X ,W )

− g(X ,Z)g(Y,W )].

Now using definition of MS(QE)n and using r = an+b+ c
and putting Z =U we get

R(X ,Y )U =
a+b
n−1

[A(Y )X−A(X)Y ] (4.2)

− c
n−2

[V B(Y )+
1

(n−1)
[UA(Y )−Y ]

+
d

n−2
[B(Y )X−B(X)Y +B(X)A(Y )U−B(Y )A(X)U ]

+
e

n−2
[A(Y )LX−A(X)LY ],

where g(LX ,Y ) = D(X ,Y ). If U is a parallel vector field then
R(X ,Y )U = 0, a+b = d = 0, so the last equation becomes

c
n−2

[V B(Y )+
1

(n−1)
[UA(Y )−Y ] (4.3)

+
e

n−2
[A(Y )LX−A(X)LY ].

Putting Y =U we get

e[LX−A(X)LU ] = 0. (4.4)

But LU = 0, so we have eLX = 0 ∀X , Hence e = 0. So, if U
is parallel vector field in a conformally flat MS(QE)n, then
a+b = d = e = 0, i,e the manifold reduces to (GQE)n.
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Theorem 4.2. A necessary condition for a MS(QE)n, to
be conformally conservative is (d((n− 2)a + (2n− 3)b +
c)(V ) = 2(n−1)(dd)(U)

Proof. A Riemannian manifold is said to be conformally con-
servative if the the divergence of its conformal curvature ten-
sor is zero.i,e

(∇X S)(Y,Z)− (∇ZS)(Y,X) (4.5)

=
1

2(n−1)
[dr(X)g(Y,Z)− (dr)(Z)g(X ,Y )].

Now putting X = Y =U and Z =V ,in above we get,

(∇U S)(U,V )− (∇V S)(U,U)) (4.6)

=
1

2(n−1)
[dr(U)g(U,V )− (dr)(V )g(U,U)].

Now using the relations S(U,V ) = d, S(U,U) = a+ b and
r = an+b+ c in above we get

(dd)(U)−d(a+b)(V )

=
1

2(n−1)
[n(da)(V )+(db)(V )+(dc)(V )].

On simplification

(dd)(U)−d(a+b)(V ) (4.7)

=
1

2(n−1)
[n(da)(V )+(db)(V )+(dc)(V )],

or

2(n−1)(dd)(U)−2(n−1)d(a+b)(V )

= −[n(da)(V )+(db)(V )+(dc)(V )],

or

2(n−1)(dd)(U) (4.8)
= (d((n−2)a+(2n−3)b+ c)(V ).

Hence the theorem

5. Ricci-pseudosymmetric MS(QE)n

An n-dimensional Riemannian manifold (Mn,g) is called
Ricci-pseudosymmetric if ,

(R(X ,Y ).S)(Z,W ) = LsQ(g,S)(Z,W ;X ,Y ) (5.1)

holds on Us = {x ∈M : S 6= r
n g,atx} and Ls is a certain func-

tion on Us. Then we have ,

S(R(X ,Y )Z,W )+S(Z,R(X ,Y )W ) (5.2)
= Ls[g(Y,Z)S(X ,W )−g(X ,Z)S(Y,W )

+ g(Y,W )S(Z,X)−g(X ,W )S(Y,Z)]

holds.

Theorem 5.1. In a Ricci-pseudosymmetric MS(QE)n n≥ 3
the following results holds.

R(V,U,U,V ) = Ls, (5.3)

D(R(V,U)V,V ) = 0, (5.4)

Ls =
D(R(U,V )V,V )

D(V,V )
, (5.5)

provided D(V,V ) 6= 0.

Proof. We consider Ricci-pseudosymmetric MS(QE)n. Then
we have

S(R(X ,Y )Z,W )+S(Z,R(X ,Y )W ) (5.6)
= Ls[g(Y,Z)S(X ,W )−g(X ,Z)S(Y,W )

+ g(Y,W )S(Z,X)−g(X ,W )S(Y,Z)],

or

b[A(R(X ,Y )Z)A(W )+A(Z)A(R(X ,Y )W )] (5.7)
+ c[B(R(X ,Y )Z)B(W )+B(Z)B(R(X ,Y )W )]

+ d[A(R(X ,Y )Z)B(W )+A(W )B(R(X ,Y )Z)

+ A(Z)B(R(X ,Y )W )+A(R(X ,Y )W )B(Z)]

+ e[D(R(X ,Y )Z,W )+D(Z,R(X ,Y )W )]

= Ls[b{g(Y,Z)A(X)A(W )−g(X ,Z)A(Y )A(W )

+ g(Y,W )A(Z)A(X)−g(X ,W )A(Y )A(Z)}
+ c{g(Y,Z)B(X)B(W )−g(X ,Z)B(Y )B(W )

+ g(Y,W )B(Z)B(X)−g(X ,W )B(Y )B(Z)}
+ d{g(Y,Z)[A(X)B(W )+A(W )B(X)]

− g(X ,Z)[A(Y )B(W )+A(W )B(Y )]

+ g(Y,W )[A(Z)B(X)+A(X)B(Z)]

− g(X ,W )[A(Y )B(Z)+A(Z)B(Y )]}
+ e{g(Y,Z)D(X ,W )−g(X ,Z)D(Y,W )

+ g(Y,W )D(X ,Z)−g(X ,W )D(Y,Z)}].

Putting Z =U and W =V in (5.7), we get

b[R(X ,Y,V,U) (5.8)
− Ls{A(X)B(Y )−A(Y )B(X)}]
+ c[R(X ,Y,U,V )−Ls{A(Y )B(X)−A(X)B(Y )}]
+ e[D(R(X ,Y )U,V )−Ls{A(Y )D(X ,V )

− A(X)D(Y,V )}] = 0.

Putting Z =W =U in (5.7) we get

d[R(X ,Y )U,V )−Ls{A(Y )B(X)−A(X)B(Y )}] = 0. (5.9)

Since, d 6= 0 we get

R(X ,Y )U,V )−Ls{A(Y )B(X)−A(X)B(Y )}= 0. (5.10)
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Similarly, if we take Z =W =V in (5.7) we get,

d[R(X ,Y )V,V )−Ls{A(Y )B(X) (5.11)
− A(X)B(Y )}]− e[D(R(X ,Y )V,V )

− Ls{B(Y )D(X ,V )−B(X)D(Y,V )}] = 0.

Using (5.9) we get

e[D(R(X ,Y )V,V )

− Ls{B(Y )D(X ,V )−B(X)D(Y,V )}] = 0.

Since e 6= 0, we have

D(R(X ,Y )V,V ) (5.12)
− Ls{[B(Y )D(X ,V )−B(X)D(Y,V )}= 0.

Putting X = V,Y = U in (5.10) we get (5.3). Again putting
X = V,Y = U in (5.12) we get (5.4). Using (5.12) in (5.11)
we get

D(R(X ,Y )U,V ) (5.13)
− Ls{A(Y )D(X ,V )−A(X)D(Y,V )}= 0.

Putting X =U,Y =V in above we get (5.5).

6. General relativistic viscous fluid
spacetime admitting heat flux [6]

Let (Mn,g) be a connected semi-Riemannian viscous fluid
spactime admitting heat flux and satisfying Einstein’s equation
with a cosmoloical constant λ . Also let U be the unit timelike
velocity vector field, V be the unit heat flux vector and D be
the anisotropic pressure tensor of the fluid. The we have

g(U,U) =−1,g(V,V ) = 1,g(U,V ) = 0 (6.1)

D(X ,Y ) = D(Y,X),Tr.D = 0,D(X ,U) = 0 ∀ X . (6.2)

Let

g(X ,U) = A(X),g(X ,V ) = B(X) ∀ X . (6.3)

Also let T be the energy-momentum tensor of type (0,2) de-
scribing the matter distribution of such fluid and it be of the
following form

T (X ,Y ) = pg(X ,Y ) (6.4)
+ (σ + p)A(X)A(Y )+B(X)B(Y )

+ [A(X)B(Y )+A(Y )B(X)]+D(X ,Y ),

where σ , p are the energy density and isotropic pressure
respectively. General relativity flows from Einstein equation
given by

S(X ,Y ) =− r
2

g(X ,Y )+λg(X ,Y ) = kT (X ,Y ), (6.5)

for all vector fields X , Y . S is the Ricci tensor of type of type
(0,2) and r is the scalar curvature, λ is a cosmological constant.
Thus by virtue of (6.4) above equation can be written as

S(X ,Y )− r
2

g(X ,Y )+λg(X ,Y ) (6.6)

= k[pg(X ,Y )+(σ + p)A(X)A(Y )+B(X)B(Y )

+ {A(X)B(Y )+A(Y )B(X)}+D(X ,Y )].

Putting this in (1.1) we get

2kp−2λ +2a+b+ c
2

g(X ,Y ) (6.7)

= [b− k(σ + p)]A(X)A(Y )+(c− k)B(X)B(Y )

+ (d− k)[A(X)B(Y )+A(Y )B(X)]+(e− k)D(X ,Y ).

Putting X =U , Y =V in above we get d = k
Putting X =U , Y =U we get

σ =
2a+3b+ c−2λ

2k
, (6.8)

or,

σ =
2a+3b+ c−2λ

2d
. (6.9)

Again contracting (6.6) we get

r−2r+4λ = k[3p−σ +1), (6.10)

or,

p =
6λ −6a+b− c−2d

6d
. (6.11)

Hence we can state the following

Theorem 6.1. If a viscous fluid MS(QE)4 spacetime admit-
ting heat flux obeys Einstein equation with cosmological con-
stant then none of the energy density and isotropic pressure of
the fluid can be a constant.

Now if the associated scalars a,b,c,d are constants with
d > 0, then from (6.8) and (6.9) σ , p are constants. Since
σ > 0, p> 0 we have from (6.8) and (6.9) we get λ < 2a+3b+c

2
and λ > 6a−b+c−2d

6 . And hence

6a−b+ c−2d
6

< λ <
2a+3b+ c

2
. (6.12)

Thus we have the following

Theorem 6.2. If a viscous fluid MS(QE)4 spacetime admit-
ting heat flux obeys Einstein equation with cosmological con-
stant λ ,then λ obeys the above inequality.
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