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Abstract

In this present work, we consider an impulsive neutral integro-differential equation with infinite delay in
an arbitrary Banach space X. The existence of mild solution is established by using resolvent operator and
Hausdorff measure of noncompactness.
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1 Introduction

In recent years, impulsive differential equations have become an active area of research due to their demon-
strated applications in widespread fields of science and engineering such as biology, physics, control theory,
population dynamics, economics, chemical technology, medicine and many others. Neutral differential equa-
tions arise in many areas of applied mathematics. The system of rigid heat conduction with finite wave spaces
can be modeled in the form of the integro-differential equation of neutral type with delay. In addition, the
development of the theory of the functional differential equation with infinite delay depends on a suitable
choice of phase space. There are various phases spaces which have been studied in a book by Hale and Kato
[9] and they introduced a common phase space 8. For more detail on phase space, we refer to book by Hale
and Kato [9] and Y. Hino et al. [20].

On the other hand, many real world processes and phenomena which are subjected during their develop-
ment to short-term external influences can be modeled as impulsive differential equation with fractional order.
Their duration is negligible compared to the total duration of the entire process or phenomena. Such process
is investigated in various fields such as biology, physics, control theory, population dynamics, medicine and
so on. For the general theory of such differential equations, we refer to the monographs [12], [18], and papers
[51, (6], [14], [17], [19], [21]-[22], and references given therein.

The purpose of this paper is to study the following integro-differential equation with infinite delay in a
Banach space (X, || - ||),

%[u(t) —F(t,uy)] = / f(t—s)u(s)ds] + G(t, ut,/ot E(t,s,us)ds),
te]=10,To), t #ty, k=1,2,---,m, (1.1)
up = ¢€B, (1.2)
Au(t;)) = Ii(uy), i=1,2,---,m, (1.3)
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where 0 < Ty < oo, A is a closed linear operator defined on a Banach space (X;|| -|) with dense domain
D(A) C X; f(t),t € [0, Tp] is a bounded linear operator. The functions F : [0, Ty] x B — X, G : [0, Tp] x B x
X—>X,E:[0,Tg x[0,Tp] xB - X, [;: X - X, i=1,---,m are appropriate functions to be specified later,
where B is the phase space defined axiomatically later in section 2 and 0 < t; < tp < --- <ty <ty = To
are pre-fixed numbers. The symbol Au(t) = u(t*) — u(t~) denotes the jump of the function u at t i.e., u(t")
and u(t") denotes the end limits of the u(t) at . The history u; : (—o0,0] — X is a continuous function defined
as us(s) = u(t +s),s < 0 belongs to the abstract phase space B.

Hernandez et al, [4] has discussed the existence of solution for the neutral integro-differential problem

SWO+fu)] = Au(t)+g(tw), £ € 0,7 9

u = ¢, p€B, (1.5)

where A : D(A) C X — X is the infinitesimal generator of an analytic semigroup and f, g : [0, Tp] x B —
X are appropriate functions. The existence of the mild solution for impulsive neutral integro-differential
inclusions with nonlocal conditions

t
%[u(t) —F(t,u(m ()] = Alu(t) +/ f(t = s)u(s)ds]
0
+G(t,u(hy(t))), te[0,To), t # t, (1.6)
Au(tk) = Ik(u(t];))r k= 1/ s, m, (17)
u(0) +g(u) = up, (1.8)

has been established by Chang and Nieto in [22]. Where A is the infinitesimal generator of a compact, analytic
resolvent operator R(f),t > 0 on a Banach space X and F, G, g, I are appropriated functions.

In this work, our work is spurred by the works [4]-[7], [14], [17], [21]-[22] to establish some existence results
for the system (1.1)-(1.3) by using measure of noncompactness and resolvent operator. The tool of measure
of noncompactness has been used in linear operator theory, theory of differential and integral equations, the
fixed point theory and many others. For an initial study of the theory of the measure of noncompactness, we
refer to book of Jézef Banas [10], Akhmerov et. al.[16] and references given therein.

The organization of the article is as follows: In section 2, we provide some basic definitions, lemmas and
theorems as preliminaries as these are useful for proving our results. In section 3, we prove the existence of
mild solution to (1.1)-(1.3). An example is also considered at the end of the article.

2 Preliminaries

In this segment, we provide some fundamental definition, Lemmas and Theorems which will be utilized
all around this paper.
Let X be a Banach space. The symbol C([4,b]; X), (a,b € R) stands for the Banach space of all the continuous
functions from [a, b] into X equipped with the norm || z(¢)|c = SUPye (g Il z(#)||x and LP((a, b); X) stands for
Banach space of all Bochner-measurable functions from (a, b) to X with the norm

2l = ( / | 2(5) s 7.
(a,b)

Let 0 € p(A) i.e. A is invertible. Then it can be conceivable to characterize the fractional power A* for
0 < o <1asaclosed linear operator with domain D(A%) C X. Itis easy to see that D(A") which is dense in X
is a Banach space endowed with the norm | z|| = || A%z||, for z € D(A"). Henceforth, we use X, as notation
of D(A"). Also, we have that X, — X, for 0 < & < x and therefore, the embedding is continuous. Then, we
define X_, = (Xy)*, for each « > 0. The space X_, stands for the dual space of X,, is a Banach space with the
norm || z||—4 = || A~*z||. For additional parts on the fractional powers of closed linear operators, we allude to
book by Pazy [1].

For the differential equation with infinite delay, Kato and Hale [9] was proposed the phase space 9B satis-
fying certain fundamental axioms.
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Definition 2.1. The linear space of all functions from (—co,0] into Banach space X with a seminorm || - ||ss is known
as phase space B. The fundamental axioms assumed on B are the followings:

(A) Ifu:(—oo,d+ To] — X, To > 0is a continuous function on [d,d + To] such that ug € B and uljg 4.1, € B €
PC([d,d + Tol; X), then for every t € [d,d + Tp), the following conditions are hold:

(i) U € B,
(ii) H|| utl|os = [| u(t)]],

(iii)|| ullss < N(t+d)|| uglls + K(t —d) sup{[| u(s)|| : d <'s < t},
where H is a positive constant; N, K : [0,00) — [1,00), N is a locally bounded, K is continuous and K, H, N
are independent of u(-).

(A1) For the function u in (A1), uy is a B-valued continuous function for t € [d,d + T).
(B) The space B is complete.
To set the structure for our primary existence results, we have to introduce the following definitions.

Definition 2.2. A family {R(t)};c of bounded linear operators is said to be a resolvent operator (Fractional operators)
for following equation

x'(t) = Alx(t) + /Otf(t —s)x(s)ds], (2.9)
if the following conditions are satisfied
(i) R(0) = I, where I is the identity operator on X.
(i) R(t) is strongly continuous for t € [0, Tp).
(iii) R(t) € B(Z), t € [0,Ty). Forz € Z and R(-)z € C([0, Ty]; Z) N C*([0, To); Z), we have

d
ER(t)Z

A[R(t)z + /Otf(t — $)R(s)zds], (2.10)

R(t)Az + /OtR(t —5)Af(s)zds, t € [0, Tp]. (2.11)

Where B(Z) denotes the space of bounded linear operators defined on Z and Z is a Banach space formed from
D(A) with the graph norm.

We assume that A generates a resolvent operator {R(#) };>¢ on a Banach space X and there exists a positive
constant M; such that || R(¢)|| < M;. For any 0 < « < 1, there exists a positive constant M, such that

M,
| AR < 5, t €[0Tyl (2.12)

To consider the mild solution for the impulsive problem, we propose the set PC([0, To); X) = {u : [0, Tp] —
X : u is continuous at t # t; and left continuous at ¢+ = ¢; and u(t;L) exists, forall i = 1,---,m}. Clearly,
PC([0, Ty); X) is a Banach space endowed the norm || u||p¢ = sup,c g ) || #(s) |- Forafunction u € PC([0, To]; X)
andi € {0,1,---,m}, we define the function u; € C([t;, t;11], X) such that

T = {u(t), for te (f,tis1], 213)

~u(th), for t=t;.

For W € PC([0, To); X) and i € {0,1,---,m}, we have Wl = {u; : u € W} and following Accoli-Arzela type
criteria. Now, we discuss some basic definition of measure of noncompactness (MNC).

Lemma 2.1. [3]. A set W C PC([0, To]; X) is relatively compact i and only if each set W; C C([t;, tisq], X) (i =
0,1---,m) is relatively compact.

Definition 2.3. The Hausdorff’s measure of noncompactness (H'MINC) xy is defined as
xy(U) =inf{e > 0: U can be covered by finite number of balls with radius e}, (2.14)

for the bounded set U C Y, where Y is a Banach space.
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Lemma 2.2. For any bounded set U, V C Y, where Y is a Banach space. Then, the following properties are fulfilled:
(i) xy(U) = 0if and only if U is pre-compact;
(ii) xy(U) = xy(conv U) = xy(U), where conv U and U denotes the convex hull and closure of U respectively;
(iii) xy(U) C xy(V), when U C V;
() xy(U+V) <xy(U)+xy(V), where U+ V ={u+v:uecl, veV}
() xy(UUV) <max{xy(U),xy(V)},
(i) xy(AU) =A-xy(U), forany A € R;

(vii) Ifthemap P : D(P) C Y — Z is continuous and satisfy the Lipschitsz condition with constant «. Then, we have
that x z(PU) < xxy(U) for any bounded subset U C D(P), where Y and Z are Banach space;

Definition 2.4. [10] A bounded and continuous map P : D C Z — Z is a xz-contraction if there exists a constant
0 < x < 1such that xz(P(U)) < xxz(U), for any bounded closed subset U C D, where Z is a Banach space.

Lemma 2.3. [15] Let D C Z be a closed, convex with 0 € D and the continuous map P : D — D be a x z-contraction.
If the set {u € D : u = APu, for 0 < A < 1} is bounded, then the map P has a fixed point in D.

Lemma 2.4. (Darbo-Sadovskii)[10]. Let D C Z be bounded, closed and convex. If the continuous map P : D — D is
a xz-contraction, then the map P has a fixed point in D.

In this paper, we consider that y denotes the Hausdorff’s measure of noncompactness (H'MNC)in X, xc
denotes the Hausdorff’s measure of noncompactness in C([0, Tp|; X) and xp¢ denotes the Hausdorff’s measure
of noncompactness in PC([0, Ty]; X).

Lemma 2.5. ([10[. If U is bounded subset of C([0, Tp]; X). Then, we have that x(U(t)) < xc(U), V t € [0,To,
where U(t) = {u(t);u € U} C X. Furthermore, if U is equicontinuous on [0, Ty), then x(U(t)) is continuous on the
interval [0, To] and

xe(U) = sup {x(U(t))}. (2.15)
t€[0,To]

Lemma 2.6. [10] If U C C([0, Ty]; X) is bounded and equicontinuous, then x (U(t)) is continuous and

t t
X(/O U(s)ds) < /0 x(U(s))ds, ¥ t €10, To], (2.16)

where fOt U(s)ds = {fot u(s)ds,u € U}.

Lemma 2.7. [14]
(1) If U C PC([0, To); X) is bounded, then x(U(t)) < xpc(U),V t € [0, Tp], where U(t) = {u(t) :u e U} C X;
(2) If U is piecewise equicontinuous on [0, Ty, then x (U(t)) is piecewise continuous for t € [0, Ty] and

xpe(U) =sup{x(U(t)) : t € [0, To]}; (2.17)

(3) If U Cc PC([0, To); X) is bounded and equicontinuous, then x (U(t)) is piecewise continuous for t € [0, Ty] and
t t
x| Uds) < [ xUe)ds e 0,1, (2.18)
0 0

where [y U(s)ds = { [y u(s)ds : u € U}.
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3 Main Results

In this segment, the existence of the mild solution for the equation (1.1)-(1.3) is studied. Now we introduce
following conditions:

(HR) Since R(t) is a resolvent operator and f is bounded operator. Without loss of generality we assume that
there exist positive constants Ny, N, such that || R(#)|| < Ny, || f(#)|| < N, t € [0, To]. We assume that
R(t),t > 0 satisfies the following property;

(R1) The map ¢ +— R(t) is continuous from (0, To] to £(X) with the uniform operator norm || - [|(x)-

(HF) The function F : [0, Ty] x B — X is Lipschitz continuous and there exist constants Ly > 0and 0 < f <1
such that

I APE(t, 1) = APE(s, x2) || < Le[l| 1 = x218], (3.19)

and
| APE(t,x)[| < Ci| x]|s + Ca, (3.20)

for all x,x1,x € B and t € [0, Ty, where Cy, C; are positive constants.

(HG) G: [0, Ty] x B x X — X is a nonlinear function such that
(1) For each u : (—o0,To] — X, ug = ¢ € B, G(t,-,-) is continuous for a.e. t € [0, Tp] and function
t— G(t,uy, fot E(t,s,us)ds) is strongly measurable for u € PC([0, Ty|; X).
(2) There is an integrable function « : | — [0,00) and a monotone increasing continuous function ) :
Ry — Ry such that

I1G(T,x,y)|| < a()Q(] xlls + 1 yl), T €0, To], (x,y) € B xX. (3.21)

(3) There is an integrable function 7 : | — [0, c0) such that for any bounded subset E; C PC((—c0,0]; X),
E, C X, we have that

X(R(1)G(7, E1, E)) < §(T){ sup x(E1(6)) + x(E2)}, (3.22)

—00<6<0
fora.e. t € [0, Ty]. Where E1(0) = {u(0) : u € Eq}.

(HE) (1) There is a constant E; > 0 such that
T
I / [E(T,s,u) — E(t1,s,0)]ds|| < E1]| u —v||ss, T,5 € [0, To], u, v € B. (3.23)
0

(2)The map E(t,s,-) : B — X is continuous for each (t,s) € [0, Ty] x [0, To] and E(-,-,u) : [0, Ty] x
[0, To] — X is a strongly measurable function for each u € 9B. There exist a constant { > 0 and integrable
function mg : | — [0, c0) such that

1 E(T,s, %) < Zme(s)e(l x[1), 7,5 € [0, Tol, (3.24)
where ¢ € C([0,c0); [0,00)) is a increasing function and [~ {mg(s)ds < Ly.

(HI) (1) The functions I; : 8 — X, i = 1,2,---,m are continuous and there are constant L; > 0 (i =

(1)
1,2,---,m) such that
| Li(x) = LIl < Lill x —ylls, ¥V x,y € B. (3.25)

(2) There exist positive constant K} and K?,(i = 1,- - - ,m) such that

I L)l = K}l x| + K7, x € B. (3.26)
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H)
m o = [(KpyNiH+ Mr,) + K, Ni|| AP||C1]|| ¢l + K, [| A=F||Ca
My_gToP M _gToPT!
+ P B Ny YK, (3.27)
ﬁ IB 0<ti<t
_ M;_pToP My TP
ne = [IA ﬁ||c1+—’3c1+NzﬁTc1
+N; Y K <1 (3.28)
0<t;<t
and
/TOAUd | oo (3:29)
me(s)ds < —_ .
o TS e Q)+ e(s)
where b = -1

T=pa-
Definition 3.5. A piecewise continuous function u : (—oo, Ty] — X is said to be a solution for the system (1.1)-(1.3) if
ug = @, u(-)| (0,1, € PC and following impulsive integral equation

u(t) = R(t)[p(0)—F(0,¢)] + F(t, ur) + /Ot AR(t —s)F(s,us)ds
+/OtAR(t —5) /Osf(s — T)F(t,u¢)dtds
t

+/O R(t—s)G(s,us,/OsE(S,T,ur)dT)ds
+ Y R(t—t)L(uy),  te0,Tol, (3.30)

o<t;<t
is verified.

Let z : (—oo, Ty] — X be a function defined by zg = ¢ and z(t) = R(t)¢(0) on [0, Tp]. It is clear that || z:|| <
(K1,N1H + Mr,)|| ¢||, where K7, = SUP;c(o,7) K(t), Mg, = SUPyc(o,7;] M(t).

Theorem 3.1. Suppose (HR), (HF), (HG), (HE), (HI), (H') holds and

M;_gToP NoLpM;_gToP*! m t
1; Ul s ;ﬁ ¢ N ZLi]+(1+Lle)/ E(s)ds < 1. (3.31)
i=1 0

Then, the impulsive system (L.1)-(1.3) has a mild solution.

KTO [Lr+

Proof. Let S(Tp) = {u : (—oo,To] — X, ug =0, uljp,1,) € PC} endowed with the supremum norm || - || be the
space. Define operator P : S(Ty) — S(Tp) as

0, te (—o0,0],
—R(E)F(0,¢) + F(t,us +2z¢) + [iy AR(t —)F(s, us + z5)ds
pu(t) = {+Jo AR(E=5) [ f(s — T)F(z,ur + zc)dTds (332)

+ fot R(t —s)G(s, us + zs, [y E(s, T, tx + z¢)dT)ds

+ Y R(t—t)Li(uy, +2z1,),  te[0,Tol.
0<ti<t

Also we have || u; + zl|g < (KryN1H + M) || ¢lls + K[| ul[s, where || ulls = supge(g || u(s)||- From the
axioms A, our assumptions and the strongly continuity of R(t), we can see that Pu € PC. For u € S(Tj), we
get

| AR(t —s)F(s,us + z5)|| = || AYPR(t —s)APF(s, us +zs5)|,
M;_g

< m[cl || us + 25|l + Cal, (3.33)
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thus, from the Bocher theorem it takes after that AR(t — s)F(s, us + zs) is integrable. So, we obtain that P is
well defined on S(Tp). We give the demonstration of Theorem in the numerous steps.

Step 1. The set {x € PC([0, Ty]; X) : u(t) = APu(t), for 0 < A < 1} is bounded.
For1 > A > 0, let u, be a solution for u = APu. We have that

| uae + z¢l| < (Kpy NiH + Mry) || ¢l + K[ ua [ls- (3.34)
Let vy (t) = (KryN1H + Mr1,)|| ¢l + K7, || ua|lt, for each t € [0, Ty]. Then, we have

[ua®] = [FAPur ()] < || Pua(t)],
< [ ROFQ @)+ [ E(t uar +z1) |

t
+ / | AVPR(E = s)[[| APE(t, 1y +25) | ds
0
t s
+/ I AlfﬁR(t_s)u/ (s — T)|| APE (T, e + 20) |[dds
0 0

t s

—|—/ I R(t—s)G(s,uS—i—zs,/ E(s, T,ur + z7)d7)||ds
0 0

+ Y IRt =) Li(us, +z1) I,

o<t;<t
< Ni|| AP|[Ch]| pllss + Ca] + || AP [Cava(t) + Co
M;_gTof 1-pToP !
+%(C1VA(S) +C2) + N2 /55 (Crva(s) + C2)
t
+N1/ a(s) / Sme(T (1))dt)ds
0
+N1 Y (Kili/A( )+Ki2)r
0<t,‘<t
_ _ 1-gbP M;_gTpP*!
< M| AP[C] 9lls +Co] + || APIIC2 + ,Bﬁ C2+NzﬁTCz
M;_gToP M;_gToPH!
YK+ AFIC + PO e NP
0<tl‘<t ﬁ ﬁ
t
N Y K@+ N [ a) / § me () p(vr(1))dT)ds,
O<ti<t 0
which gives that
va(t) < [(KyNyH + Mr,) + K, Ni|| AP||C1] || ¢lls + K, [| AP Ca
M TP M;_gToPt!
+ 2 TP N Y K ATPIG
ﬁ ﬁ 0<tl‘<t
M;_gToP M;_ TPt
-‘rucl-l-Nz&Cl-i-Nl Z Kil]v/\(t)
ﬁ IB 0<t,‘<t
t
N [ alo / § me(T)p(va(T))dT)ds,
0
1 N1 K7, / /
i (t) < + — m dTt)ds,
A(t) < TR g Gmg( (1))dt)ds
Take b = 7 K ;2, therefore we get
N:1K
() bt g ! ;0/ / T me(T)g(va(T))dT)ds, (3.35)
— U

1\1]1_120 fot a(s)Qva(s) + fo & me(T)@(va(T))dT)ds, then we have B, (0) = b and

vA(t) < Bat), 0<t< Ty (3.36)

Let By(t) = b+
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Also, we get
N- KT
B0 < a0 (0 + [ & mele)glune))is) 6:37)
ﬂz
Since we have that () is nondecreasing. Therefore we get
N;K
B0 < P00+ [ Tmee)p(6r(5)d) (3.39)

Now we take B, (t) = B(t) + fotg me(s)@(Ba(s))ds and we have By (0) = B (0) and B, (t) < B (t).

By(t) = Bu(h)+5me(t)g(Ba(h)),
< T ROOA) + T metp(B(D),
< mE(O)(QBAD)) + @(BA(1))), (3.39)
which gives that
e L ds < e ds < ” 1 d 3.40
o TR S o O < | o o

It implies that functions B, (t) are bounded on [0, Ty]. Therefore, the function v, (t) are bounded on [0, Ty] and
1 (-) are bounded on [0, Ty].

Step 2. P is x-contraction.

We introduce the decomposition of P = P; + P such that

Piu(t) = R(H)[-F(0,¢)] + F(t, ur+z) + /Ot AR(t —8)F(s, us + z5)ds

+ /Ot AR(t —5s) /Osf(s — T)F(7, ur + z¢)dtds

+ Y R(t—ti)L(uy, +z¢,), (3.41)
O<t;<t
t s
Pu(t) = /OR(t—s)G(s,us+zS,/0 E(s, T, ur + z7)dt)ds. (3.42)

To prove the result, firstly we show that P; satisfies the Lipschitz condition. For u1, uy € S(Tp), we have
| Pruq(t) — Prua(t)||

< || APF(t,u1; +2z1) — APE(t ugy + 21|

t
+ / |AYPR(t = $)||||APF(s, 15 + z5) — F(s, tins + 25) || ds
0

t s
+ /O |AER(E — 5)) /0 1£(s — DIIAPE(T, u1e + 22) — F(T, tpe + 22) |dds

+ 2 IR =)l Li(uny, +z) — Liuzy, + 24,

0<t;<t
1-pToP
< Lp|l ugp —uzslls + TLFH U1y — Uzl
NoLpM;_gToPH! i
- B ay — wallos + Ny Y L 102, — e,
B i=1
M;_gToP NoLpMy_gToPt! m
< KTO[LF—I—iﬁLF-F P + Np ZLZ]H u —MzHTO, (3.43)
p p i=1
[ p+1
it gives that P; is Lipschitz continuous with Lipschitz constant L = Kr,[Lr + Ml_g To Lr+ NZLFM%_ﬁTO

Ny Z:i1 Li}-
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Let B be an arbitrary subset of S(Tp). Since R(t) is equicontinuous resolvent. Therefore, from the as-
sumption (HG) and the strongly continuity of R(t), we have that R(t — 5)G(s, xs + ys, [y E(s, T, Xt +y7)d7) is
piecewise equicontinuous. Then, by the Lemma[2.6|we have

xX(Pa(B(1)))
< X(/OtR(t_S)G(s/BS+ZSI/OSE(SITIBT+ZT)dT)dS)/
< /tg(s)-( sup )((B(S+9)+Z(s+9))+X(/SE(S,T,BT+ZT)dT))dS,
—00<6<0 0

< / §(s) sup [X(B(s+6) +2(s+6)) + Lox(Q(B(s +6) + (s +6)))]ds,

—00<6<0
< / &(s) sup (x(B(1)) + Lox(Q(B(1))))ds,

O<T<S

t

< xpe(B)[1+OLo] /O E(s)ds, [x(QB(T))) < Oy (B(D))], (3.44)

for every bounded set B C PC. Where (); is a constant.
Now we can see that for any bounded subset B € PC

xpc(P(B)) = xpc(P1B+ P;B),
xpc(P1B) + xpc(P2B),

t
< (Lt (1+Lo) [ S xne(B), (3.45)

IN

from the above inequality we obtain that P is y-contraction. Hence P has at least one fixed point in B by Darbo
fixed point theorern Let u be the fixed point of the map Q on S(Tp). Thus y = u + z is a mild solution for the
problem (T.1)-(1.3). Therefore this completes the proof of the theorem. O

Theorem 3.2. Suppose that (HR), (HF), (HG), (HE), (HI) and (H') are satisfied and
M;_pTof NoM;y_gToP !
C1+ Cy
B B
m TO
+N YK+ N11<T0/ «(s)ds lim sup M <1 (3.46)
i 0

T—00

KToHl AiﬂHCl +

Then, the impulsive system (L.I)-(1.3) has a mild solution.

Proof. Thus proof of the above theorem is like that of Theorem 3.1, We characterize the operator P as (3.32).
Now, we show that there exist a # > 0 such that Q(B;) C B,, where B, is a closed and convex ball with center
at the origin and radius r i.e., B, = {u € S(Tp) : || ul|1, < r}. To prove it, we assume that for any r > 0, there
exists u; € B, and ¢, € [0, To] such thatr < || Qu.(¢;)||. For u, € B, and t, € [0, Ty], we have

ro< | Qui(tn)ll < Null F(O,9)[l + || APII[Call pt, + 21, |3 + Co]

t
+/ |AYPR(t, — ) ||[| APE(s, utys + 25) ||ds

0

ty s
+ /O |AYER(E, —5)| /O 1F(s — D)l [APE(T, ttyr + o) |drds

ty s
+N1/ I G(s,urerzs,/ E(s, T, urr +25)T)||ds
0 0

m

N1 Y (K} g+ 2l + KF),
i-1
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IN

Npl| A™P[[(Cillgllsn + C2) + I A™PI[Coll wrs, +2t, || + Cal
+Ml_ﬁToﬁ NoMy_gTof
B B

ty s
+/0 a(s)Q(|| ure, + 2zt |8 + || /0 E(s, T, uyr + z7)dt||)ds

(Call urt, + 2, || + C2) + (Call urt, + 2, | + C2)

m
+N1 Y (K | re + 2| + KF),
i=1
Mi_gToP | NoMy_gTof™
G
P P

m - M;_gTof NoM;_gTpPH! m
+N1 Y K+ ([ AP|Cr+ [5 Ci + ; C1+Ni Y K]
i=1 i=1

ty
< [(Kr, Ny H + My )| plls + K] + /O a(5)Q((Kr, N H + Mz, )| ¢l
+Kr,r + Log((KryN1H + M7,) | ¢l + Kr,7))ds,

IN

Ni|| AP|(C1ll¢lls + Co) + || AP||Ca + G+

(3.47)
it gives that
M;_gToP NoMy_gToP ! m
1 < Kl A PG+ —20 ¢+ 2P0 b Ny Y KN
B B =
Ty
+N1/ a(s)ds
0
« lim sup Q((Kr,N1H + Mr,)|| ¢lls + Kryr + fO(P((KTONlH—F M) ¢llss + KTOr)),
r—00
_ M To‘B NoM; _ TO‘B'*_1 1
< Kylll AP|C+ —22 ¢yt PO i+ N Y K]
P p =
To L
+NiKp, / a(s)ds Jim sup %0(”(7), (3.48)
0 —00

which is the contradiction of the inequality (3.46). Hence we conclude that QB, C B;.
As the proof of the Theorem 3.1, we obtain that there exists at least a mild solution for the problem (1.I)-

(T3). O

4 Example
In this section, we consider an example to illustrate the application of the theory. Here we take the space

Co x L?(h, X) as phase space B(see, [5]).
We consider the following first order neutral integro-differential equation with unbounded delay

topm 2 t
%[x(t,u) - /_00/0 B(t—s,§,u)x(s,§)d§ds] = %[x(t,u) +/0 f(t—s,u)x(s,u)ds]
t

u
+/ a(t,u,s — t)G(x(s,u),/s E(s,T,x¢)dt)ds, t €[0,Tp], u € [0, 7], (4.49)

0 0
x(t,0) =x(t,7) =0, te]l0,To, (4.50)
x(t,u) =¢(t,u), 7<0,0<u<m, (4.51)
Ax(t;)(u) = /t ci(t; —s)x(s,u)ds, (4.52)

where ¢ € Cp x L2(h,X)and 0 < t; < t < --- < t,, < b are fixed numbers.
The function B, f,a, G, E, ¢; are satisfied the following conditions:



Alka Chadha et al./ Existence results for... 213

(A1) The function B(s, §, u), %B are measurable and B(s, §,0) = B(s, §, r) = 0. Also
1
LB_max{/ / / hl aBa S\ dgdsdu)'/2 i = 0,1} < oo; (453)

(A2) The operator f(t),t > 0is bounded and || f(¢, u)|| < Np;
(A3) a(t,u, ) is continuous function on [0, Ty] x [0, 7r] x (—o0,0] with f a(t,u,7)dt = n(t,u) < oo;

(A4) Gis a continuous function, satisfying G(x1, x2) < Q'(|| x1]| + || x2]|), where Q'(+) is continuous, increas-
ing and positive on [0, c0);

(A5) The function E(-) is a continuous function, satisfying 0 < E(t,s,u) < w(|| u||), where w is a positive
increasing continuous function on [0, c0);

(A6) The functions ¢; € C([0,00); R) and K3 = ([°,, ©G° PasV2 <0, vi=1,-- ,m
Let Ax =x", A: D(A) C X — X is a linear operator with domain
D(A) ={x e X:x" € X,x(0) = x(mr) = 0}. (4.54)

It is known that A is the infinitesimal generator of an analytic resolvent operator R(t),f > 0. We assume that
the (A1) — (A6) are established.
Now, the system (4.49)-(.52) can be reformulated as the abstract impulsive Cauchy problem (1.1)-(1.3) giving

by

F(t,y)(u) = / / (s,z,u)y(s,z)dzds, (4.55)
Gi(t,w,y)(u) = / a(t,u, 7)G(w(t,u) / y(T,6,x9)d0)dT, (4.56)
0
L)) = / ci(s)y (s, ). 57)
It is easy to see that F(t,-), Gy (¢, -, -), I; (i =1,---,m) are bounded linear operators. Applying the Theorem 3.1,

we conclude that the problem (4.49)-(#.52) has at least one mild solution.
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