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Abstract

In this present work, we consider an impulsive neutral integro-differential equation with infinite delay in
an arbitrary Banach space X. The existence of mild solution is established by using resolvent operator and
Hausdorff measure of noncompactness.
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1 Introduction

In recent years, impulsive differential equations have become an active area of research due to their demon-
strated applications in widespread fields of science and engineering such as biology, physics, control theory,
population dynamics, economics, chemical technology, medicine and many others. Neutral differential equa-
tions arise in many areas of applied mathematics. The system of rigid heat conduction with finite wave spaces
can be modeled in the form of the integro-differential equation of neutral type with delay. In addition, the
development of the theory of the functional differential equation with infinite delay depends on a suitable
choice of phase space. There are various phases spaces which have been studied in a book by Hale and Kato
[9] and they introduced a common phase space B. For more detail on phase space, we refer to book by Hale
and Kato [9] and Y. Hino et al. [20].

On the other hand, many real world processes and phenomena which are subjected during their develop-
ment to short-term external influences can be modeled as impulsive differential equation with fractional order.
Their duration is negligible compared to the total duration of the entire process or phenomena. Such process
is investigated in various fields such as biology, physics, control theory, population dynamics, medicine and
so on. For the general theory of such differential equations, we refer to the monographs [12], [18], and papers
[5], [6], [14], [17], [19], [21]-[22], and references given therein.

The purpose of this paper is to study the following integro-differential equation with infinite delay in a
Banach space (X, ‖ · ‖),

d
dt

[u(t)− F(t, ut)] = A[u(t) +
∫ t

0
f (t− s)u(s)ds] + G(t, ut,

∫ t

0
E(t, s, us)ds),

t ∈ J = [0, T0], t 6= tk, k = 1, 2, · · · , m, (1.1)

u0 = φ ∈ B, (1.2)

∆u(ti) = Ii(uti ), i = 1, 2, · · · , m, (1.3)
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where 0 < T0 < ∞, A is a closed linear operator defined on a Banach space (X; ‖ · ‖) with dense domain
D(A) ⊂ X; f (t), t ∈ [0, T0] is a bounded linear operator. The functions F : [0, T0]×B → X, G : [0, T0]×B×
X → X, E : [0, T0]× [0, T0]×B → X, Ii : X → X, i = 1, · · · , m are appropriate functions to be specified later,
where B is the phase space defined axiomatically later in section 2 and 0 < t1 < t2 < · · · < tm < tm+1 = T0
are pre-fixed numbers. The symbol ∆u(t) = u(t+)− u(t−) denotes the jump of the function u at t i.e., u(t−)
and u(t+) denotes the end limits of the u(t) at t. The history ut : (−∞, 0] → X is a continuous function defined
as ut(s) = u(t + s), s ≤ 0 belongs to the abstract phase space B.
Hernandez et al, [4] has discussed the existence of solution for the neutral integro-differential problem

d
dt

[u(t) + f (t, ut)] = Au(t) + g(t, ut), t ∈ [0, T0], (1.4)

u0 = φ, φ ∈ B, (1.5)

where A : D(A) ⊂ X → X is the infinitesimal generator of an analytic semigroup and f , g : [0, T0] ×B →
X are appropriate functions. The existence of the mild solution for impulsive neutral integro-differential
inclusions with nonlocal conditions

d
dt

[u(t)− F(t, u(h1(t)))] = A[u(t) +
∫ t

0
f (t− s)u(s)ds]

+G(t, u(h2(t))), t ∈ [0, T0], t 6= tk, (1.6)

∆u(tk) = Ik(u(t−k )), k = 1, · · · , m, (1.7)

u(0) + g(u) = u0, (1.8)

has been established by Chang and Nieto in [22]. Where A is the infinitesimal generator of a compact, analytic
resolvent operator R(t), t > 0 on a Banach space X and F, G, g, Ik are appropriated functions.

In this work, our work is spurred by the works [4]-[7], [14], [17], [21]-[22] to establish some existence results
for the system (1.1)-(1.3) by using measure of noncompactness and resolvent operator. The tool of measure
of noncompactness has been used in linear operator theory, theory of differential and integral equations, the
fixed point theory and many others. For an initial study of the theory of the measure of noncompactness, we
refer to book of Józef Banas [10], Akhmerov et. al.[16] and references given therein.

The organization of the article is as follows: In section 2, we provide some basic definitions, lemmas and
theorems as preliminaries as these are useful for proving our results. In section 3, we prove the existence of
mild solution to (1.1)-(1.3). An example is also considered at the end of the article.

2 Preliminaries

In this segment, we provide some fundamental definition, Lemmas and Theorems which will be utilized
all around this paper.
Let X be a Banach space. The symbol C([a, b]; X), (a, b ∈ R) stands for the Banach space of all the continuous
functions from [a, b] into X equipped with the norm ‖ z(t)‖C = supt∈[a,b] ‖ z(t)‖X and Lp((a, b); X) stands for
Banach space of all Bochner-measurable functions from (a, b) to X with the norm

‖ z‖Lp = (
∫

(a,b)
‖ z(s)‖p

Xds)1/p.

Let 0 ∈ ρ(A) i.e. A is invertible. Then it can be conceivable to characterize the fractional power Aα for
0 < α ≤ 1 as a closed linear operator with domain D(Aα) ⊂ X. It is easy to see that D(Aα) which is dense in X
is a Banach space endowed with the norm ‖ z‖ = ‖ Aαz‖, for z ∈ D(Aα). Henceforth, we use Xα as notation
of D(Aα). Also, we have that Xκ ↪→ Xα for 0 < α < κ and therefore, the embedding is continuous. Then, we
define X−α = (Xα)∗, for each α > 0. The space X−α stands for the dual space of Xα, is a Banach space with the
norm ‖ z‖−α = ‖ A−αz‖. For additional parts on the fractional powers of closed linear operators, we allude to
book by Pazy [1].

For the differential equation with infinite delay, Kato and Hale [9] was proposed the phase space B satis-
fying certain fundamental axioms.
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Definition 2.1. The linear space of all functions from (−∞, 0] into Banach space X with a seminorm ‖ · ‖B is known
as phase space B. The fundamental axioms assumed on B are the followings:

(A) If u : (−∞, d + T0] → X, T0 > 0 is a continuous function on [d, d + T0] such that ud ∈ B and u|[d,d+T0] ∈ B ∈
PC([d, d + T0]; X), then for every t ∈ [d, d + T0), the following conditions are hold:

(i) ut ∈ B,

(ii) H‖ ut‖B ≥ ‖ u(t)‖,

(iii)‖ ut‖B ≤ N(t + d)‖ ud‖B + K(t− d) sup{‖ u(s)‖ : d ≤ s ≤ t},
where H is a positive constant; N, K : [0, ∞) → [1, ∞), N is a locally bounded, K is continuous and K, H, N
are independent of u(·).

(A1) For the function u in (A1), ut is a B-valued continuous function for t ∈ [d, d + T0].

(B) The space B is complete.

To set the structure for our primary existence results, we have to introduce the following definitions.

Definition 2.2. A family {R(t)}t∈J of bounded linear operators is said to be a resolvent operator (Fractional operators)
for following equation

x′(t) = A[x(t) +
∫ t

0
f (t− s)x(s)ds], (2.9)

if the following conditions are satisfied

(i) R(0) = I, where I is the identity operator on X.

(ii) R(t) is strongly continuous for t ∈ [0, T0].

(iii) R(t) ∈ B(Z), t ∈ [0, T0]. For z ∈ Z and R(·)z ∈ C([0, T0]; Z) ∩ C1([0, T0]; Z), we have

d
dt

R(t)z = A[R(t)z +
∫ t

0
f (t− s)R(s)zds], (2.10)

= R(t)Az +
∫ t

0
R(t− s)A f (s)zds, t ∈ [0, T0]. (2.11)

Where B(Z) denotes the space of bounded linear operators defined on Z and Z is a Banach space formed from
D(A) with the graph norm.

We assume that A generates a resolvent operator {R(t)}t≥0 on a Banach space X and there exists a positive
constant M1 such that ‖ R(t)‖ ≤ M1. For any 0 ≤ α ≤ 1, there exists a positive constant Mα such that

‖ AαR(t)‖ ≤ Mα

tα
, t ∈ [0, T0]. (2.12)

To consider the mild solution for the impulsive problem, we propose the set PC([0, T0]; X) = {u : [0, T0] →
X : u is continuous at t 6= ti and left continuous at t = ti and u(t+i ) exists, for all i = 1, · · · , m}. Clearly,
PC([0, T0]; X) is a Banach space endowed the norm ‖ u‖PC = supt∈[0,T0] ‖ u(s)‖. For a function u ∈ PC([0, T0]; X)
and i ∈ {0, 1, · · · , m}, we define the function ũi ∈ C([ti, ti+1], X) such that

ũi(t) =

{
u(t), for t ∈ (ti, ti+1],

u(t+i ), for t = ti.
(2.13)

For W ⊂ PC([0, T0]; X) and i ∈ {0, 1, · · · , m}, we have W̃i = {ũi : u ∈ W} and following Accoli-Arzelà type
criteria. Now, we discuss some basic definition of measure of noncompactness (MNC).

Lemma 2.1. [3]. A set W ⊂ PC([0, T0]; X) is relatively compact if and only if each set W̃i ⊂ C([ti, ti+1], X) (i =
0, 1 · · · , m) is relatively compact.

Definition 2.3. The Hausdorff’s measure of noncompactness (H’MNC) χY is defined as

χY(U) = inf{ε > 0 : U can be covered by finite number of balls with radius ε}, (2.14)

for the bounded set U ⊂ Y, where Y is a Banach space.
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Lemma 2.2. For any bounded set U, V ⊂ Y, where Y is a Banach space. Then, the following properties are fulfilled:

(i) χY(U) = 0 if and only if U is pre-compact;

(ii) χY(U) = χY(conv U) = χY(U), where conv U and U denotes the convex hull and closure of U respectively;

(iii) χY(U) ⊂ χY(V), when U ⊂ V;

(iv) χY(U + V) ≤ χY(U) + χY(V), where U + V = {u + v : u ∈ U, v ∈ V};

(v) χY(U ∪V) ≤ max{χY(U), χY(V)};

(vi) χY(λU) = λ · χY(U), for any λ ∈ R;

(vii) If the map P : D(P) ⊂ Y → Z is continuous and satisfy the Lipschitsz condition with constant κ. Then, we have
that χZ (PU) ≤ κχY(U) for any bounded subset U ⊂ D(P), where Y and Z are Banach space;

Definition 2.4. [10] A bounded and continuous map P : D ⊂ Z → Z is a χZ-contraction if there exists a constant
0 < κ < 1 such that χZ(P(U)) ≤ κχZ(U), for any bounded closed subset U ⊂ D, where Z is a Banach space.

Lemma 2.3. [15] Let D ⊂ Z be a closed, convex with 0 ∈ D and the continuous map P : D → D be a χZ-contraction.
If the set {u ∈ D : u = λPu, for 0 < λ < 1} is bounded, then the map P has a fixed point in D.

Lemma 2.4. (Darbo-Sadovskii)[10]. Let D ⊂ Z be bounded, closed and convex. If the continuous map P : D → D is
a χZ-contraction, then the map P has a fixed point in D.

In this paper, we consider that χ denotes the Hausdorff’s measure of noncompactness (H’MNC)in X, χC
denotes the Hausdorff’s measure of noncompactness in C([0, T0]; X) and χPC denotes the Hausdorff’s measure
of noncompactness in PC([0, T0]; X).

Lemma 2.5. ([10]. If U is bounded subset of C([0, T0]; X). Then, we have that χ(U(t)) ≤ χC(U), ∀ t ∈ [0, T0],
where U(t) = {u(t); u ∈ U} ⊆ X. Furthermore, if U is equicontinuous on [0, T0], then χ(U(t)) is continuous on the
interval [0, T0] and

χC(U) = sup
t∈[0,T0]

{χ(U(t))}. (2.15)

Lemma 2.6. [10] If U ⊂ C([0, T0]; X) is bounded and equicontinuous, then χ(U(t)) is continuous and

χ(
∫ t

0
U(s)ds) ≤

∫ t

0
χ(U(s))ds, ∀ t ∈ [0, T0], (2.16)

where
∫ t

0 U(s)ds = {
∫ t

0 u(s)ds, u ∈ U}.

Lemma 2.7. [14]

(1) If U ⊂ PC([0, T0]; X) is bounded, then χ(U(t)) ≤ χPC(U), ∀ t ∈ [0, T0], where U(t) = {u(t) : u ∈ U} ⊂ X;

(2) If U is piecewise equicontinuous on [0, T0], then χ(U(t)) is piecewise continuous for t ∈ [0, T0] and

χPC(U) = sup{χ(U(t)) : t ∈ [0, T0]}; (2.17)

(3) If U ⊂ PC([0, T0]; X) is bounded and equicontinuous, then χ(U(t)) is piecewise continuous for t ∈ [0, T0] and

χ(
∫ t

0
U(s)ds) ≤

∫ t

0
χ(U(s))ds, ∀ t ∈ [0, T0], (2.18)

where
∫ t

0 U(s)ds = {
∫ t

0 u(s)ds : u ∈ U}.
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3 Main Results

In this segment, the existence of the mild solution for the equation (1.1)-(1.3) is studied. Now we introduce
following conditions:

(HR) Since R(t) is a resolvent operator and f is bounded operator. Without loss of generality we assume that
there exist positive constants N1, N2 such that ‖ R(t)‖ ≤ N1, ‖ f (t)‖ ≤ N2, t ∈ [0, T0]. We assume that
R(t), t ≥ 0 satisfies the following property;

(R1) The map t 7→ R(t) is continuous from (0, T0] to L(X) with the uniform operator norm ‖ · ‖L(X).

(HF) The function F : [0, T0]×B → X is Lipschitz continuous and there exist constants LF > 0 and 0 < β ≤ 1
such that

‖ AβF(t, x1)− AβF(s, x2)‖ ≤ LF[‖ x1 − x2‖B], (3.19)

and

‖ AβF(t, x)‖ ≤ C1‖ x‖B + C2, (3.20)

for all x, x1, x2 ∈ B and t ∈ [0, T0], where C1, C2 are positive constants.

(HG) G : [0, T0]×B× X → X is a nonlinear function such that
(1) For each u : (−∞, T0] → X, u0 = φ ∈ B, G(t, ·, ·) is continuous for a.e. t ∈ [0, T0] and function
t 7→ G(t, ut,

∫ t
0 E(t, s, us)ds) is strongly measurable for u ∈ PC([0, T0]; X).

(2) There is an integrable function α : J → [0, ∞) and a monotone increasing continuous function Ω :
R+ → R+ such that

‖ G(τ, x, y)‖ ≤ α(τ)Ω(‖ x‖B + ‖ y‖), τ ∈ [0, T0], (x, y) ∈ B× X. (3.21)

(3) There is an integrable function η : J → [0, ∞) such that for any bounded subset E1 ⊂ PC((−∞, 0]; X),
E2 ⊂ X, we have that

χ(R(τ)G(τ, E1, E2)) ≤ ξ(τ){ sup
−∞≤θ≤0

χ(E1(θ)) + χ(E2)}, (3.22)

for a.e. t ∈ [0, T0]. Where E1(θ) = {u(θ) : u ∈ E1}.

(HE) (1) There is a constant E1 > 0 such that

‖
∫ τ

0
[E(τ, s, u)− E(τ, s, v)]ds‖ ≤ E1‖ u− v‖B, τ, s ∈ [0, T0], u, v ∈ B. (3.23)

(2)The map E(t, s, ·) : B → X is continuous for each (t, s) ∈ [0, T0] × [0, T0] and E(·, ·, u) : [0, T0] ×
[0, T0] → X is a strongly measurable function for each u ∈ B. There exist a constant ζ > 0 and integrable
function mE : J → [0, ∞) such that

‖ E(τ, s, x)‖ ≤ ζmE(s)ϕ(‖ x‖), τ, s ∈ [0, T0], (3.24)

where ϕ ∈ C([0, ∞); [0, ∞)) is a increasing function and
∫ ∞

0 ζmE(s)ds ≤ L0.

(HI) (1) The functions Ii : B → X, i = 1, 2, · · · , m are continuous and there are constant Li > 0 (i =
1, 2, · · · , m) such that

‖ Ii(x)− Ii(y)‖ ≤ Li‖ x − y‖B, ∀ x, y ∈ B. (3.25)

(2) There exist positive constant K1
i and K2

i ,(i = 1, · · · , m) such that

‖ Ii(x)‖ = K1
i ‖ x‖B + K2

i , x ∈ B. (3.26)
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(H’)

µ1 = [(KT0 N1H + MT0) + KT0 N1‖ A−β‖C1]‖ φ‖B + KT0 [‖ A−β‖C2

+
M1−βT0

β

β
C2 + N2

M1−βT0
β+1

β
C2 + N1 ∑

0<ti<t
K1

i ], (3.27)

µ2 = [‖ A−β‖C1 +
M1−βT0

β

β
C1 + N2

M1−βT0
β+1

β
C1

+N1 ∑
0<ti<t

K1
i ] < 1 (3.28)

and ∫ T0

0
m̂E(s)ds ≤

∫ ∞

b

ds
Ω(s) + ϕ(s)

, (3.29)

where b = µ1
1−µ2

.

Definition 3.5. A piecewise continuous function u : (−∞, T0] → X is said to be a solution for the system (1.1)-(1.3) if
u0 = φ, u(·)|[0,T0] ∈ PC and following impulsive integral equation

u(t) = R(t)[φ(0)− F(0, φ)] + F(t, ut) +
∫ t

0
AR(t− s)F(s, us)ds

+
∫ t

0
AR(t− s)

∫ s

0
f (s− τ)F(τ, uτ)dτds

+
∫ t

0
R(t− s)G(s, us,

∫ s

0
E(s, τ, uτ)dτ)ds

+ ∑
0<ti<t

R(t− ti)Ii(uti ), t ∈ [0, T0], (3.30)

is verified.

Let z : (−∞, T0] → X be a function defined by z0 = φ and z(t) = R(t)φ(0) on [0, T0]. It is clear that ‖ zt‖ ≤
(KT0 N1H + MT0)‖ φ‖B, where KT0 = supt∈[0,T0] K(t), MT0 = supt∈[0,T0] M(t).

Theorem 3.1. Suppose (HR), (HF), (HG), (HE), (HI), (H′) holds and

KT0 [LF +
M1−βT0

β

β
LF +

N2LF M1−βT0
β+1

β
+ N1

m

∑
i=1

Li] + (1 + L0Ω1)
∫ t

0
ξ(s)ds ≤ 1. (3.31)

Then, the impulsive system (1.1)-(1.3) has a mild solution.

Proof. Let S(T0) = {u : (−∞, T0] → X, u0 = 0, u|[0,T0] ∈ PC} endowed with the supremum norm ‖ · ‖ be the
space. Define operator P : S(T0) → S(T0) as

Pu(t) =



0, t ∈ (−∞, 0],

−R(t)F(0, φ) + F(t, ut + zt) +
∫ t

0 AR(t− s)F(s, us + zs)ds

+
∫ t

0 AR(t− s)
∫ s

0 f (s− τ)F(τ, uτ + zτ)dτds

+
∫ t

0 R(t− s)G(s, us + zs,
∫ s

0 E(s, τ, uτ + zτ)dτ)ds

+ ∑
0<ti<t

R(t− ti)Ii(uti + zti ), t ∈ [0, T0].

(3.32)

Also we have ‖ ut + zt‖B ≤ (KT0 N1H + MT0)‖ φ‖B + KT0‖ u‖t, where ‖ u‖t = sups∈[0,t] ‖ u(s)‖. From the
axioms A, our assumptions and the strongly continuity of R(t), we can see that Pu ∈ PC. For u ∈ S(T0), we
get

‖ AR(t− s)F(s, us + zs)‖ = ‖ A1−βR(t− s)AβF(s, us + zs)‖,

≤
M1−β

(t− s)1−β
[C1‖ us + zs‖B + C2], (3.33)
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thus, from the Bocher theorem it takes after that AR(t − s)F(s, us + zs) is integrable. So, we obtain that P is
well defined on S(T0). We give the demonstration of Theorem 3.1 in the numerous steps.

Step 1. The set {x ∈ PC([0, T0]; X) : u(t) = λPu(t), for 0 < λ < 1} is bounded.
For 1 > λ > 0, let uλ be a solution for u = λPu. We have that

‖ uλt + zt‖ ≤ (KT0 N1H + MT0)‖ φ‖B + KT0‖ uλ‖t. (3.34)

Let νλ(t) = (KT0 N1H + MT0)‖ φ‖B + KT0‖ uλ‖t, for each t ∈ [0, T0]. Then, we have

‖ uλ(t)‖ = ‖ λPuλ(t)‖ ≤ ‖ Puλ(t)‖,

≤ ‖ R(t)F(0, φ)‖+ ‖ F(t, uλt + zt)‖

+
∫ t

0
‖ A1−βR(t− s)‖‖ AβF(t, uλs + zs)‖ds

+
∫ t

0
‖ A1−βR(t− s)‖

∫ s

0
f (s− τ)‖AβF(τ, uτ + zτ)‖dτds

+
∫ t

0
‖ R(t− s)G(s, us + zs,

∫ s

0
E(s, τ, uτ + zτ)dτ)‖ds

+ ∑
0<ti<t

‖ R(t− ti)Ii(uti + zti )‖,

≤ N1‖ A−β‖[C1‖ φ‖B + C2] + ‖ A−β‖[C1νλ(t) + C2]

+
M1−βT0

β

β
(C1νλ(s) + C2) + N2

M1−βT0
β+1

β
(C1νλ(s) + C2)

+N1

∫ t

0
α(s)Ω(νλ(s) +

∫ s

0
ζmE(τ)ϕ(νλ(τ))dτ)ds

+N1 ∑
0<ti<t

(K1
i νλ(t) + K2

i ),

≤ N1‖ A−β‖[C1‖ φ‖B + C2] + ‖ A−β‖C2 +
M1−βbβ

β
C2 + N2

M1−βT0
β+1

β
C2

+N1 ∑
0<ti<t

K2
i + [‖ A−β‖C1 +

M1−βT0
β

β
C1 + N2

M1−βT0
β+1

β
C1

+N1 ∑
0<ti<t

K1
i ]νλ(t) + N1

∫ t

0
α(s)Ω(νλ(s) +

∫ s

0
ζ mE(τ)ϕ(νλ(τ))dτ)ds,

which gives that

νλ(t) ≤ [(KT0 N1H + MT0) + KT0 N1‖ A−β‖C1]‖ φ‖B + KT0 [‖ A−β‖C2

+
M1−βT0

β

β
C2 + N2

M1−βT0
β+1

β
C2 + N1 ∑

0<ti<t
K1

i ] + [‖ A−β‖C1

+
M1−βT0

β

β
C1 + N2

M1−βT0
β+1

β
C1 + N1 ∑

0<ti<t
K1

i ]νλ(t)

+N1

∫ t

0
α(s)Ω(νλ(s) +

∫ s

0
ζ mE(τ)ϕ(νλ(τ))dτ)ds,

νλ(t) ≤ µ1

1− µ2
+

N1KT0

1− µ2

∫ t

0
α(s)Ω(vλ(s) +

∫ s

0
ζ mE(τ)ϕ(νλ(τ))dτ)ds,

Take b = µ1
1−µ2

, therefore we get

νλ(t) ≤ b +
N1KT0

1− µ2

∫ t

0
α(s)Ω(νλ(s) +

∫ s

0
ζ mE(τ)ϕ(νλ(τ))dτ)ds, (3.35)

Let βλ(t) = b +
N1KT0
1−µ2

∫ t
0 α(s)Ω(νλ(s) +

∫ s
0 ζ ·mE(τ)ϕ(νλ(τ))dτ)ds, then we have βλ(0) = b and

νλ(t) ≤ βλ(t), 0 ≤ t ≤ T0. (3.36)
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Also, we get

β
′
λ(t) ≤

N1KT0

1− µ2
α(t)Ω(νλ(t) +

∫ t

0
ζ mE(s)ϕ(νλ(s))ds). (3.37)

Since we have that Ω is nondecreasing. Therefore we get

β
′
λ(t) ≤

N1KT0

1− µ2
α(t)Ω(βλ(t) +

∫ t

0
ζ mE(s)ϕ(βλ(s))ds). (3.38)

Now we take Bλ(t) = βλ(t) +
∫ t

0 ζ mE(s)ϕ(βλ(s))ds and we have Bλ(0) = βλ(0) and Bλ(t) ≤ βλ(t).

B
′
λ(t) = β

′
λ(t) + ζ mE(t)ϕ(βλ(t)),

≤
N1KT0

1− µ2
α(t)Ω(Bλ(t)) + ζ mE(t)ϕ(Bλ(t)),

≤ m̂E(t)(Ω(Bλ(t)) + ϕ(Bλ(t))), (3.39)

which gives that ∫ Bλ(t)

Bλ(0)

1
Ω(s) + ϕ(s)

ds ≤
∫ T0

0
m̂E(s)ds ≤

∫ ∞

b

1
Ω(s) + ϕ(s)

ds. (3.40)

It implies that functions βλ(t) are bounded on [0, T0]. Therefore, the function νλ(t) are bounded on [0, T0] and
uλ(·) are bounded on [0, T0].
Step 2. P is χ-contraction.
We introduce the decomposition of P = P1 + P2 such that

P1u(t) = R(t)[−F(0, φ)] + F(t, ut + zt) +
∫ t

0
AR(t− s)F(s, us + zs)ds

+
∫ t

0
AR(t− s)

∫ s

0
f (s− τ)F(τ, uτ + zτ)dτds

+ ∑
0<ti<t

R(t− ti)Ii(uti + zti ), (3.41)

P2u(t) =
∫ t

0
R(t− s)G(s, us + zs,

∫ s

0
E(s, τ, uτ + zτ)dτ)ds. (3.42)

To prove the result, firstly we show that P1 satisfies the Lipschitz condition. For u1, u2 ∈ S(T0), we have
‖ P1u1(t)− P1u2(t)‖

≤ ‖ AβF(t, u1t + zt)− AβF(t, u2t + zt)‖

+
∫ t

0
‖A1−βR(t− s)‖‖AβF(s, u1s + zs)− F(s, u2s + zs)‖ds

+
∫ t

0
‖A1−βR(t− s)‖

∫ s

0
‖ f (s− τ)‖‖AβF(τ, u1τ + zτ)− F(τ, u2τ + zτ)‖dτds

+ ∑
0<ti<t

‖R(t− ti)‖‖ Ii(u1ti
+ zti )− Ii(u2ti

+ zti )‖,

≤ LF‖ u1t − u2t‖B +
M1−βT0

β

β
LF‖ u1t − u2t‖B

+
N2LF M1−βT0

β+1

β
‖ u1t − u2t‖B + N1

m

∑
i=1

Li‖ u1t − u2t‖B,

≤ KT0 [LF +
M1−βT0

β

β
LF +

N2LF M1−βT0
β+1

β
+ N1

m

∑
i=1

Li]‖ u1 − u2‖T0 , (3.43)

it gives that P1 is Lipschitz continuous with Lipschitz constant L = KT0 [LF +
M1−βT0

β

β LF +
N2LF M1−βT0

β+1

β +
N1 ∑m

i=1 Li].
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Let B be an arbitrary subset of S(T0). Since R(t) is equicontinuous resolvent. Therefore, from the as-
sumption (HG) and the strongly continuity of R(t), we have that R(t− s)G(s, xs + ys,

∫ s
0 E(s, τ, xτ + yτ)dτ) is

piecewise equicontinuous. Then, by the Lemma 2.6 we have
χ(P2(B(t)))

≤ χ(
∫ t

0
R(t− s)G(s, Bs + zs,

∫ s

0
E(s, τ, Bτ + zτ)dτ)ds),

≤
∫ t

0
ξ(s) · ( sup

−∞<θ≤0
χ(B(s + θ) + z(s + θ)) + χ(

∫ s

0
E(s, τ, Bτ + zτ)dτ))ds,

≤
∫ t

0
ξ(s) sup

−∞<θ≤0
[χ(B(s + θ) + z(s + θ)) + L0χ(Ω(B(s + θ) + z(s + θ)))]ds,

≤
∫ t

0
ξ(s) sup

0≤τ≤s
(χ(B(τ)) + L0χ(Ω(B(τ))))ds,

≤ χPC(B)[1 + Ω1L0]
∫ t

0
ξ(s)ds, [χ(Ω(B(τ))) ≤ Ω1χ(B(τ))], (3.44)

for every bounded set B ⊂ PC. Where Ω1 is a constant.
Now we can see that for any bounded subset B ∈ PC

χPC(P(B)) = χPC(P1B + P2B),

≤ χPC(P1B) + χPC(P2B),

≤ (L + (1 + L0Ω1)
∫ t

0
ξ(s)ds)χPC(B), (3.45)

from the above inequality we obtain that P is χ-contraction. Hence P has at least one fixed point in B by Darbo
fixed point theorem. Let u be the fixed point of the map Q on S(T0). Thus y = u + z is a mild solution for the
problem (1.1)-(1.3). Therefore this completes the proof of the theorem.

Theorem 3.2. Suppose that (HR), (HF), (HG), (HE), (HI) and (H′) are satisfied and

KT0 [‖ A−β‖C1 +
M1−βT0

β

β
C1 +

N2M1−βT0
β+1

β
C1

+N1

m

∑
i=1

K1
i ] + N1KT0

∫ T0

0
α(s)ds lim

τ→∞
sup

τ + L0 ϕ(τ)
τ

< 1. (3.46)

Then, the impulsive system (1.1)-(1.3) has a mild solution.

Proof. Thus proof of the above theorem is like that of Theorem 3.1, We characterize the operator P as (3.32).
Now, we show that there exist a r > 0 such that Q(Br) ⊂ Br, where Br is a closed and convex ball with center
at the origin and radius r i.e., Br = {u ∈ S(T0) : ‖ u‖T0 ≤ r}. To prove it, we assume that for any r > 0, there
exists ur ∈ Br and tr ∈ [0, T0] such that r < ‖ Qur(tr)‖. For ur ∈ Br and tr ∈ [0, T0], we have

r < ‖ Qur(tr)‖ ≤ N1‖ F(0, φ)‖+ ‖ A−β‖[C1‖ urtr + ztr‖B + C2]

+
∫ tr

0
‖A1−βR(tr − s)‖‖AβF(s, urs + zs)‖ds

+
∫ tr

0
‖A1−βR(tr − s)‖

∫ s

0
‖ f (s− τ)‖ ‖AβF(τ, urτ + zs)‖dτds

+N1

∫ tr

0
‖ G(s, urs + zs,

∫ s

0
E(s, τ, urτ + zs)τ)‖ds

+N1

m

∑
i=1

(K1
i ‖ urt + zt‖B + K2

i ),
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≤ N1‖ A−β‖(C1‖φ‖B + C2) + ‖ A−β‖[C1‖ urtr + ztr‖B + C2]

+
M1−βT0

β

β
(C1‖ urtr + ztr‖B + C2) +

N2M1−βT0
β+1

β
(C1‖ urtr + ztr‖B + C2)

+
∫ tr

0
α(s)Ω(‖ urtr + ztr‖B + ‖

∫ s

0
E(s, τ, urτ + zτ)dτ‖)ds

+N1

m

∑
i=1

(K1
i ‖ urt + zt‖B + K2

i ),

≤ N1‖ A−β‖(C1‖φ‖B + C2) + ‖ A−β‖C2 +
M1−βT0

β

β
C2 +

N2M1−βT0
β+1

β
C2

+N1

m

∑
i=1

K2
i + [‖ A−β‖C1 +

M1−βT0
β

β
C1 +

N2M1−βT0
β+1

β
C1 + N1

m

∑
i=1

K1
i ]

×[(KT0 N1H + MT0)‖ φ‖B + KT0 r] +
∫ tr

0
α(s)Ω((KT0 N1H + MT0)‖ φ‖B

+KT0 r + L0 ϕ((KT0 N1H + MT0)‖ φ‖B + KT0 r))ds,

(3.47)

it gives that

1 < KT0 [‖ A−β‖C1 +
M1−βT0

β

β
C1 +

N2M1−βT0
β+1

β
C1 + N1

m

∑
i=1

K1
i ]

+N1

∫ T0

0
α(s)ds

× lim
r→∞

sup
Ω((KT0 N1H + MT0)‖ φ‖B + KT0 r + L0 ϕ((KT0 N1H + MT0)‖ φ‖B + KT0 r))

r
,

≤ KT0 [‖ A−β‖C1 +
M1−βT0

β

β
C1 +

N2M1−βT0
β+1

β
C1 + N1

m

∑
i=1

K1
i ]

+N1KT0

∫ T0

0
α(s)ds lim

τ→∞
sup

τ + L0 ϕ(τ)
τ

, (3.48)

which is the contradiction of the inequality (3.46). Hence we conclude that QBr ⊂ Br.
As the proof of the Theorem 3.1, we obtain that there exists at least a mild solution for the problem (1.1)-
(1.3).

4 Example

In this section, we consider an example to illustrate the application of the theory. Here we take the space
C0 × L2(h, X) as phase space B(see, [5]).
We consider the following first order neutral integro-differential equation with unbounded delay

d
dt

[x(t, u)−
∫ t

−∞

∫ π

0
B(t− s, ξ, u)x(s, ξ)dξds] =

∂2

∂u2 [x(t, u) +
∫ t

0
f (t− s, u)x(s, u)ds]

+
∫ t

0
a(t, u, s− t)G(x(s, u),

∫ s

0
E(s, τ, xτ)dτ)ds, t ∈ [0, T0], u ∈ [0, π], (4.49)

x(t, 0) = x(t, π) = 0, t ∈ [0, T0], (4.50)

x(τ, u) = φ(τ, u), τ ≤ 0, 0 ≤ u ≤ π, (4.51)

∆x(ti)(u) =
∫ t

−∞
ci(ti − s)x(s, u)ds, (4.52)

where φ ∈ C0 × L2(h, X) and 0 < t1 < t2 < · · · < tm < b are fixed numbers.
The function B, f , a, G, E, ci are satisfied the following conditions:
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(A1) The function B(s, ξ, u), ∂
∂u B are measurable and B(s, ξ, 0) = B(s, ξ, π) = 0. Also

LB = max{(
∫ π

0

∫ 0

−∞

∫ π

0

1
h(s)

(
∂iB(s, ξ, u)

∂ui )dξdsdu)1/2 : i = 0, 1} < ∞; (4.53)

(A2) The operator f (t), t ≥ 0 is bounded and ‖ f (t, u)‖ ≤ N2;

(A3) a(t, u, τ) is continuous function on [0, T0]× [0, π]× (−∞, 0] with
∫ 0
−∞ a(t, u, τ)dτ = n(t, u) < ∞;

(A4) G is a continuous function, satisfying G(x1, x2) ≤ Ω
′
(‖ x1‖+ ‖ x2‖), where Ω

′
(·) is continuous, increas-

ing and positive on [0, ∞);

(A5) The function E(·) is a continuous function, satisfying 0 ≤ E(t, s, u) ≤ ω(‖ u‖), where ω is a positive
increasing continuous function on [0, ∞);

(A6) The functions ci ∈ C([0, ∞); R) and K3
i = (

∫ 0
−∞

(ci(s))2

h(s) ds)1/2 < 0, ∀ i = 1, · · · , m;

Let Ax = x′′, A : D(A) ⊂ X → X is a linear operator with domain

D(A) = {x ∈ X : x′′ ∈ X, x(0) = x(π) = 0}. (4.54)

It is known that A is the infinitesimal generator of an analytic resolvent operator R(t), t ≥ 0. We assume that
the (A1)− (A6) are established.
Now, the system (4.49)-(4.52) can be reformulated as the abstract impulsive Cauchy problem (1.1)-(1.3) giving
by

F(t, y)(u) =
∫ 0

−∞

∫ π

0
B(s, z, u)y(s, z)dzds, (4.55)

G1(t, w, y)(u) =
∫ 0

−∞
a(t, u, τ)G(w(τ, u),

∫ τ

0
y(τ, θ, xθ)dθ)dτ, (4.56)

Ii(y)(u) =
∫ 0

−∞
ci(s)y(s, u)ds. (4.57)

It is easy to see that F(t, ·), G1(t, ·, ·), Ii(i = 1, · · · , m) are bounded linear operators. Applying the Theorem 3.1,
we conclude that the problem (4.49)-(4.52) has at least one mild solution.

Acknowledgment

The authors would like to thank the referee for valuable comments and suggestions. The work of the first
author is supported by the University Grants Commission (UGC), Government of India, New Delhi and
Indian Institute of Technology, Roorkee.

References

[1] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, New
York, (1983).

[2] B. D. Andrade and J. P. Carvalho Dos Santos, Existence of solutions for a fractional neutral integro-
differential equation with unbounded delay, Elect. J. Diff. Equ., 90 (2012), 1-13.

[3] E. Hernández and D. O’ Regan, On a new class of abstract impulsive differential equations, Proc. Amer.
Math. Soc., 141 (2012) 1641-1649.
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