Abstract
Let G be a simple graph with p vertices and q edges. A V-super vertex magic labeling is a bijection $f : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p+q\}$ such that $f(V(G)) = \{1, 2, \ldots, p\}$ and for each vertex $v \in V(G)$, $f(v) + \sum_{uv \in N(v)} f(uv) = M$ for some positive integer M. A V_k-super vertex magic labeling (V_k-SVML) is a bijection $f : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p+q\}$ with the property that $f(V(G)) = \{1, 2, \ldots, p\}$ and for each $v \in V(G)$, $f(v) + w_k(v) = M$ for some positive integer M. A graph that admits a V_k-SVML is called V_k-super vertex magic. This paper contains several properties of V_k-SVML in graphs. A necessary and sufficient condition for the existence of V_k-SVML in graphs has been obtained. Also, the magic constant for E_k-regular graphs has been obtained. Further, we study some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs which admit V_2-SVML.

Keywords
Vertex magic total labeling, super vertex magic total labeling, V_k-super vertex magic labeling, E_k-regular graphs, circulant graphs.

AMS Subject Classification
05C78.

1 Introduction ... 795
2 Main Results ... 796
3 V_2-SVML of cycles and prisms 797
4 Some Results on V-SVML 798
References .. 799

1. Introduction
Throughout this paper, we consider only finite, simple and undirected graphs. The set of vertices and edges of a graph $G(p,q)$ will be denoted by $V(G)$ and $E(G)$ respectively, $p = |V(G)|$ and $q = |E(G)|$. For graph theoretic terminology, we follow [2].

A graph labeling is a mapping or a function that carries a set of graph elements (usually vertices and/or edges) into a set of numbers (usually integers). Lot of labelings have been defined and studied by many authors and an excellent survey of graph labeling can be found in [1].

In 2002, MacDougall et al. [3] introduced the notion of vertex magic total labeling (VMTL) in graphs. A VMTL of the graph G is a bijection $f : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p+q\}$ such that for each vertex $v \in V(G)$, $f(v) + \sum_{uv \in N(v)} f(uv) = M$ for some positive integer M [3]. This constant is called as the magic constant of VMTL of G. They studied some basic properties of vertex magic graphs and showed some families of graphs having a VMTL.

In 2004, MacDougall et al. [4] defined the super vertex-magic total labeling (SVMTL) in graphs. They call a VMTL is super if $f(V(G)) = \{1, 2, \ldots, p\}$. In this labeling, the smallest labels are assigned to the vertices.

This paper generalizes the definition of SVMTL and define a new labeling called V_k-super vertex magic labeling. Let $G(V,E)$ be a graph and k be an integer such that $1 \leq k \leq \text{diam}(G)$. For $e \in E(G)$, we define $E_k(e)$ as the set of all vertices which are at a distance at most k from e. Also $E_k(v)$ denotes the set of all edges which are at a distance at most k from v. Note that if uv is an edge, then the vertices u and v are at distance 1 from the edge uv. The graph G is said to be E_k-regular with regularity r if and only if $|E_k(e)| = r$ for some integer $r \geq 1$ and for all $e \in E(G)$. Note that all nontrivial graphs are E_1-regular. For a vertex $v \in V(G)$, we denote $w_k(v) = \sum_{e \in E_k(v)} f(e)$. Consider the following graph $G(V,E)$, where $V(G) = \{v_1, v_2, v_3, v_4, v_5, v_6\}$
and $E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6\}$.

![Fig 1: G](image)

Table 1 gives $E_k(v)$ and $E_k(e)$ for $k = 2$.

<table>
<thead>
<tr>
<th>$E_2(v)$</th>
<th>$E_2(e)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${v_1, v_2, v_3, v_4}$</td>
<td>${e_1, e_4}$</td>
</tr>
<tr>
<td>${v_1, v_2, v_3, v_4}$</td>
<td>${e_2}$</td>
</tr>
<tr>
<td>${v_1, v_2, v_3, v_4}$</td>
<td>${e_1, v_1, v_2, v_3, v_4}$</td>
</tr>
<tr>
<td>${e_1, e_4, e_5, e_6}$</td>
<td>${e_2}$</td>
</tr>
<tr>
<td>${e_2}$</td>
<td>${e_2}$</td>
</tr>
</tbody>
</table>

Table 1

A V_k-super vertex magic labeling (V_k-SVML) is a bijection $f : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p + q\}$ with the property that $f(V(G)) = \{1, 2, \ldots, p\}$ and for every $v \in V(G)$, $f(v) + w_k(v) = M$ for some positive integer M. This constant is called as the magic constant of V_k-SVML of G. A graph that admits a V_k-SVML is called V_k-super vertex magic (V_k-SVM).

This paper contains several properties of V_k-SVML in graphs. A necessary and sufficient condition for the existence of V_k-SVML in graphs has been obtained. Also, the magic constant for E_k-regular graphs has been obtained. Further, we study some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs which admit V_2-SVML.

2. Main Results

In this section, we obtain some basic properties of V_k-SVML.

Let G be a connected graph of order $p(\geq 2)$. Suppose $E_k(u) = E_k(v)$ for two different vertices u and v of G. Then $f(u) + w_k(u) \neq f(v) + w_k(v)$ for any V_k-SVML f of G (since f is one to one). In this case, G does not admit V_k-SVML and hence the next result follows.

Lemma 2.1. Let G be a connected graph of order $p(\geq 2)$. If $E_k(u) = E_k(v)$ for some $u, v \in V(G)$ ($u \neq v$), then the graph G does not admit V_k-SVML.

Corollary 2.2. The star graph S_n does not admit V_k-SVML for $k \geq 2$.

If a graph G admits V_k-SVML, then $1 \leq k \leq \text{diam}(G)$ (otherwise, $E_k(u) = E_k(v)$ for any two different vertices $u, v \in V(G)$).

Definition 2.3. In a graph G, a vertex of degree $|V(G)| - 1$ is called a full vertex of G.

Corollary 2.4. Let G be a connected graph of order $p(\geq 2)$ and u be a full vertex of G. Then G does not admit V_k-SVML for $k \geq 3$.

Lemma 2.5. If a graph $G(p, q)$ is V_k-SVM and G is E_k-regular with regularity r, then the magic constant is given by $M = \frac{p+1}{2} + rq + \frac{rq(q+1)}{2}$.

Proof. Let f be a V_k-SVML of G with the magic constant M. Then $f(V(G)) = \{1, 2, \ldots, p\}$, $f(E(G)) = \{p + 1, p + 2, \ldots, p + q\}$ and $M = f(v) + w_k(v)$ for all $v \in V(G)$. By summing over all $v \in V(G)$, $pM = \sum_{v \in V(G)} f(v) + \sum_{v \in V(G)} w_k(v)$.

The first sum is $\frac{E(p+1)}{2}$ and the second sum is $\sum_{v \in V(G)} w_k(v) = \sum_{v \in V(G)} \sum_{e \in E(G)} f(e) = r \sum_{e \in E(G)} f(e) = r(pq) + \frac{rq(q+1)}{2}$, where the second equality uses from E_k-regular that each edge is in exactly r of the sets $E_k(v)$. Thus $pM = \frac{p(p+1)}{2} + r(pq) + \frac{rq(q+1)}{2}$ and hence $M = \frac{p+1}{2} + r(pq) + \frac{rq(q+1)}{2}$.

In Lemma 2.5, we give the magic constant only for E_k-regular graphs which admit V_k-SVML for $k \geq 1$. MacDougall et. al obtained the following result which gives the magic constant of V-SVML for any graph.

Lemma 2.6. [4] If G has a super-vertex magic total labeling, then $M = 2q + \frac{(p+1)}{2} + \frac{q(q+1)}{p}$.

When $k = 1$, we have $r = |E_1(e)| = 2$ for all $e \in E(G)$. Thus if we put $k = 1$ in Lemma 2.5, then it gives the proof of Lemma 2.6.

Lemma 2.7. For $k \geq 2$, there dose not exist a tree, which is E_k-regular and V_k-SVM.

Proof. Let T be a tree and $\text{diam}(T) = d(\geq 3)$. Let $P = u_0u_1 \ldots u_{d-1}u_d$ be a path of length d. Then u_0u_1 and $u_{d-1}u_d$ must be pendent edges. When $k = d$, we have $E_k(u_0) = E_k(u_d)$ and hence T is not V_k-SVM. Also, $k \leq d - 1$, we have $E_k(u_1u_2) > E_k(u_0u_1)$ and hence T is not E_k-regular. Thus $\text{diam}(T) \leq 2$ and hence T is a star graph. By Corollary 2.2, the star graph S_n does not admit V_k-SVML for $k \geq 2$.

Theorem 2.8. If $G(p, q)$ is a connected E_k-regular graph with regularity r, then $M \geq \frac{7p+5}{2}$ if $k = 1$ and $M \geq \frac{(p+1)(r+1)}{2} + rp$ if $k \geq 2$.

Proof. For $k = 1$, we have $r = 2$. Since G is connected, $q \geq p - 1$. Thus by Lemma 2.5, $M \geq \frac{7p+5}{2} + 2(p-1) + (p-1) = \frac{7p+5}{2}$ (This is already proved in [4]).

Let $k \geq 2$. If $q = p - 1$, then G must be a tree and hence by...
Lemma 2.7, there do not exist a tree \(T \), which is \(E_{k} \)-regular and \(V_{k} \)-SVM. Hence assume that \(q \geq p \). By Lemma 2.5, \(M \geq \frac{p+1}{2} + rp + \frac{r(p+1)}{2} = \frac{(p+1)(r+1)}{2} + rp \).

Remark 2.9. For \(k \geq 2 \), the lower bound for the magic constant \(M \) obtained in Theorem 2.8 is sharp. For example, consider the following \(V_{2} \)-SVM of \(C_{5} \) (see Figure 2).

![Figure 2: V2-SVM of C5](image)

Note that the cycle \(C_{5} \) is \(E_{2} \)-regular with regularity 4. Here the mask constant \(M = 35 \). In Theorem 2.8, we proved that \(M \geq 35 \).

Theorem 2.10. Let \(G \) be a \((p, q)\) graph and \(g \) be a bijection from \(E(G) \) onto \(\{p + 1, p + 2, \ldots, p + q\} \). Then \(g \) can be extended to a \(V_{k} \)-SVM of \(G \) if and only if \(\{w_{k}(u)/u \in V(G)\} \) consists of \(p \) sequential integers.

Proof. Assume that \(\{w_{k}(u)/u \in V(G)\} \) consists of \(p \) sequential integers. Let \(t = \min \{w_{k}(u)/u \in V(G)\} \). Define \(f : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p + q\} \) as \(f(xy) = g(xy) \) for \(xy \in E(G) \) and \(f(x) = t + p - w_{k}(x) \). Then \(f(E(G)) = \{p + 1, p + 2, \ldots, p + q\} \) and \(f(V(G)) = \{1, 2, \ldots, p\} \). Hence \(f \) is \(V_{k} \)-SVM with \(M = t + p \).

Conversely, suppose \(g \) can be extended to a \(V_{k} \)-SVM \(f \) of \(G \) with a magic constant \(M \). Since \(f(u) + w_{k}(u) = M \) for every \(u \in V(G) \), we have \(w_{k}(u) = M - f(u) \). Thus \(\{w_{k}(u)/u \in V(G)\} \) is a set of \(p \) consecutive integers. \(\square \)

3. V2-SVM of cycles and prisms

In this section, we identified some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs, which admit \(V_{2} \)-SVM.

Lemma 3.1. [5] For any integers \(a \) and \(b \), we have \(\gcd(a, b) = \gcd(b, a) = \gcd(\pm a, \pm b) = \gcd(a, b-a) = \gcd(a, b+a) \).

By Lemma 2.1, the cycles \(C_{3} \) and \(C_{4} \) are not \(V_{2} \)-SVM.

Theorem 3.2. For an integer \(n \geq 5 \), the cycle \(C_{n} \) is \(V_{2} \)-SVM if and only if \(n \) is odd.

Proof. Suppose there exists a \(V_{2} \)-SVM \(f \) of \(C_{n} \). Since \(|E_{2}(e)| = r = 4 \) for all \(e \in E(C_{n}) \), by taking \(k = 2 \), \(p = q = n \) and \(r = 4 \) in Lemma 2.5, we get \(M = \frac{13n+5}{2} \). Since \(M \) is an integer, \(n \) must be odd.

Conversely, assume that \(n \) is odd and \(n \geq 5 \). Let \(V(C_{n}) = \{a_{i} : 1 \leq i \leq n\} \) and \(E(C_{n}) = \{a_{i}a_{i+1} : 1 \leq i \leq n\} \), where the operation \(\oplus \) stands for addition modulo \(n \).

Case A: Suppose \(n = 4\ell + 1 \) for some integer \(\ell \geq 1 \). Define a function \(f : V(C_{n}) \cup E(C_{n}) \rightarrow \{1, 2, \ldots, 2n\} \) as follows:\(f(a_{i}) = i - 3 \) if \(4 \leq i \leq n \) and \(f(a_{i}) = (n - 3) + i \) when \(1 \leq i \leq 3 \); \(f(a_{i+1}) = [(i-1)\ell \oplus 1] + n \), where \((i-1)\ell \oplus 1 \) is the positive residue when \((i-1)\ell + 1 \) divides \(n \).

Now we prove that \(f(E(C_{n})) = \{n+1, n+2, \ldots, 2n\} \).

Then by Claim 2, \(f(a_{i}) = 2n+1+2i+1 \) for \(4 \leq i \leq n \). Hence we have \(f(a_{i}) = n+1 = \ell + 1 \leq n+2 \).

Since \(1 \leq x \leq n \), in the above four terms(brackets), all the residues are not positive, we have \(n+1 = \ell + 1 \leq n+2 \).

By taking \(n = 4\ell + 1 \), we get \(f(a_{i}) = 2n+1+2i+1 \). Thus \(f \) is a generator for the finite cyclic group \((Z_{n}, \oplus)\) and hence \(f(E(C_{n})) = \{n+1, n+2, \ldots, 2n\} \).

Claim 1: \(f(a_{j}) = 2n+1+2j+1 \) for \(4 \leq j \leq n \).

Claim 2: \(f(a_{1}) = (2\ell + 1)11 - i \) for \(i \geq 3 \).

Consider the vertex \(a_{1} \). \(f(a_{1}) = f(a_{n-1}) + f(a_{1}a_{1}) + f(a_{1}a_{2}) + f(a_{2}a_{2}) \). Since \(f(a_{n-1}) = [(n-2)\ell \oplus 1] + n \) and \(f(a_{1}a_{1}) = [(2\ell-1)\ell \oplus 1] + n \), we have \(f(a_{2}) = [2\ell \oplus 1] + [\ell \oplus 1] + 4n+1 \). Here, the first two terms are not positive. Thus \(f(a_{1}) = n-m2\ell + 1 + [n-m+\ell]n + \ell \). Similarly, we can show that \(f(a_{2}) = 2n+1+2i+1 \).

Case B: Suppose \(n = 4\ell + 3 \) for some integer \(\ell \geq 1 \). Define a function \(f : V(C_{n}) \cup E(C_{n}) \rightarrow \{1, 2, \ldots, 2n\} \) as follows:\(f(a_{i}) = n-i \) when \(1 \leq i \leq n \) and \(f(a_{i}) = n+i \) when \(i = n+1 \); \(f(a_{i+1}) = [(i-1)\ell + 1] \oplus 1 \oplus 1 \) when \(((i-1)\ell + 1) \oplus 1 \oplus 1 \) is the positive residue \((i-1)(\ell + 1) + 1 \) divides \(n \).

By Lemma 3.1, \(\gcd(\ell + 1, n) = \gcd(\ell + 1, 4\ell + 3) = \gcd(\ell + 1, 3\ell + 2) = \gcd(\ell + 1, 2\ell + 1) = \gcd(\ell + 1, \ell) = \gcd(\ell, 1) = 1 \).

\(\therefore \)
1. Hence \(\ell + 1 \) is a generator for the finite cyclic group \((Z_n, \cdot)\) and hence \(f(E(C_n)) = \{n + 1, n + 2, \ldots, 2n\}\). As proved in Case A, we can prove that the above labeling is a V2-SVML with magic constant \(M = \frac{3n + 5}{2} \).

Theorem 3.3. Let \(G = \overline{C_n} \) be the complement of the cycle \(C_n \), where \(n \geq 5 \) is an integer. Then \(G \) is V2-SVM with the magic constant \(\frac{n^2-2n}{2} - \frac{n^2-14n}{2} \).

Proof. Define \(f : V(\overline{C_n}) \cup E(\overline{C_n}) \rightarrow \{1, 2, \ldots, \frac{n^2+1}{2} \} \) as follows: First we label the \(n \) edges \(\{a_1a_2, a_2a_3, \ldots, a_na_1\} \) by \(f(a_{i+1}a_i) = n + i \) for \(1 \leq i \leq n \). The remaining \(n^2-3n \) \(n \) edges are randomly labeled with the labels \(\{2n + 1, 2n + 2, \ldots, \frac{n^2-4n}{2} \} \). The vertices are labeled as \(f(a_i) = i \). Note that for each vertex \(a_i \), the only edge with label \(n + i \) is not in \(E_2(a_i) \). Thus for each \(a_i \) with \(1 \leq i \leq n \), we have \(f(a_i) + w_2(a_i) = i + \left[\frac{n^2-2n}{2} - \frac{n^2-6n}{2} \right] - (n + i) = n - \frac{3n^2 - 14n}{2} \).

Definition 3.4. Let \(D_n \) be a prism graph of order \(n \) with \(|V(D_n)| = 2n \) and \(|E(D_n)| = 3n \). We take \(V(D_n) = \{a_1b_i, 1 \leq i \leq n\} \) and \(E(D_n) = \{a_1b_i, 1 \leq i \leq n\} \cup \{a_1a_2, b_2b_1, 1 \leq i \leq n\} \).

Theorem 3.5. For an integer \(n \geq 3 \), the prism \(D_n \) is V2-SVM if and only if \(n \) is even.

Proof. Suppose there exists a V2-SVML \(f \) of \(D_n \) with the magic constant \(M \). Since \(E_2(e) = r = 6 \) for all \(e \in E(D_n) \), by taking \(k = 2, p = 2n, q = 3n \) and \(r = 6 \) in Lemma 2.5, we get \(M = \frac{6n+15}{2} \). Since \(M \) is an integer, \(n \) must be even. Conversely, assume that \(n \) is even. Let \(V(D_n) = \{a_1b_i, 1 \leq i \leq n\} \) and \(E(D_n) = \{a_1b_i, 1 \leq i \leq n\} \cup \{a_1a_2, b_2b_1, 1 \leq i \leq n\} \). Define \(f : V(D_n) \cup E(D_n) \rightarrow \{1, 2, \ldots, 5n\} \) as follows:

- \(f(a_1) = n + \frac{n}{2} - \frac{1}{2} \) if \(n \) is odd; The range is given by \(\{n + 1, n + 2, \ldots, \frac{n^2-4}{2} \} \).
- \(f(a_2) = 2n - \left(\frac{1}{2} - 2 \right) \) if \(1 \geq \frac{n}{2} \) and \(i \) is even; \(\{n + \frac{n}{2} + 2, n + \frac{n}{2} + 3, \ldots, 2n\} \).
- \(f(a_3) = n + \frac{n}{2} + 1 \); \(\{n + \frac{n}{2} + 1, \ldots, 2n\} \).
- \(f(b_1) = \frac{n}{2} + \frac{n}{2} - 1 \) if \(n \) is odd; \(\{1, 2, \ldots, n\} \).
- \(f(b_2) = n + \frac{n}{2} - 1 \) if \(n \) is even; \(\{n + \frac{n}{2} + 1, \ldots, 2n-1\} \).
- \(f(a_1b_i) = 2n + \frac{n}{2} + 1 \) if \(i \) is odd; \(\{2n + 1, 2n + 2, \ldots, 2n + \frac{n}{2}\} \).
- \(f(a_1b_i) = 2n + \frac{n}{2} + 1 \) if \(i \) is even; \(\{2n + \frac{n}{2} + 1, \ldots, 3n\} \).
- \(f(a_1a_2b_1) = \frac{n}{2} + \frac{n}{2} - \frac{1}{2} \) if \(i \) is odd; \(\{3n + 1, \ldots, 3n + \frac{n}{2} \} \).
- \(f(b_2b_1) = 4n - \left(\frac{1}{2} - 1 \right) \) if \(i \) is even; \(\{3n + \frac{n}{2} + 1, 3n + \frac{n}{2} + 2, \ldots, 4n\} \).
- \(f(a_1a_2) = 4n + \frac{n}{2} \) if \(i \) is even; \(\{4n + 1, 4n + 2, \ldots, 4n + \frac{n}{2}\} \).
- \(f(b_2b_1) = 5n - \frac{n}{2} \) if \(i \) is odd; \(\{4n + \frac{n}{2} + 1, \ldots, 5n\} \).

It is easily seen that \(f \) is a V2-SVML with the magic constant \(M = \frac{6n+15}{2} \).

Let \(\Gamma \) be a finite group with \(e \) as the identity. A generating set of \(\Gamma \) is a subset \(A \) such that every element of \(\Gamma \) can be expressed as a product of finitely many elements of \(A \). Assume that \(e \notin A \) and \(a \in A \) implies \(a^{-1} \in A \) (\(A \) is called as symmetric generating set). A Cayley graph is a graph \(G = (V,E) \), where \(V(G) = \Gamma \) and \(E(G) = \{(x,a) \mid x \in V(G), a \in A\} \), denoted by \(Cay(\Gamma, A) \). Since \(A \) is a generating set for \(\Gamma \), \(G \) is a connected regular graph of degree \(|A| \). When \(\Gamma = Z_n \), the corresponding Cayley graph is called as a circulant graph, denoted by \(Cir(n, A) \).

In Lemma 2.5, we find the magic constant of \(E_k \)-regular graphs which admit V2-SVML. When \(A = \{1, 2, n-1, n-2\} \), the circulant graph \(Cir(n, A) \) is not E2-regular. In the next result, we find the magic constant of this family of circulant graphs.

Theorem 3.6. For an integer \(n \geq 7 \), the graph \(G = Cir(n, \{1, 2, n-1, n-2\}) \) is V2-SVML with the magic constant \(M = 27n + 7 \).

Proof. Let \(V(G) = \{a_1, a_2, \ldots, a_{2n}\} \) and \(E(G) = \{a_ia_{i+1}, a_{i+1}a_{i+2} : 1 \leq i \leq n\} \). Define \(f : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, 3n\} \) as follows:

- \(f(a_1) = i - 4 \) for \(5 \leq i \leq n \).
- \(f(a_1) = i + 4 \) for \(1 \leq i \leq 4 \).
- \(f(a_1a_{i+1}) = n + i \) for \(1 \leq i \leq n \) and \(f(a_1a_{i+2}) = 3n + 1 - i \) for \(1 \leq i \leq n \).

Let \(v \in V(G) \). Suppose \(v = a_i \) for some integer \(i \) with \(5 \leq i \leq n \). Then \(f(a_i) + w_2(a_i) = f(a_i) + f(a_{i-3}a_{i-2}) + f(a_{i-2}a_{i-1}) + f(a_{i-1}a_i) + f(a_ia_{i+1}) + f(a_{i+1}a_{i+2}) \) for \(\Gamma = \{1, 2, n-1, n-2\} \). We take \(f(a_1) = 1 \), \(f(a_1a_{i+1}) = 1 \), \(f(a_1a_{i+2}) = 3n + 1 - i \) for \(1 \leq i \leq n \).

In this section, we obtained some results on V-SVML.

Lemma 4.1. Any connected graph on four vertices is not V-SVM.

Proof. Suppose there exists a V-SVML with magic constant \(M \). All the non-isomorphic connected graphs on four vertices are given below.

![Diagram](image-url)

\[\text{4. Some Results on V-SVML} \]

In this section, we obtained some results on V-SVML.
By Lemma 2.6, $M = 2q + \frac{p+1}{2} + \frac{q(q+1)}{p}$. For the graphs A, B, C and D, the magic constant is not an integer and hence they are not V-SVM.

Suppose the graph E admits a V-SVML, say f. Then $M = 20$, $f(V(E)) = \{1, 2, 3, 4\}$ and $f(E(E)) = \{5, 6, 7, 8, 9\}$. Note that the vertices v_1 and v_3 are of degree two and $f(v_1)$, $f(v_3) \in \{1, 2, 3, 4\}$. Since $M = 20$, both $w(v_1)$ and $w(v_3)$ must be greater than or equal to 16, which is not possible since $f(E(E)) = \{5, 6, 7, 8, 9\}$. Thus E is not E-SVM.

Next, we consider the graph F. Suppose the graph F admits V-SVML, say f. Then $M = 25$, $f(V(F)) = \{1, 2, 3, 4\}$ and $f(E(F)) = \{5, 6, 7, 8, 9, 10\}$. With out loss of generality, we take $f(v_1) = 1$, $f(v_2) = 2$, $f(v_3) = 3$ and $f(v_4) = 4$. Consider the vertex v_4. Suppose the edges incident with v_4 receive the labels $\{10, 6, 5\}$. In this case the edges incident with v_1 cannot be labeled with $\{10, 9, 5\}$, $\{10, 8, 6\}$. Since v_3 is adjacent with v_4, one of the edge incident with v_1 must be labeled with 10 or 6 or 5. Thus the the edges incident with v_1 cannot be labeled with $\{9, 8, 7\}$. Hence f is not SVML, a contradiction. We can get the same contradictions when the edges incident with v_4 receive the labels $\{9, 7, 5\}$ and $\{8, 7, 6\}$.

Theorem 4.2. Let G be a (p, q) graph. If $q = p + 1$, then G is not V-SVM.

Proof. Suppose $q = p + 1$. Then by Lemma 2.6, $M = 2q + \frac{p+1}{2} + \frac{q(q+1)}{p} = 2(p + 1) + \frac{p+1}{2} + \frac{(p+1)(p+2)}{p} = 3p + 5 + \frac{1}{2} + \frac{p^2 + 3p}{2} + \frac{q(q+1)}{p}$, which is an integer only when $p = 4$. Thus by Lemma 4.1 G is not V-SVM.

Corollary 4.3. For $n \geq 4$, the cycle with one chord is not V-SVM.

<table>
<thead>
<tr>
<th>$f(v)$</th>
<th>incident edges of v</th>
<th>possible edge labelings</th>
<th>$w(v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(v_1) = 1$</td>
<td>v_1v_2, v_1v_3, v_1v_4</td>
<td>${(10, 9, 5), (10, 8, 6), (9, 8, 7)}$</td>
<td>$w(v_1) = 24$</td>
</tr>
<tr>
<td>$f(v_2) = 2$</td>
<td>v_2v_3, v_2v_1, v_2v_4</td>
<td>${(10, 8, 5), (10, 7, 6), (9, 8, 6)}$</td>
<td>$w(v_2) = 23$</td>
</tr>
<tr>
<td>$f(v_3) = 3$</td>
<td>v_3v_4, v_3v_2, v_3v_1</td>
<td>${(10, 7, 5), (9, 8, 5), (9, 7, 6)}$</td>
<td>$w(v_3) = 22$</td>
</tr>
<tr>
<td>$f(v_4) = 4$</td>
<td>v_4v_1, v_4v_2, v_4v_3</td>
<td>${(10, 6, 5), (9, 7, 5), (8, 7, 6)}$</td>
<td>$w(v_4) = 21$</td>
</tr>
</tbody>
</table>

Table 2

References

