Vertex semi-middle graph of a graph
Rajendra Prasad K C¹, Niranjan K M² and Venkanagouda M Goudar³

Abstract
In this communication, the vertex semi-middle graph of a graph \(M_v(G) \) is introduced. We obtain a characterization of graphs whose \(M_v(G) \) is planar, outerplanar and minimally non-outerplanar. Further, we obtain \(M_v(G) \) is Eulerian, crossing number one and crossing number two.

Keywords
Crossing number, Middle graph, Planar, Semientire graph.

AMS Subject Classification
05C10, 05C45, 05C75.

1. Introduction
By graph, we mean a finite, undirected graph without loops or multiple edges and planar. We refer the terminology of [1]. The middle graph \(M(G) \) of a graph \(G \) is the graph whose vertex set is \(V(G) \cup E(G) \) and in which two vertices are adjacent if and only if either they are adjacent edges of \(G \) or one is a vertex of \(G \) and the other is an edge incident with it. This concept was introduced in [3] and was studied by Kulli and Patil [4, 5]. The edgedegree [6] of an edge \(e = \{u, v\} \) is \(d(u) + d(v) \). Degree of a region is the number of vertices lies on a region. Let \(v_1, v_2, v_3 \) be the pendant vertices of \(K_{1,3} \). The graph \(K_{1,3}(P_n) \) is obtained from \(K_{1,3} \) by attaching one time to any one pendant vertex of \(K_{1,3} \) as shown in Fig.1. In the paper [7], defined the concept of vertex semientire block graph. We motivated this concept to define the vertex semi-middle graph of a graph. Let \(G(V, E) \) be a planar graph with \(R \) regions. The vertex semi-middle graph of a graph \(G \), denoted by \(M_v(G) \) is a graph whose vertex set is \(V(G) \cup E(G) \cup R(G) \) and two vertices of \(M_v(G) \) are adjacent if and only if they correspond to two adjacent edges of \(G \) or one corresponds to a vertex and other to an edge incident with it or one corresponds to a vertex other to a region in which vertex lies on the region.

Fig. 1.

Fig. 2.
2. Preliminaries.

The following results will be useful in our results.

Theorem 2.1. [1] A finite graph G is Eulerian if and only if all its vertex degree are even.

Theorem 2.2. [3] For any (p, q) graph G, middle graph of a graph $M(G)$ has $(p + q)$ vertices and $q + \sum_{i=1}^{q} \frac{1}{2} \{d(e_i)\}$ edges. Where $d(e_i)$ is the edegdegree of a edge e_i.

Theorem 2.3. [1] A graph is planar if and only if it has no subgraph homeomorphic to K_5 or $K_{3,3}$.

3. Vertex semi-middle graph of a graph

We begin with some observations.

Observation 3.1. Every pendant vertex of G is also a pendant vertex of $M(G)$.

Observation 3.2. Let $e_i \in E(G)$ with edegdegree n then in $M_n(G)$, $deg(e_i) = n$.

Theorem 3.1. For any graph G, $M_n(G)$ is always non-separable.

Proof. We establish the following cases.

Case 1. Consider G be any tree. Let $v_1, v_2, v_3, \ldots, v_n$ be the vertices of $M_n(G)$ corresponds to the vertices $v_1, v_2, v_3, \ldots, v_n$ of G and $v_1', v_2', v_3', \ldots, v_n'$ be the vertices of $M_n(G)$ corresponds to the edges $e_1, e_2, e_3, \ldots, e_{n-1}$ of G. By the Observation 3.1, $M(G)$ contains the pendant vertices. Further, in $M_n(G)$ region vertex r_1 adjacent to the vertices $v_1, v_2, v_3, \ldots, v_n$ without cut vertex. Clearly $M_n(G)$ is non-separable.

Case 2. Consider G be any cycle. Let $v_1, v_2, v_3, \ldots, v_n$ be the vertices of $M_n(G)$ corresponds to the vertices $v_1, v_2, v_3, \ldots, v_n$ of G and $v_1', v_2', v_3', \ldots, v_n'$ be the vertices of $M_n(G)$ corresponds to the edges $e_1, e_2, e_3, \ldots, e_{n-1}$ of G. In $M_n(G)$ region vertices r_1, r_2 adjacent to the vertices $v_1, v_2, v_3, \ldots, v_n$ without cut vertex. Clearly $M_n(G)$ is non-separable.

Proposition 3.1. Let $v_i \in V[G]$ and $deg(v_i) = n$ then in $M_n(G)$, $deg(v_i) = n + r_v$, where r_v is the number of regions in which vertex v lies.

Theorem 3.2. For any graph G, p vertices, q edges and l regions then $M_n(G)$ has $(p + q + r)$ vertices and $q + \sum_{i=1}^{q} \frac{1}{2} \{d(e_i)\}$ edges. Where $d(e_i)$ is the edegdegree of a edge e_i and $d(r)$ is the degree of a region r.

Proof. By the definition of $M_n(G)$, the $V[M_n(G)]\cup V(G) \cup E(G)$ while $UR(G)$. Hence $V[M_n(G)] = (p + q + r)$.

Further, by Theorem 2.2, $E[M_n(G)] = q + \sum_{i=1}^{q} \frac{1}{2} \{d(e_i)\}$. The degree of a region is the sum of the number of vertices lies on the each region in G which is $\sum d(r_j)$. The number of edges in $M_n(G)$ is equal to the sum of edges in $M(G)$ and $\sum d(r_j)$. Hence $E[M_n(G)] = q + \sum_{i=1}^{q} \frac{1}{2} \{d(e_i)\} + \sum_{j=1}^{N} d(r_j)$.

Theorem 3.3. For any graph G, $M_n(G)$ is planar if and only if G is a path.

Proof. Consider $M_n(G)$ is planar. We have the following cases.

Case 1. Suppose G is star $K_{1,n}$, $G = K_{1,n} : v_1, v_2, v_3, v_4$. By the definition of middle graph $M(K_{1,3})$ is planar. Further in $M_n(G)$, the region vertex r_1 is adjacent to the vertices v_1, v_2, v_3, v_4 of $M_n(G)$. $M_n(K_{1,3})$ is homeomorphic to K_5, by Theorem 2.3 which is non-planar, a contradiction.

Case 2. Consider G is a cycle, $G = C_n : v_1, v_2, v_3, \ldots, v_n, n > 2$. By the definition of middle graph, $M_n(G)$ is planar. Further in $M_n(G)$, region vertices r_1, r_2 adjacent to the vertices $v_1, v_2, v_3, \ldots, v_n$. Clearly $M_n(G)$ is non-planar. Which is a contradiction.

Conversely, suppose G is a path, $G = P_n : v_1, v_2, v_3, \ldots, v_n, n > 1$. By the definition of middle graph, $M_n(G)$ is planar. For the $M_n(G)$ of a path P_n, $(v_1'v_2', v_2'v_3', v_3'v_4', \ldots, v_{n-1}'v_n') \in V[M_n(G)]$, in which each set $\{v_{n-1}'v_{n-1}'v_{n-1}'v_n\}$ forms a planar graph. Hence $M_n(G)$ is planar.

Proposition 3.2. The $M_n(G)$ of a G is 1-minimally non-outplanar if and only if $G = P_3$.

Proposition 3.3. The $M_n(G)$ of a G is 2-minimally non-outplanar if and only if $G = P_4$.

Theorem 3.4. For any graph G, $M_n(G)$ is outplanar if and only if $G = P_2$.

Proof. Consider $G = P_2$, then $M_n(G) = C_4$. Since C_4 is outerplanar, hence $M_n(G)$ is outerplanar.

Conversely, suppose $M_n(G)$ is outerplanar and G is connected. We now prove that $G = P_2$. On the contrary, assume $G = P_3$. Then G has two edges e_1 and e_2. By Proposition 3.2 $M_n(G) = 1$-minimally non-outplanar and hence $M_n(G)$ is not outerplanar, a contradiction.

Theorem 3.5. The $M_n(G)$ of a connected graph G is k-minimally non-outplanar $k \geq 1$ if and only if G is P_{k+2}.

Proof. Suppose G is P_{k+2}, $k \geq 1$ to establish the result, we apply mathematical induction on k. Consider $k = 1$ then by Proposition 3.2, is 1-minimally non-outplanar.

Consider the result is valid for $k = m$, therefore if G is P_{m+2} then $M_n(G)$ is m-minimally non-outplanar. Suppose $k = m + 1$ then G is P_{m+3}. We now prove that $M_n(G)$ is $(m + 1)$ minimally non-outplanar. Let $G = P_{m+3}$, and v_1 be an end vertex of G. Let $G_1 = G - v_1 = P_{m+2}$. By inductive hypothesis, $M_n(G_1)$ is m-minimally non-outplanar.

Let $e_i = (v_i, v_j)$ be an endedge and r_1 be the region of G_1. Then e_i is an endedge incident with the cutvertex v_i. The
vertices e_1', r_1' and v_j' in $M_r(G_1)$ are on the boundary of the exterior region on some cycle C. Now join the vertex v_1 to the vertex v_j of G_1 such that the resulting graph is G.

Let $e_j = (v_j, v_1)$ be an edge and r_1 be the region of G. The formation of $M_r(G)$ is an extension of $M_r(G_1)$ with additional vertices e_1 and r_1 such that e_1' adjacent with e_1, v_j and v_1. Similarly, r_1' is adjacent with v_1, v_j' and v_1'. Clearly, v_1' is an inner vertex of $M_r(G)$, but it is not an inner vertex of $M_r(G_1)$. Thus $M_r(G)$ is $(m + 1)$-minimally non-outerplanar.

Conversely, assume $M_r(G)$ is k-minimally non-outerplanar, then by Theorem 3.3, $M_r(G)$ is planar. Thus G is a path. Suppose G is a path. We obtain the following cases.

Case 1. Suppose $G = P_{k+1}$, $k \geq 1$. In particular if $k = 1$ then $G = P_2$ by Theorem 3.4, $M_r(P_2)$ is outerplanar, a contradiction.

Case 2. Suppose $G = P_{k+3}$, in particular, if $k = 1$ then $G = P_4$ by the Proposition 3.3, $M_r(P_4)$ is 2-minimally non-outerplanar, a contradiction. Hence G is P_{k+2}.

Theorem 3.6. For any graph G, $M_r(G)$ has crossing number one if and only if G is C_3 or G is $K_{1,3}(P_{n_1}, P_{n_2}, P_{n_3})$, where $n_1, n_2, n_3 \geq 0$.

Proof. Suppose that $M_r(G)$ has crossing number one. Now, we deal with the subsequent cases.

Case 1. Suppose $G = C_4; v_1, v_2, v_3, v_4$. Further, $V[M_r(G)] = \{v_1, v_2, v_3, v_4, e_1, e_2, e_3, e_4, r_1, r_2\}$. By the definition of middle graph, $M_r(G)$ is planar. Further in $M_r(G)$, r_1', r_2' are adjacent to v_1', v_2', v_3', v_4' and gives crossing number two, a contradiction.

Case 2. Suppose $G = K_{1,4}; v_1, v_2, v_3, v_4, v_5$ and $deg(v_1) = 4$. Further, $V[M_r(G)] = \{v_1, v_2, v_3, v_4, v_5, e_1, e_2, e_3, e_4, r_1', r_2'\}$. By the definition of middle graph, $Cr[M(K_{1,4})] = 1$. Further in $M_r(G)$, r_1' adjacent to the v_1', v_2', v_3', v_4', v_5' of $M_r(G)$, which gives a crossing number three, a contradiction.

Conversely, suppose $G = K_{3,1,3}(P_{n_1}, P_{n_2}, P_{n_3}); v_1, v_2, v_3, v_4, v_5, v_6, v_7, \ldots, v_{n_1}$, v_{n_2}, v_{n_3} for $n_1, n_2, n_3 \geq 0$. Further, $V[M_r(G)] = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, \ldots, v_{n_1}, v_{n_2}, v_{n_3}, e_1, e_2, e_3, e_4, e_5, e_6, e_7, \ldots, e_{n_1}, e_{n_2}, e_{n_3}, r_1', r_2'\}$. By the definition of middle graph, $M_r(G)$ is planar, without loss of generality we consider the inner vertices in $M_r(G)$ are e_1, v_2. In $M_r(G)$, the edges between v_3 and r_1', v_3 and r_2, v_5 and r_2' are crossing over the edges already drawn in $M_r(G)$. Hence, $M_r(G)$ has crossing number three, a contradiction.

Conversely, suppose $G = C_3(P_{n_1}, P_{n_2}); v_1, v_2, v_3, v_4$. Further, $V[M_r(G)] = \{v_1, v_2, v_3, v_4, e_1, e_2, e_3, e_4, e_5, r_1', r_2'\}$. By the definition of middle graph, $M_r(G)$ is planar, without loss of generality we consider the inner vertices in $M_r(G)$ are e_3, v_4. In $M_r(G)$, the edges between v_4 and r_2' are crossing over the edges already drawn in $M_r(G)$. Also, the edges between v_3 and r_2' crossing over the edge between v_4 and r_1'. Hence, $M_r(G)$ has crossing number two.

Theorem 3.8. For any graph G, $M_r(G)$ is Eulerian if and only if the following conditions holds.

i) Degree of the edge is even.

ii) Degree of the region is even.

iii) The degree of the vertex v is even and it lies on even number of regions.

iv) The degree of the vertex v is odd and it lies on odd number of regions.

Proof. Suppose G is Eulerian. We have the following cases.

Case 1. Consider the edge with edge degree odd, by Observation 3.2, the degree of the corresponding vertex in $M_r(G)$ becomes odd. By the Theorem 2.1, $M_r(G)$ is non-eulerian, a contradiction.

Case 2. Suppose the degree of the region is odd, in G region r_1 contains odd number of vertices. By the definition, the degree of the corresponding vertex in $M_r(G)$ becomes odd. By Theorem 2.1, $M_r(G)$ is non-eulerian, a contradiction.

Case 3. Consider the vertex lie on odd regions with even degree. By Proposition 3.1, the degree of the corresponding vertex in $M_r(G)$ becomes odd. By Theorem 2.1, $M_r(G)$ is non-eulerian, a contradiction.

Case 4. Consider the vertex lies on even regions with odd degree. By Proposition 3.1, the degree of the corresponding vertex in $M_r(G)$ becomes odd. By Theorem 2.1, the $M_r(G)$ is non-eulerian, a contradiction.

Conversely, suppose above conditions holds.

Case 1. Consider the edge with even degree. By Observation
3.2, the degree of the corresponding vertex in $M_v(G)$ becomes even.

Case 2. Suppose the degree of the region is even. In G region r_1 contains even number of vertices. By definition, the degree of the corresponding vertex in $M_v(G)$ becomes even.

Case 3. Consider the vertex lie on even regions with even degree. By Proposition 3.1, the degree of the corresponding vertex in $M_v(G)$ becomes even.

Case 4. Consider the vertex lies on odd regions with odd degree. By the Proposition 3.1, the degree of the corresponding vertex in $M_v(G)$ becomes even.

From all the above cases, degree of every vertex in $M_v(G)$ is even. Hence by Theorem 2.1, $M_v(G)$ is eulerian.

4. **Conclusions**

In this paper, we discuss the concept of vertex semi-middle graph of a graph. Further, we discuss the planarity, Eulerian, crossing number one and two of $M_v(G)$.

Acknowledgments

The authors are highly thankful to the anonymous referees for their kind comments and fruitful suggestions.

References