Perfect dominating sets and perfect domination polynomial of a star graph

P. Paul Hawkins ${ }^{1}$, A.M. Anto ${ }^{2 *}$ and T. Shyla Isac Mary ${ }^{3}$

Abstract

The paper probes the perfect dominating sets for a star Graph and how the construction of the family of set forms by using this perfect dominating set. This collection of families of sets becomes the on coefficient of novel perfect dominating polynomial. The relations which gets identified with this on coefficients helps to develop the perfect dominating polynomial. The properties of the polynomial is also mentioned.

Keywords

Perfect dominating set, star graph, polynomial, perfect domination number, coefficient of perfect dominating set.
AMS Subject Classification
05C05, 05C.
${ }^{1}$ Research Scholar, Reg. No. 18223112091013, Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam-629165, Tamil Nadu, India.
${ }^{3}$ Research Department of Mathematics, Nesamony Memorial Christian College, Marthandam-629165, Tamil Nadu, India.
${ }^{2}$ Department of Mathematics, Malankara Catholic College, Mariagiri-629153, Tamil Nadu, India.
${ }^{1,2,3}$ Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.
*Corresponding author: ${ }^{1}$ hawkinspaul007@gmail.com; ${ }^{2}$ antoalexam@gmail.com; ${ }^{3}$ shylaiasscmary@yahoo.in
Article History: Received 16 June 2020; Accepted 12 October 2020

Contents

1 Introduction 1751
2 Preliminaries 1751
3 Main Results 1752
3.1 Perfect dominating sets 1752
3.2 Perfect Domination Polynomial 1753
4 Conclusion 1755
References 1755

1. Introduction

Let $G=(V, E)$ be a simple graph of order $|V|=n$. For any vertex $u \in V$, the open neighborhood of u is the set $N(u)=$ $\{v \in V u v \in E\}$. A set $S \subseteq V$ is a dominating set of G, if every vertex $u \in V$ is a element of S or is adjacent to an element of S [4]. A graph $G=(V, E)$ is said to be a star graph if there exists a fixed vertex v (called the center of the star graph) such that $E=\{v u / u \in V$ and $u \neq v\}$ and a star graph is said to be an n-star graph if the number of vertices of the graph is n [8]. We denote the Star Graph by S_{n}. Let S_{n} be a Star Graph with n vertices. $\mathscr{S}_{p f}(n, i)$ be the family of perfect dominating sets of a Star Graph S_{n} with cardinality i and let
$d_{p f}\left(S_{n}, i\right)=\left|\mathscr{S}_{p f}(n, i)\right|$. We call the polynomial $D_{p f}\left(S_{n}, x\right)=$ $\sum_{i=1}^{n} d_{p f}\left(S_{n}, i\right) x^{i}$, the perfect domination polynomial of a Star Graph S_{n}. In this article the set $\{1,2, \ldots, n\}$ is represented by [n].

2. Preliminaries

Let $\mathscr{S}_{p f}(n, i)$ be the family of perfect dominating sets of the Star Graph S_{n} with cardinality i. Then the perfect dominating sets of the Star Graph S_{n} is investigated by as follows;

Definition 2.1. [7] The dominating set S is a perfect dominating set if $|N(u) \cap S|=1$ for each $u \in V-S$, or equivalently, if every vertex u in $V-S$ is adjacent to exactly one vertex in S. The perfect domination number $\gamma_{p f}$ is the minimum cardinality of a perfect dominating set in G.

Example 2.2. Consider S_{5}

Here, $\left\{v_{5}\right\}$ is the only perfect dominating set of cardinality 1.

The perfect dominating sets of cardinality 2 are $\left\{v_{1}, v_{5}\right\}$, $\left\{v_{2}, v_{5}\right\},\left\{v_{3}, v_{5}\right\}$ and $\left\{v_{4}, v_{5}\right\}$.
The perfect dominating sets of cardinality 3 are $\left\{v_{1}, v_{5}, v_{2}\right\}$, $\left\{v_{1}, v_{5}, v_{3}\right\},\left\{v_{1}, v_{5}, v_{4}\right\},\left\{v_{2}, v_{5}, v_{3}\right\},\left\{v_{2}, v_{5}, v_{4}\right\}$ and $\left\{v_{3}, v_{5}, v_{4}\right\}$. The perfect dominating sets of cardinality 4 are $\left\{v_{1}, v_{2}, v_{3}, v_{5}\right\}$, $\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\},\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$ and $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$.
The perfect dominating sets of cardinality 5 is $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$.
The following lemmas are required to prove our main results in this article.

Lemma 2.3. $\gamma_{p f}\left(S_{n}\right)=1$ for $n \in \mathbb{N}$.
Proof. As centre is always in a perfect dominating set of a graph and it dominate all other vertices of a graph S_{n}. Therefore $\gamma_{p f}\left(S_{n}\right)=1$ for $n \in \mathbb{N}$.

By the defnition of perfect domination number, we have the following lemma.

Lemma 2.4. For $n \geq 3, \mathscr{S}_{p f}(n, i)=\emptyset$ if and only if $i>n$.
Proof. Let S_{n} be a star graph with n vertices.
Any member of $\mathscr{S}_{p f}(n, i)$ contains atmost n vertices.
Therefore, $\mathscr{S}_{p f}(n, i)=\emptyset$ for $i>n$.
Conversely, when $i>n$ then by definition of perfect dominating set $\mathscr{S}_{p f}(n, i)=\emptyset$.

3. Main Results

3.1 Perfect dominating sets

Lemma 3.1. Let $\mathscr{S}_{p f}(n, i)$ the family of perfect dominating sets of a star graph S_{n} with cardinality i then,
i) $\mathscr{S}_{p f}(n, n)=\{1,2,3, \ldots, n\}$ for all $n \in \mathbb{N}$
ii) $\mathscr{S}_{p f}(2,1)=\{\{1\},\{2\}\}$
iii) $\mathscr{S}_{p f}(n, 0)=\emptyset$ for all $n \in \mathbb{N}$
iv) $\mathscr{S}_{p f}(n, 1)=\{n\}$ for $n \geq 3$, where n is a centre of S_{n}
v) $\mathscr{S}_{p f}(n, 2)=\{\{1, n\},\{2, n\}, \ldots,\{n-1, n\}\}$ for $n \geq 3$, where n is a centre of S_{n}

Proof. i) For, $V(G)$ is always a perfect dominating set of graph G then $\mathscr{S}_{p f}(n, n)=\{1,2,3, \ldots, n\}$.
ii) Here, S_{2} is a path with two vertices then by the definition of a perfect dominating set we have $\{\{1\},\{2\}\}$ are the perfect dominating set of S_{2}.
iii) Since, there does not exist a perfect dominating set with cardinality 0 for a star graph S_{n}. Hence, $\mathscr{S}_{p f}(n, 0)=\emptyset$ for all $n \in N$.
iv) Since, n is a centre of S_{n} the only vertex adjacent to $\left\{V\left(S_{n}\right)-\{n\}\right\}$ is n.
Hence, $\mathscr{S}_{p f}(n, 1)=\{n\}$.
v) Every vertices from $\{V(G)-\{n\}\}$ is adjacent to $\{n\}$ also $\{n\}$ is a center of S_{n} therefore, $\mathscr{S}_{p f}(n, 2)=\{\{1, n\}$, $\{2, n\}, \ldots,\{n-1, n\}\}$.

Lemma 3.2. Let S_{n} be a star graph with n vertices, then for $n \geq 3, d_{p f}\left(S_{n}\right)=\binom{n-1}{i-1}$.

Proof. Let S_{n} be a star graph and $v \in V\left(S_{n}\right)$ be the centre of S_{n}. The number of subsets of $V\left(S_{n}\right)$ with cardinality i is $\binom{n}{i}$. Also, every perfect dominating sets of S_{n} has a vertex v.
Now, number of subsets of $V\left(S_{n}\right)-v$ with cardinality i is $\binom{n-1}{i}$. Therefore, we get

$$
\begin{aligned}
& d_{p f}\left(S_{n}, i\right) \\
= & \binom{n}{i}-\binom{n-1}{i} \\
= & \frac{n!}{i!(n-i)!}-\frac{(n-1)!}{i![(n-1)-i]!} \\
= & \frac{(n-i+1)(n-i+2) \ldots n}{i!} \\
= & -\frac{(n-i)(n-i+1) \ldots(n-1)}{i!} \\
& {\left[\frac{(n-i+1)(n-i+2) \ldots(n-1)}{(i-1)!}\right] } \\
= & \binom{n-1}{i-1}
\end{aligned}
$$

Lemma 3.3. Let S_{n} be a star graph with n vertices, then for $n \geq 3, d_{p f}\left(S_{n}, i\right)=d_{p f}\left(S_{n-1}, i\right)+d_{p f}\left(S_{n-1}, i-1\right)$

Proof. By lemma 3.2 we have, $d_{p f}\left(S_{n-1}, i\right)=\binom{n-2}{i-1}$
and $d_{p f}\left(S_{n-1}, i-1\right)=\binom{n-2}{i-2}$ Therefore,

$$
\begin{aligned}
& d_{p f}\left(S_{n-1}, i\right)+d_{p f}\left(S_{n-1}, i-1\right) \\
= & \binom{n-2}{i-1}+\binom{n-2}{i-2} \\
= & \frac{(n-2)!}{(i-1)![n-2-(i-1)]!} \\
& -\frac{(n-2)!}{(i-2)![n-2-(i-2)]!} \\
= & \frac{(n-2)!}{(i-1)!(n-i-1)!} \\
= & \frac{(n-i)(n-i+1) \ldots(n-2)}{(i-2)!(n-i)!} \\
= & +\frac{(n-i+1)(n-i+2) \ldots(n-2)}{(i-2)!} \\
= & {\left[\begin{array}{l}
(n-i+1)(n-i+2) \ldots(n-2) \\
(i-2)! \\
i-1
\end{array}\right) }
\end{aligned}
$$

Lemma 3.4. Let S_{n} be a star graph with n vertices, then
i) $d_{p f}\left(S_{2}, 1\right)=2$
ii) $d_{p f}\left(S_{n}, 0\right)=0$ for every $n \in N$
iii) $d_{p f}\left(S_{n}, 1\right)=1$ for every $n \geq 3$

Proof. The proof is follows from lemma 3.1 (ii),(iii) \& (iv). Using the above lemma we obtain $d_{p f}\left(S_{n}, i\right)$ for $1 \leq n \leq 15$ as shown in the following Table 1.

Table 1

3.2 Perfect Domination Polynomial

Definition 3.5. Let S_{n} be a Star Gaph with n vertices. Let $\mathscr{S}_{p f}(n, i)$ be the family of perfect dominating sets of the Star Graph with cardinality i and $d_{p f}\left(S_{n}, i\right)=\left|\mathscr{S}_{p f}(n, i)\right|$. Then the Perfect dominating polynomial of the Star Graph S_{n} is given by $D_{p f}\left(S_{n}, x\right)=\sum_{i=1}^{n} d_{p f}\left(S_{n}, i\right) x^{i}$.

Theorem 3.6. If $\mathscr{S}_{p f}(n, i)$ be a family of perfect dominating sets with cardinality i then, for every $n \geq 4, D_{p f}\left(S_{n}, x\right)=$ $D_{p f}\left(S_{n-1}, x\right)+x D_{p f}\left(S_{n-1}, x\right)$ with initial values $D_{p f}\left(S_{3}, x\right)=$ $x+2 x^{2}+x^{3}, D_{p f}\left(S_{2}, x\right)=2 x+x^{2}, D_{p f}\left(S_{1}, x\right)=x$.

Proof.

$$
\begin{aligned}
& D_{p f}\left(S_{n}, x\right) \\
& =\sum_{i=1}^{n} d_{p f}\left(S_{n}, i\right) x^{i} \\
& =\sum_{i=1}^{n}\left[d_{p f}\left(S_{n-1}, i\right)\right. \\
& \left.+d_{p f}\left(S_{n-1}, i-1\right)\right] x^{i} \\
& =\sum_{i=1}^{n} d_{p f}\left(S_{n-1}, i\right) x^{i} \\
& +\sum_{i=1}^{n} d_{p f}\left(S_{n-1}, i-1\right) x^{i} \\
& =\sum_{i=1}^{n-1} d_{p f}\left(S_{n-1}, i\right) x^{i} \\
& +x \sum_{i=1}^{n} d_{p f}\left(S_{n-1}, i\right) x^{i-1} \\
& =D_{p f}\left(S_{n-1}, x\right)+x D_{p f}\left(S_{n-1}, x\right)
\end{aligned}
$$

	n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	
2		1	2	3	4	5	6	7	8	9	10	11	12	13	14	
3			1	3	6	10	15	21	28	36	45	55	66	78	91	
4				1	4	10	20	35	56	84	120	165	220	286	364	
5					1	5	15	35	70	126	210	330	495	715	1001	
6						1	6	21	56	126	252	462	792	1287	2002	
7							1	7	28	84	210	462	924	1716	3003	
8								1	8	36	120	330	792	1716	3432	
9									1	9	45	165	495	1287	3003	
10										1	10	55	220	715	2002	
11											1	11	66	286	1001	
12												1	12	78	364	
13													1	13	91	
14														1	14	
15															1	

Theorem 3.7. Sum of the Coefficient of a perfect dominating polynomial of a graph S_{n} is 2^{n-1}. ie., $\sum_{i=1}^{n} d_{p f}\left(S_{n}, i\right)=2^{n-1}$

Proof.

$$
\left.\left.\begin{array}{rl}
& \sum_{i=1}^{n} d_{p f}\left(S_{n}, i\right) \\
= & d_{p f}\left(S_{n}, 1\right)+d_{p f}\left(S_{n}, 2\right) \\
+\cdots+d_{p f}\left(S_{n}, n\right)
\end{array}\right] \begin{array}{c}
n-1 \\
=
\end{array}\right)+\binom{n-1}{1} .
$$

Example 3.8. Consider the Star Graph S_{5} with 5 vertices. We construct a perfect dominating polynomial $D_{p f}\left(S_{5}, x\right)$ using

Theorem 3.6 \& Table 1

Then the Perfect dominating polynomial of a Star Graph S_{5} is given by $D_{p f}\left(S_{5}, x\right)=\sum_{i=1}^{5} d_{p f}\left(S_{5}, i\right) x^{i}$. From the Table 1 we have $d_{p f}\left(S_{5}, 1\right)=1, d_{p f}\left(S_{5}, 2\right)=4, d_{p f}\left(S_{5}, 3\right)=6$, $d_{p f}\left(S_{5}, 4\right)=4, d_{p f}\left(S_{5}, 5\right)=1$.
Hence, $D_{p f}\left(S_{5}, x\right)=x+4 x^{2}+6 x^{3}+4 x^{4}+x^{5}$.
Theorem 3.9. The coefficients of $D_{p f}\left(S_{n}, x\right)$ have the following properties
i) $d_{p f}\left(S_{n}, 2\right)=n-1$ for every $n \geq 3$
ii) $d_{p f}\left(S_{n}, n-2\right)=\frac{(n-1)(n-2)}{2}$ for every $n \geq 3$
iii) $d_{p f}\left(S_{n}, n-3\right)=\frac{(n-1)(n-2)(n-3)}{6}$ for every $n \geq 4$
iv) $d_{p f}\left(S_{n}, n-1\right)=n-1$ for every $n \geq 3$
v) $d_{p f}\left(S_{n}, n\right)=1$ for every $n \geq 3$
vi) $d_{p f}\left(S_{n}, n-4\right)=\frac{(n-1)(n-2)(n-3)(n-4)}{24}$ for every $n \geq 5$

Theorem 3.10. For every $n \in N$ and $1 \leq i \leq n$. $\left|\mathscr{S}_{p f}(n, i)\right|$ is the coefficient of $u^{n} v^{i}$ in the expansion of the function $f(u, v)=$ $\frac{u v\left(1+u v+u+2 u^{2}+u^{3}+3 u^{2} v+u^{2} v^{2}+3 u^{3} v+3 u^{3} v^{2}+u^{3} v^{3}\right)}{(1-u-u v)}$

Proof. First we set $f(u, v)=\sum_{n=1}^{\infty} \sum_{i=1}^{\infty}\left|\mathscr{S}_{p f}(n, i)\right| u^{n} v^{i}$.

By using the recursive formula for $\left|\mathscr{S}_{p f}(n, i)\right|$ we can write $f(u, v)$ as follows:

$$
\begin{aligned}
& f(u, v) \\
& =\sum_{n=1}^{\infty} \sum_{i=1}^{\infty}\left(\left|\mathscr{S}_{p f}(n-1, i)\right|+\right. \\
& \left.\left|\mathscr{S}_{p f}(n-1, i-1)\right|\right) u^{n} v^{i} \\
& =u \sum_{n=1}^{\infty} \sum_{i=1}^{\infty}\left|\mathscr{S}_{p f}(n-1, i)\right| u^{n-1} v^{i}+ \\
& u v \sum_{n=1}^{\infty} \sum_{i=1}^{\infty}\left|\mathscr{S}_{p f}(n-1, i-1)\right| \\
& u^{n-1} v^{i-1} \\
& =u\left(\left|\mathscr{S}_{p f}(1,1)\right| u v+\left|\mathscr{S}_{p f}(1,2)\right| u v^{2}\right. \\
& +\left|\mathscr{S}_{p f}(2,1)\right| u^{2} v+\left|\mathscr{S}_{p f}(2,2)\right| u^{2} v^{2} \\
& +\left|\mathscr{S}_{p f}(2,3)\right| u^{2} v^{3}+\left|\mathscr{S}_{p f}(3,1)\right| u^{3} v \\
& +\left|\mathscr{S}_{p f}(3,2)\right| u^{3} v^{2}+\left|\mathscr{S}_{p f}(3,3)\right| u^{3} v^{3} \\
& \left.+\left|\mathscr{S}_{p f}(3,4)\right| u^{3} v^{4}\right)+u f(u, v) \\
& +u v\left(\left|\mathscr{S}_{p f}(0,0)\right|+\left|\mathscr{S}_{p f}(1,0)\right| u\right. \\
& +\left|\mathscr{S}_{p f}(1,1)\right| u v+\left|\mathscr{S}_{p f}(1,2)\right| u v^{2} \\
& +\left|\mathscr{S}_{p f}(2,0)\right| u^{2}+\left|\mathscr{S}_{p f}(2,1)\right| u^{2} v \\
& +\left|\mathscr{S}_{p f}(2,2)\right| u^{2} v^{2}+\left|\mathscr{S}_{p f}(2,3)\right| u^{2} v^{3} \\
& +\left|\mathscr{S}_{p f}(3,0)\right| u^{3}+\left|\mathscr{S}_{p f}(3,1)\right| u^{3} v \\
& +\left|\mathscr{S}_{p f}(3,2)\right| u^{3} v^{2}+\left|\mathscr{S}_{p f}(3,3)\right| u^{3} v^{3} \\
& \left.+\left|\mathscr{S}_{p f}(3,4)\right| u^{3} v^{4}\right)+u v f(u, v) \text {. }
\end{aligned}
$$

Substituting the values from Table 1 also for $\left|\mathscr{S}_{p f}(n, 0)\right|=$ 0 for all $n \in N$ and $\left|\mathscr{S}_{p f}(0,0)\right|=1$ we have,

$$
\begin{aligned}
& f(u, v) \\
= & u\left(u v+2 u^{2} v+u^{2} v^{2}+u^{3} v+2 u^{3} v^{2}\right. \\
& \left.+u^{3} v^{3}\right)+u f(u, v)+u v(1+u v \\
& +2 u^{2} v+u^{2} v^{2}+u^{3} v+2 u^{3} v^{2} \\
& \left.+u^{3} v^{3}\right)+u v f(u, v) \\
=\quad & u v\left(1+u v+2 u^{2} v+u^{2} v^{2}+u^{3} v\right. \\
& +2 u^{3} v^{2}+u^{3} v^{3}+u+2 u^{2}+u^{2} v \\
& \left.+u^{3}+2 u^{3} v+u^{3} v^{2}\right)+u f(u, v) \\
& +u v f(u, v) \\
& f(u, v)(1-u-u v) \\
= & u v\left(1+u v+u+2 u^{2}+u^{3}+3 u^{2} v\right. \\
& \left.+u^{2} v^{2}+3 u^{3} v+3 u^{3} v^{2}+u^{3} v^{3}\right) \\
& \operatorname{Hence}, f(u, v) \\
= & {\left[\frac{1}{(1-u-u v)}\right][u v(1+u v+u} \\
& +2 u^{2}+u^{3}+3 u^{2} v+u^{2} v^{2}+3 u^{3} v \\
& \left.\left.+3 u^{3} v^{2}+u^{3} v^{3}\right)\right]
\end{aligned}
$$

4. Conclusion

The paper sums up findings of how perfect dominating polynomial is structured up by perfect dominating set.

References

[1] A.M Anto, P.Paul Hawkins and T Shyla Isac Mary, Perfect Dominating Sets and Perfect Dominating Polynomial of a Cycle, Advances in Mathematics: Scientific Journal, 8(3)(2019), 538-543.
${ }^{[2]}$ A.M Anto, P.Paul Hawkins and T Shyla Isac Mary, Perfect Dominating Sets and Perfect Dominating Polynomial of a Path, International Journal of Advanced Science and Technology, 28(16)(2010), 1226-1236.
${ }^{\text {[3] }}$ A. Vijayan and T. Nagarajan, Vertex-Edge Dominating sets and Vertex-Edge Domination Polynomials of cycles, International Journal of Mathematics and Computer Research, 2(8)(2014), 547-564.
${ }^{\text {[4] }}$ Gray Chartand, Ping Zhang, 2005, Introduction to Graph Theory, Mc Graw Hill, Higher Education, 2008.
${ }^{\text {[5] Sahib Shayyal Kahat, Abdul Jalil M. Khalaf and Roslan }}$ Hasni, Domination sets and Domination polynomials of Stars, Global Journal of pure and Applied Mathematics, 4(2)(2008), 1-10.
${ }^{[6]}$ S. Alikhani and Y.H. Peng, Introduction to Domination polynomial of a graph, arXiv: 0905.225 [v] [math.co] 14 may (2009).
${ }^{[7]}$ T.W.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[8] Satyanarayana Bhavanari, Srinivasulu Devanaboina and Mallikarjun Bhavanari, Star Number Of A Graph, RJSITM, 5(11)(2016), 1-12.

$$
\text { ISSN(P):2319 - } 3786
$$

Malaya Journal of Matematik
ISSN(O):2321-5666

