Separation axioms via \(\delta\)-set in topological vector spaces

T.R. Dinakaran\(^1\)* and B. Meera Devi \(^2\)

Abstract
In this paper we introduce a new sort of spaces as \(\delta\)-Homogenous space, \(\delta\)-Hausdorff space and \(\delta\)-Compact space. It provides a new connection between \(\delta\)-Vector spaces and \(\delta\)-homogenous spaces. Also we investigated the relationship between the translation and scalar multiplication mappings and \(\delta\)-homeomorphism on \(\delta\)-Topological vector spaces. Finally we derive \(\delta\)-Topological vector space is \(\delta\)-Hausdorff and \(\delta\)-Compact spaces.

Keywords
\(\delta\)-topological vector spaces, \(\delta\)-homeomorphism, \(\delta\)-continuous, \(\delta\)-Hausdorff, \(\delta\)-compact.

AMS Subject Classification
54A05, 54C05, 54C08, 54N17.

\(^1\) Department of Mathematics, Sourashtra College, Madurai-625004, Tamil Nadu, India.
\(^2\) Department of Mathematics, Sri S.Ramasamy Naidu Memorial College, Sattur-626203, Tamil Nadu, India.
*Corresponding author: \(^1\) trd1804@gmail.com; \(^2\) abmeeradevi@gmail.com
Article History: Received 14 October 2020, Accepted 02 December 2020

Contents
1 Introduction 33
2 Preliminaries 33
3 Translation Mappings 34
4 \(\delta\)-Closure in a \(\delta\)-TVS 34
5 \(\delta\)-Homeomorphism in \(\delta\)-TVS 35
6 \(\delta\)-Hausdorff and \(\delta\)-Compact in \(\delta\)-TVS ... 36
References 36

1. Introduction
A topological space is a vector space with a topological structure such that the algebraic operations addition and scalar multiplication are continuous. The concept of vector spaces was introduced by Kolmogroff \([1]\). In 2015, Khan et al \([2]\) introduced the \(s\)-topological vector spaces which are generalization of topological vector spaces. In 2016 Khan and Inqbal \([3]\) introduced the irresolute independent of topological vector spaces. In 2019, \(\beta\)-topological vector spaces have been introduced by Sharma and M.Ram \([8]\). In 2019, S.Sharma et al. \([9]\) investigated almost \(\beta\)-topological vector spaces. Maki et al \([4]\) introduced the notions of generalized homeomorphism in topological spaces. In this paper we introduce a new sort of spaces as \(\delta\)-Homogenous space, \(\delta\)-Hausdorff space and \(\delta\)-Compact space. It provides a new connection between \(\delta\)-Vector spaces and \(\delta\)-homogenous spaces. Also we investigated the relationship between the translation and scalar multiplication mappings and \(\delta\)-homeomorphism on \(\delta\)-Topological vector spaces. Finally we derive \(\delta\)-Topological vector space is \(\delta\)-Hausdorff and \(\delta\)-Compact spaces.

2. Preliminaries
In this section, we recall some definitions and basic results of fractional calculus which will be used throughout the paper.

Definition 2.1. \([7]\) A subset \(A\) of a topological space \((X, \tau)\) is

(i) Regular\(\delta\)-open if \(A = \text{int}(\text{cl}^\delta(A))\)

(ii) Regular\(\delta\)-closed if \(A = \text{cl}(\text{int}^\delta(A))\)

Definition 2.2. \([5]\) The \(\delta\)-interior of a subset \(A\) of \(X\) is called \(\delta\)-open if \(A = \text{int}_\delta(A)\) i.e., a set is if it is the union of Regular\(\delta\)-open sets. The complement of a \(\delta\)-open set is called \(\delta\)-closed set in \(X\).
Definition 2.3. [6] A δ-topological vector space is a vector space X over the field F (real or complex) with a topology τ with the following conditions.

(i) Vector addition mapping $m : X \to Y$ defined by $m((x,y)) = x+y$, for each x,y in X is δ-continuous

(ii) Scalar multiplication mapping $M : F \times X \to X$ which define by $M((\lambda, x)) = \lambda x$ for each λ in F and x,y in X is δ-continuous.

The pair (X,F) is said to be Topological vector space. In short, it is denoted by X, a δ-TVS.

Definition 2.4. [2] If X is a Vector space then δ denotes its identity element, and for a fixed $x \in X$, $X : X \to X; x \to x+y$ and $T_x : X \to X; y \to y+x$ denote the left and right translation by x respectively.

Definition 2.5. [6] Let Y be a Linear Subspace of (X, τ) which means $Y + Y \subseteq Y$ and for all $\alpha \in F, \alpha Y \subseteq Y$.

Result 2.6. [6] Let (X,F) be a δ-TVS. If A is open in (X,F), then the following are true.

(i) $x + A$ is a δ-open for each $x \in X$

(ii) αA is a δ-open for all non-zero scalar α in X.

Result 2.7. [6] In a δ-TVS (X,F), for any δ-open set U containing 0, there exists a symmetric δ-open set V containing 0 such that $V + V \subseteq U$.

Result 2.8. [6] Let X be δ-TVS. If A is open subset of X then $A + B$ is a δ-open in X for any subset B of X.

3. Translation Mappings

In this section we prove that translation mappings are δ-continuous in a δ-Topological Vector Spaces. Also it’s basic properties have been derived.

Theorem 3.1. In a δ-TVS (X,F), for any $x \in X$, the translation mapping $T_x : X \to X$ defined by $T_x(y) = y + x$ for all $y \in X$ is δ-continuous function.

Proof. Suppose that (X,F) is a δ-topological vector space. Let $x \in X$ be arbitrary. Let K be any open set in the codomain X containing $T_x(y) = y + x$. By hypothesis, there exists a δ-open set U containing y and V containing x such that $U + V \subseteq K$. Then $T_x(U) = U + x \subseteq U + V \subseteq K$. It is proved that for every open set K containing $T_x(y)$, \exists a δ-open set U containing y such that $T_x(U) \subseteq K$. Therefore the translation mapping T_x is δ-continuous function.

Theorem 3.2. In a δ-TVS (X,F), for any $\alpha \in F$, the multiplication mapping $M_\alpha : X \to X$ defined by $M_\alpha(x) = \alpha x$ is δ-continuous mapping.

Proof. Suppose that (X,F) is a δ-topological vector space. Let K be any open set in the X containing $M_\alpha(x) = \alpha x$. By hypothesis, there exists a δ-open set U in F containing α and V in X containing x such that $UV \subseteq K$. Then $M_\alpha(UV) = \alpha V \subseteq UV \subseteq K$. It is proved that for every open set K containing $M_\alpha(x)$, \exists a δ-open set V in X containing x such that $M_\alpha(V) \subseteq K$. Hence M_α is δ-continuous mapping.

Theorem 3.3. Let (X,F) be a δ-TVS. If U is open in X, then $U + x$ is a δ-open subset of $X, \forall x \in X$.

Proof. Let $u + x \in U + x$ be arbitrary. Now U is open set in X containing $u = u + x + x = T_x(U + x)$. Since the translation map T_x is δ-continuous, \exists a δ-open set V containing $u + x$ such that $T_x(V) \subseteq U + x$. That is, $V + (-x) \subseteq U$ and hence $V \subseteq U + x$. It is proved that for any point $u + x \in U + x$, there exists δ-open set V containing $u + x$ such that $u + x \in V \subseteq U + x$. Therefore $u + x$ is δ-open subset of $X, \forall x \in X$.

Theorem 3.4. Let (X,F) be a δ-TVS. If U is open in X, then αU is a δ-open in X for any nonzero element $\alpha \in F$.

Proof. Let $x \in \alpha U$ be arbitrary. Then $x = \alpha u$ for some $u \in U$. Now U is open set in the codomain X containing $u = \frac{1}{\alpha}(\alpha u) = M_1(\alpha U) = M_1(x)$. Since the multiplication mapping $M_1 : X \to X$ is δ-continuous, there exists a δ-open set V containing $\alpha u = x$ such that $M_1(V) \subseteq U$. That is, $\frac{1}{\alpha}(V) \subseteq U$. Hence $V \subseteq \alpha U$. Therefore αu is δ-open subset of X for any non-zero element $\alpha \in F$.

4. δ-Closure in a δ-TVS

Definition 4.1. The δ-interior of a subset A of X is the union of all regular δ-open sets of X contained in A and is denoted by $int_\delta(A)$.

Definition 4.2. A subset A of a topological space (X, τ) is called δ-open if $A = int_\delta(A)$, i.e., a set is δ-open if it is the union of regular δ-open sets. The complement of a δ-open is called δ-closed set in X.

Note 4.3. The δ-closure of a subset A of (X, τ) is denoted by $cl_\delta(A)$.

Theorem 4.4. In a δ-TVS (X,F), a scalar multiple of a δ-closed set is δ-closed for any $\alpha \in F$.

Proof. Let U be any δ-closed subset of X and $\alpha \in F$ be arbitrary. $(\alpha U)^c = X \setminus \alpha U = \alpha(X \setminus U) = \alpha U^c$. Since U is δ-closed subset of X, U^c is δ-open subset of X. Since every δ-open set is open, U^c is an open subset of X. By Result 2.6, αU^c is a δ-open subset of X. Then $(\alpha U)^c$ is a δ-open. So αU is a δ-closed subset of X.

Theorem 4.5. Let A be any closed subset of a δ-topological vector space (X,F). Then the following are true.

(i) $x + A$ is δ-closed for each $x \in X$

(ii) αA is a δ-closed for each non-zero scalar α in F.

Proof. (i) Let \(y \in cl_{\delta}(x + A) \). Now consider \(z = -x + y \) and let \(K \) be any open set in \(X \) containing \(z \). Then by definition of \(*\delta\)-topological vector space, there exists \(*\delta\)-open sets \(U \) and \(V \) in \(X \) such that \(-x \in U, y \in V \) and \(U + V \subseteq K \). Since \(y \in cl_{\delta}(x + A) \), \((x + A) \cap V \neq \emptyset \). Then there is \(a \in (x + A) \cap V \). Now \(-x + a \in A \cap (U + V) \subseteq A \cap K \Rightarrow A \cap K \neq \emptyset \) which implies \(z \in cl_{\delta}(A) = y \in x + A \). Hence \(cl_{\delta}(x + A) \subseteq x + A \). Always \(x + A \subseteq cl_{\delta}(x + A) \). Thus \(x + A = cl_{\delta}(x + A) \). Hence \(x + A \) is \(*\delta\)-closed in \(X \).

(ii) Let \(x \in cl_{\delta}(A) \) and let \(K \) be any open neighborhood of \(y = \frac{1}{\alpha}x \) in \(X \). Since \((X,F,\tau)\) is \(*\delta\)-TVS, \(\exists \delta\)-open sets \(U \in F \) containing \(\frac{1}{\alpha}x \) and \(V \) in \(X \) containing \(x \) such that \(U, V \subseteq K \). By hypothesis, \(\langle \alpha A \rangle \cap V \neq \emptyset \). Therefore there is \(a \in \langle \alpha A \rangle \cap V \). Now \(\frac{1}{\alpha}a \in A \cap \langle \alpha V \rangle \subseteq A \cap K \Rightarrow A \cap K \neq \emptyset \) which implies \(y \in cl_{\delta}(A) = A \Rightarrow x \in \alpha A \). Hence \(cl_{\delta}(\alpha A) \subseteq \alpha A \). Always \(\alpha A \subseteq cl_{\delta}(\alpha A) \). Hence \(\alpha A = cl_{\delta}(\alpha A) \). Thus \(\alpha A \) is \(*\delta\)-closed in \(X \).

Theorem 4.6. Let \((X,F,\tau)\) be a \(*\delta\)-TVS. If \(U \) is \(*\delta\)-open set in \(X \), then there exists a \(*\delta\)-open set \(V \) in \(X \) containing \(0 \) such that \(u + V \subseteq U \) for all \(u \in U \).

Proof. Let \(U \) be any \(*\delta\)-open set in \((X,F,\tau)\). Since every \(*\delta\)-open set is open, \(U \) is an open subset of \(X \). By Result 2.6, \(U + x \) is \(*\delta\)-open set in \(X \) for all \(x \in X \). In particular \(U - u \) is a \(*\delta\)-open set in \(X \) containing \(0 \) for all \(u \in U \). By taking \(V = U - u \), we get a \(*\delta\)-open set \(V \) containing \(0 \) such that \(u + V \subseteq U \).

Theorem 4.7. Let \(S \) and \(T \) be any subsets of a \(*\delta\)-TVS \((X,F,\tau)\), then \(cl_{\delta}(S) + cl_{\delta}(T) \subseteq cl_{\delta}(S + T) \).

Proof. Let \(z \in cl_{\delta}(S) + cl_{\delta}(T) \). Let \(S \) be an \(*\delta\)-open set in \(X \) containing \(z \). Since \(Y \) is \(*\delta\)-TVS, the condition of \(*\delta\)-Topological vector space, there exists \(*\delta\)-open sets \(U \) in \(X \) containing \(z \) in \(X \) such that \(U + V \subseteq K \). Since \(y \in cl_{\delta}(S) \), \(y \in cl_{\delta}(T) \), there are \(a \in S \cap U \) and \(b \in T \cap V \). Then \(a + b \in (S + T) \cap (U + V) \subseteq (S + T) \cap K \). So, \(K \cap (S + T) \neq \emptyset \). Therefore \(x + y \in cl_{\delta}(S + T) \).

Theorem 4.8. Let \((X,F,\tau)\) be a \(*\delta\)-TVS and let \(S, T \) be subsets of \((X,F,\tau)\). If \(T \) is \(*\delta\)-open, then \(S + T = cl_{\delta}(S + T) \).

Proof. Let \(S \) and \(T \) be any two subsets of a \(*\delta\)-TVS \(X \). Always \(S \subseteq cl_{\delta}(S) \). So \(S + T \subseteq cl_{\delta}(S + T) \). Now let \(y \in cl_{\delta}(S) + cl_{\delta}(T) \). Let \(S \) be \(*\delta\)-open set in \(X \) containing \(z \). Since \(Y \) is \(*\delta\)-TVS, the condition of \(*\delta\)-Topological vector space, there exists \(*\delta\)-open sets \(U \) in \(X \) containing \(z \) in \(X \) such that \(U + V \subseteq K \). Since \(y \in cl_{\delta}(S) \), \(y \in cl_{\delta}(T) \), there are \(a \in S \cap U \) and \(b \in T \cap V \). Then \(a + b \in (S + T) \cap (U + V) \subseteq (S + T) \cap K \). So, \(K \cap (S + T) \neq \emptyset \). Therefore \(x + y \in cl_{\delta}(S + T) \).

Theorem 5.1. A bijective function \(f \) from a \(*\delta\)-TVS \(X \) to itself is called \(*\delta\)-homeomorphism if \(f \) and \(f^{-1} \) are \(*\delta\)-continuous on a \(*\delta\)-TVS.

Theorem 5.2. A TVS \((X,F,\tau)\) is called \(*\delta\)-homogeneous space, if for all \(x, y \in X \), there is \(*\delta\)-homeomorphism \(f \) of the space \(X \) onto itself such that \(f(x) = y \).

Theorem 5.3. Translation mapping on a \(*\delta\)-topological vector space is \(*\delta\)-homeomorphism.

Proof. Let \((X,F,\tau)\) be a \(*\delta\)-TVS, \(\forall x \in X \), translation mapping \(T_x : X \rightarrow X \) is defined by \(T_x(z) = z + x \) for all \(z \in X \). Clearly, \(T_x \) is a bijective mapping for all \(x \in X \). By Theorem 3.1, \(T_x \) is \(*\delta\)-continuous. Let \(U \) be any open set containing the point \(z \), where \(z \in X \). By Theorem 3.3, \(U + x = T_x(U) \) is \(*\delta\)-open in \(X \). Therefore \(T_x \) is a \(*\delta\)-homeomorphism.

Theorem 5.4. Multiplication mapping on a \(*\delta\)-TVS is \(*\delta\)-homeomorphism.

Proof. Let \((X,F,\tau)\) be a \(*\delta\)-TVS and let the arbitrary scalar \(\alpha \in F \). Multiplication mapping \(M_\alpha : X \rightarrow X \) is \(M_\alpha(x) = \alpha x \). Obviously, it is a bijective mapping. By Theorem 3.2, \(M_\alpha \) is \(*\delta\)-continuous for any \(\alpha \in F \). Then \(M_\alpha(U) = \alpha U \) where \(U \) is any open set in \(X \). By Theorem 3.4, \(\alpha U \) is \(*\delta\)-open in \(X \). Hence \(M_\alpha \) is \(*\delta\)-homeomorphism.

Theorem 5.5. \(*\delta\)-closure of a linear subspace of a \(*\delta\)-TVS is a \(*\delta\)-TVS.

Proof. Let \((X,F,\tau)\) be a \(*\delta\)-TVS and \(H \) be any linear subspace of \(X \). Then \(H + H \subseteq \alpha H \) and \(\alpha H \subseteq H \) for all \(\alpha \in F \). So \(cl_{\delta}(H + H) \subseteq cl_{\delta}(H) \) and \(cl_{\delta}(\alpha H) \subseteq cl_{\delta}(H) \) for all \(\alpha \in F \). By Theorem 4.7, \(cl_{\delta}(H) + cl_{\delta}(H) \subseteq cl_{\delta}(H + H) \subseteq cl_{\delta}(H) \). Also since scalar multiplication is a \(*\delta\)-homeomorphism, by Theorem 4.4, it maps \(*\delta\)-closure of a set into \(*\delta\)-closure of its image. So \(cl_{\delta}(H) \) is \(*\delta\)-homeomorphism.

Theorem 5.6. Every \(*\delta\)-TVS is \(*\delta\)-homogeneous space.

Proof. Let \((X,F,\tau)\) be a \(*\delta\)-TVS. Take \(x, y \in X \) and take \(z = (x - y) + y \). Define a translation map \(T_z : X \rightarrow X \) by \(T_z(x) = x + z \) \(\forall x \in X \). Then \(T_z(x) = y \) for all \(x \in X \). By Theorem 5.3, \(T_z : X \rightarrow X \) is \(*\delta\)-homeomorphism. Hence \((X,F,\tau) \) is an \(*\delta\)-homogeneous space.
there is a \ast-open set V of 0 such that $T_\ast(V) = V + y \subseteq K$.
Since g is \ast-continuous at 0 in X, $\exists \ast$-open set $U \subseteq X$ containing 0 such that $f(U) \subseteq V$. Since $T_\ast : X \to X$ is \ast-homeomorphism, $U + x$ is \ast-open set containing x. Then $f(U + x) = f(U) + f(x) = f(U) + y \subseteq V + y \subseteq K$. Therefore g is \ast-continuous at $x \in X$ and hence on X.

Theorem 6.5. Let (X,F) be an \ast-TVS . The scalar multiple of \ast-compact set is \ast-compact.

Proof. If $\lambda = 0$, we are nothing to prove. Assume that λ is non-zero. Let A be a \ast-compact subset of X and let $\{U_\alpha : \alpha \in I\}$ be a \ast-open cover of λA for some non-zero $\lambda \in F$, then $\lambda A \subseteq \bigcup_{\alpha \in I} U_\alpha$. Then $A \subseteq \bigcup_{\alpha \in I} U_\alpha = \bigcup_{\alpha \in I} \left(\frac{1}{\lambda} U_\alpha \right)$. Since U_α is \ast-open subset of \ast-topological vector space (X,F), $\left(\frac{1}{\lambda} U_\alpha \right)$ is \ast-open subset of X for each $\alpha \in I$. Since A is \ast-compact, there exists a finite subset I_0 of I such that $A \subseteq \bigcup_{\alpha \in I_0} \left(\frac{1}{\lambda} U_\alpha \right)$. This implies that $\lambda A \subseteq \bigcup_{\alpha \in I_0} U_\alpha$. Thus λA is \ast-compact in (X,F).

Theorem 6.6. Let (X,F) be an \ast-TVS . If K is a \ast-compact set of X and G is \ast-closed subset of X such that $K \cap G = \emptyset$, then $\exists \emptyset$ a \ast-open set U containing 0 such that $(K + U) \cap (G + U) = \emptyset$.

Proof. If $K = \emptyset$, then the proof is trivial. Otherwise, let $0 = x \in K$, where K is \ast-compact. Given that G is \ast-closed set. So G is an \ast-open subset of X containing 0 = x. Since the addition mapping is \ast-continuous and 0 = 0 + 0, therefore there is an \ast-open set U containing 0 satisfy $3U = U + U + U \subseteq G$. Define $U_1 = U \cap (-U)$ which is \ast-open set, symmetric and $3U_1 = U_1 + U_1 + U_1 \subseteq G^c$. Hence $\{x + x + x, x \in U_1\} \cap G = \emptyset$. Since U_1 is symmetric, $(x + U_1 + U_1) \cap (G + U_1) = \emptyset$. By hypothesis, for each $x \in K$ and K is \ast-compact, then by the above argument, we have a symmetric \ast-open set V_x such that $(x + 2V_x) \cap (G + V_x) = \emptyset$. The sets $\{V_x : x \in K\}$ are a \ast-open that covers K and hence K is \ast-compact, for finitely number of points $x_j \in K$, $i = 1,2,\ldots,n$, we have $K \subseteq \bigcup_{i=1,2,\ldots,n} (x_j + V_{x_j})$. Define the \ast-open set containing 0 by $V = \bigcap_{i=1,2,\ldots,n} V_{x_i}$. Therefore $(K + V) \cap (G + V) \subseteq \bigcup_{i=1,2,\ldots,n} (x_i + V_i + V) \cap (G + V) \subseteq \bigcup_{i=1,2,\ldots,n} (x_i + 2V_i) \cap (G + V_i) = \emptyset$. Hence $(K + U) \cap (G + U) = \emptyset$.

Lemma 6.7. Let (X,F) be a \ast-TVS , let U be \ast-open subset of X. If A is any subset of X such that $U \cap A = \emptyset$ then $U \cap cl_\ast(A) = \emptyset$.

Proof. Suppose $U \cap cl_\ast(A) \neq \emptyset$. Let $x \in U \cap cl_\ast(A) = \emptyset$. Then $x \in cl_\ast(A)$ and $x \in U$. Since U is \ast-closed subset of X, $X - U$ is \ast-closed subset that contain A. Therefore $cl_\ast(A) \subseteq X - U$, so $x \notin cl_\ast(A)$ which implies a contradiction. Hence $U \cap cl_\ast(A) = \emptyset$.

Corollary 6.8. Let (X,F) be \ast-TVS . If \ast-closed set G and \ast-compact set K are disjoint then there is \ast-open set U containing 0 such that $cl_\ast(K + U) \cap (G + U) = \emptyset$.

Proof. Given that G is \ast-closed and K is \ast-compact. Let $\lambda > 0$ be Theorem 6.6, there exists \ast-open subset of G containing 0 satisfy $(K + U) \cap (G + U) = \emptyset$. The set $G + U = \{y + U : y \in G\}$ is an \ast-open set then by Lemma 6.7, $cl_\ast(K + U) \cap (G + U) = \emptyset$.

Definition 6.1. A Topological space X is said to be \ast-Hausdorff if for every $x \neq y \in X$, there exists a \ast-open sets U_x , V_y such that $x \in U_x, y \in V_y$ and $U_x \cap V_y = \emptyset$.

Definition 6.2. A Topological space X is called \ast-Compact if every cover of X by \ast-open sets has finite subcover. A subset A of X is said to be \ast-compact if every cover of A by \ast-open sets of X has a finite subcover.

Theorem 6.3. Every \ast-TVS (X,F) is \ast-Hausdorff space.

Proof. Let $a \in X, a \neq 0$. Since every singleton set in a \ast-TVS is \ast-closed, $\{a\}$ is \ast-closed in X. Then $\{a\} = X \setminus \{a\} = U$ (say) is \ast-open set containing 0. By Result 2.7, \exists a symmetric \ast-open set V containing 0 such that $V + V \subseteq U$. Then by Result 2.8, $a + V = a - V$ is \ast-open set. If $V \cap (a - V)$ $\neq \emptyset$, then take $y \in V \cap (a - V)$, $y \in a - V = y = a - x$ for some $x \in V \Rightarrow x + y = a = a \Rightarrow x \in V + V$ as $x,y \in V \Rightarrow a \in U$ which is a contradiction. Therefore $V \cap (a - V) = \emptyset$. Hence the points 0 and $a \neq 0$ are separated by \ast-open sets in X. Thus (X,F) is \ast-Hausdorff space.

Theorem 6.4. Let A be \ast-compact set in a \ast-TVS (X,F). Then $x + A$ is compact $\forall x \in X$.

Proof. Let A be \ast-compact subset of \ast-TVS X. Let $\{U_\alpha : \alpha \in I\}$ be a \ast-open cover for $x + A$. Then $x + A \subseteq \bigcup_{\alpha \in I} U_\alpha$ which implies that $A \subseteq (-x) + \bigcup_{\alpha \in I} U_\alpha = \bigcup_{\alpha \in I} (-x + U_\alpha)$. Since U_α is \ast-open subset of \ast-topological vector space, $(-x + U_\alpha)$ is also \ast-open subset of X for each $x \in X$. Since A is \ast-compact, there exists a finite subset I_0 of I such that $A \subseteq \bigcup_{\alpha \in I_0} (-x + U_\alpha)$. This implies that $x + A \subseteq \bigcup_{\alpha \in I_0} U_\alpha$. Thus $x + A$ is compact.
References

