

https://doi.org/10.26637/MJM0901/0135

On the upper open detour monophonic number of a graph

K. Krishna Kumari^{1*}, S. Kavitha² and D. Nidha³

Abstract

An open detour monophonic set *M* in a connected graph *G* is called a minimal open detour monophonic set if no proper subset of *M* is an open detour monophonic set of *G*. The upper open detour monophonic number $odm^+(G)$ of *G* is the maximum cardinality of a minimal open detour monophonic set of *G*. Some general properties satisfied by this concept are studied. The upper open detour monophonic number of some standard graphs are determined. Connected graphs of order *n* with upper open detour monophonic number 2 or 3 or *n* are characterized. It is shown that for every pair *a* and *b* of integers *a* and *b* with $2 \le a \le b$, there exists a connected graph *G* such that odm(G) = a and $odm^+(G) = b$, where odm(G) is the open detour monophonic number of a graph.

Keywords

detour number, open detour number, monophonic number, open monophonic number, upper open detour monophonic number.

AMS Subject Classification

05C12, 05C38.

^{1,3} Department of Mathematics, Nesamony Memorial Christian College, Marthandam – 629165, Tamil Nadu, India.
² Department of Mathematics, Gobi Arts and Science College, Gobichettipalayam-638474, Tamil Nadu, India.
^{1,2,3} Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.
*Corresponding author: ¹ krishnakumarikr@yahoo.com;² kavithaashmi@gmail.com; ³ nidhamaths@gmail.com
Article History: Received 24 December 2020; Accepted 09 March 2021

©2021 MJM.

Contents

1	Introduction765
2	On The Upper Open Detour Monophonic Number of a Graph766
3	Some Results On The Upper Open Detour Monophonic Number of a Graph767
	References

1. Introduction

By a graph G = (V, E), we mean a finite undirected graph without loops or multiple edges. The order and size of Gare denoted by n and m, respectively. For basic graph theoretic terminology, we refer to [1]. The neighborhood of a vertex v is the set N(v) consisting of all vertices u which are adjacent with v. A vertex v is an extreme vertex if the subgraph induced by its neighbors is *complete*. A *chord* of a path P in G is an edge connecting two non adjacent vertices of P. For two vertices u and v in a connected graph G, a u-v path P is called a *monophonic path* P is a chordless

path [2-11]. A longest *u-v* monophonic path is called an *u-v* detour monophonic path. A u-v monophonic path with its length equal to $d_m(u, v)$ is known as a *uv* monophonic. For any vertex v in a connected graph G, the monophonic eccentricity of v is $e_m(v) = max\{d_m(u, v) : u \in V\}$. A vertex u of G such that $d_m(u,v) = e_m(v)$ is called a monophonic eccentric vertex of v. The monophonic radius and monophonic diameter of *G* are defined by $rad_m G = min\{e_m(v) : v \in V\}$ and $diam_m G = max\{e_m(v) : v \in V\}$, respectively. We denote $rad_m G$ by r_m and $diam_m G$ by d_m . Two vertices u and v are said to be detour antipodal if $d_m(u, v) = d_m$. The monophonic distance of a graph was studied in [16]. For two vertices $u, v \in V$, let $J_{dm}[u, v]$ denotes the set of all vertices that lies in *u*-*v* detour monophonic path including *u* and *v*, and $J_{dm}(u, v)$ denotes the set of all internal vertices that lies in u-v detour monophonic path. For $M \subseteq V$, let $J_{dm}[M] = \bigcup_{(u,v \in M)} J_{dm}[u,v]$. A set $M \subseteq V$ is a *detour monophonic set* if $J_{dm}[M] = V$. The minimum cardinality of a detour monophonic set of G is the detour monophonic number of G and is denoted by $d_m(G)$. The detour monophonic set of cardinality $d_m(G)$ is called d_m set. The detour monophonic number of a graph was studied

in [16].

A vertex x of a connected graph G is said to be a detour sim*plicial vertex* of G if x is not an internal vertex of any u-v detour monophonic path for every $u, v \in V$. Each extreme vertex of G is a detour monophonic simplicial vertex of G. Infact there are detour monophonic simplicial vertices which are not extreme vertices of G [12,14]. For the graph G given in the Figure 1.1, v_9 and v_{10} are the only two detour monophonic simplicial vertices of G. Every extreme vertex of Gis a detour monophonic simplicial vertex of G. In fact there are detour monophonic simplicial vertices which are not extreme vertices of G. For the graph G given Figure 1.1, v_{10} is a detour monophonic simplicial vertex of G, which is not an extreme vertex of G. A set $M \subseteq V$ is called an *open detour* monophonic set of G if for each vertex x in G, (1) either x is a detour monophonic simplicial vertex of G and $x \in M$ or (2) $x \in J_{dm}(u, v)$ for some $u, v \in M$. An open detour monophonic set of minimum cardinality is called a minimum open detour monophonic set and this cardinality is the open detour monophonic number of G, denoted by odm(G). An open detour set of cardinality odm(G) is called an *odm*-set of G. The open detour monophonic number of a graph was studied in [13]. Throughout the following G denotes a connected graph with at least two vertices. The following Theorems are used in the sequel.

Theorem 1.1. [8] Every open detour monophonic set of G contains its detour monophonic simplicial vertices. Also, if the set M of all detour monophonic simplicial vertices is an open detour monophonic set of G, then M is the unique minimum open detour monophonic set of G.

Theorem 1.2. [8] Let G be a connected graph of order $n \ge 4$. If G contains no detour monophonic simplicial vertices, then $odm(G) \le 4$.

2. On The Upper Open Detour Monophonic Number of a Graph

Definition 2.1. An open detour monophonic set M in a connected graph G is called a minimal open detour monophonic

set if no proper subset of M is an open detour monophonic set of G. The upper open detour monophonic number $odm^+(G)$ of G is the maximum cardinality of a minimal open detour monophonic set of G.

 v_6, v_9, v_{10} and $M_5 = \{v_7, v_8, v_9, v_{10}\}$, $M_6 = \{v_2, v_3, v_9, v_{10}\}$ are the only minimal open detour monophonic sets of G so that odm(G) = 3 and $odm^+(G) = 4$.

Remark 2.3. Every minimum open detour monophonic set of *G* is a minimal open detour monophonic set of *G* and the converse is not true. For the graph *G* given in Figure 2.1, $\{v_1, v_4, v_9, v_{10}\}$ is a minimal open detour monophonic set of *G* but not a minimum open detour monophonic set of *G*. Here, $M_1 = \{v_1, v_9, v_{10}\}$ is a minimum open detour monophonic set of *G* so that odm(*G*) = 3.

Theorem 2.4. Every minimal open detour monophonic set of G contains its detour monophonic simplicial vertices. Also, if the set M of all detour monophonic simplicial vertices is an open detour monophonic set of G, then M is the unique minimal open detour monophonic set of G.

Proof. Let *M* be a monophonic set of *G* and *v* be an open detour simplicial vertex of *G*. Let $\{v_1, v_2, ..., v_k\}$ be the neighbors of *v* in *G*. Suppose that $v \notin M$. Then *v* lies on a detour monophonic path $P : x = x_1, x_2, ..., v_i, v, v_j, ..., x_m = y$, where $x, y \in M$. Since $v_i v_j$ is a chord of *P* and so *P* is not a detour monophonic path, which is a contradiction. Hence it follows that $v \in M$.

Theorem 2.5. Let G be a connected graph with cut-vertices and M be a monophonic set of G. If v is a cut-vertex of G, then every component of G-v contains at least two element of M.

Proof. Suppose that there is a component G_1 of G-v such that G_1 contains no vertex of S. By Theorem 2.4, G_1 does not contain any end-vertex of G. Thus G_1 contains at least one vertex, say u. Since M is a detour monophonic set, there exists vertices $x, y \in M$ such that z lies on the x-y detour monophonic path $P : x = u_0, u_1, u_2, ..., u_1, ..., u_t = y$ in G. Let P_1 be a x - u sub path of P and P_2 be a u-y subpath of P. Since v is a cut-vertex of G, both P_1 and P_2 contain v so that P is not a path, which is a contradiction. Thus every component of G-v contains an element of M.

Theorem 2.6. For any connected graph G, no cut-vertex of G belongs to any minimal open detour monophonic set of G.

Proof. Let *M* be a minimal open detour monophonic set of *G* and $v \in M$ be any vertex. We claim that *v* is not a cut vertex of *G*. Suppose that *v* is a cut vertex of *G*. Let $G_1, G_2, ..., G_r$ $(r \ge 2)$ be the components of G - v. By Theorem 2.5, each component G_i $(1 \le i \le r)$ contains an element of *M*. We

claim that $M_1 = M - \{v\}$ is also a open detour monophonic set of G. Let x be a vertex of G. Since M is a monophonic set, x lies on a monophonic path P joining a pair of vertices *u* and *v* of *M*. Assume without loss of generality that $u \in G_1$. Since v is adjacent to at least one vertex of each G_i $(1 \le i \le r)$, assume that v is adjacent to z in $G_k, k \neq 1$. Since M is a open detour monophonic set, z lies on a detour monophonic path Q joining v and a vertex w of M such that w must necessarily belongs to G_k . Thus $w \neq v$. Now, since v is a cut vertex of G, $P \cup Q$ is a path joining u and w in M and thus the vertex x lies on this detour monophonic path joining two vertices u and w of M_1 . Thus we have proved that every vertex that lies on a detour monophonic path joining a pair of vertices u and v of M also lies on a detour monophonic path joining two vertices of M_1 . Hence it follows that every vertex of G lies on a detour monophonic path joining two vertices of M_1 , which shows that M_1 is a open detour monophonic set of G. Since $M_1 \subsetneq M$, this contradicts the fact that M is a minimal open detour monophonic set of G. Hence $v \notin M$ so that no cut vertex of G belongs to any minimal open detour monophonic set of G.

Corollary 2.7. For any non-trivial tree T, the monophonic number $odm^+(T) = odm(T) = k$, where k is number of end vertices of T.

Proof. This follows from Theorems 2.4 and 2.6. \Box

Corollary 2.8. For the complete graph K_n $(n \ge 2)$, $odm(K_n) = odm^+(K_n) = n$.

Proof. Since every vertex of the complete graph K_n $(n \ge 2)$ is an open detour simplicial vertex, the vertex set of K_n is the unique detour monophonic set of K_n . Thus $odm^+(K_n) = odm(K_n) = n$.

Theorem 2.9. *For the cycle* $G = C_n$ $(n \ge 4)$ *, odm*⁺(G) = 4*.*

Proof. If *n* is even, then let *x* and *y* be two monophonic antipodal vertices of $G = C_n$, and w be a detour monophonic antipodal vertex of x and z be a detour monophonic antipodal vertex of y. Then $M = \{x, y, w, z\}$ is a minimal open detour monophonic set of G and so $odm^+(G) > 4$. We show that $odm^+(G) = 4$. Suppose that $odm^+(G) > 5$. Then there exists a minimal open detour monophonic set M_1 such that $|M_1| \ge 5$. Suppose that M_1 is a set of independent vertices of G. Then $M_2 = M_1 - \{u\}$, where $u \in M_1$ is an open detour monophonic set of *G* with $M_2 \subset M_1$, which is a contradiction. Therefore $G[M_1]$ contains at least one edge. Let uv be an edge of $G[M_1]$. Then either $M_1 - \{u\}$ or $M_1 - \{u\}$ is an open detour monophonic set of G, which is a contradiction. Therefore M_1 is not a minimal open detour monophonic set of G, which is a contradiction. Therefore $odm^+(G) = 4$ if *n* is even. If *n* is odd, then let x and y be two antipodal vertices of G, and w be a detour antipodal vertices of x and z be a detour antipodal vertex of w. Let $M_3 = \{x, y, w, z\}$. Then as in the argument above, we can prove that $odm^+(G) = 4$ if *n* is odd. Therefore $odm^+(G) = 4$ for $n \ge 4$.

3. Some Results On The Upper Open Detour Monophonic Number of a Graph

Theorem 3.1. For a connected graph G, $2 \le odm(G) \le odm^+(G) \le n$.

Proof. Any open detour monophonic set needs at least two vertices and so $odm(G) \ge 2$. Since every minimal open detour monophonic set is an open detour monophonic set, $odm(G) \le odm^+(G)$. Also, since V(G) is an open detour monophonic set of *G*, it is clear that $odm^+(G) \le n$. Thus $2 \le odm(G) \le odm^+(G) \le n$.

Theorem 3.2. For a connected graph G of order n, $odm^+(G) = 2$ if and only if odm(G) = 2.

Proof. Let $odm^+(G) = 2$. Then by Theorem 3.1, odm(G) = 2. Conversely, let odm(G) = 2. Let *M* be a *odm*-set of *G* with |M| = 2. Then by Theorem 1.1, *M* consists of two detour simplicial vertices. By Theorem 1.1, *M* is a subset of every open detour monophonic set of *G*. Hence it follows that *M* is the unique minimal open detour monophonic set of *G*. Therefore $odm^+(G) = 2$.

Theorem 3.3. Let G be a connected graph. If G has a minimal open detour monophonic set M of cardinality three, then all the vertices in M are detour monophonic simplicial vertices.

Proof. Let $M = \{x, y, z\}$ be a minimal open detour monophonic set of *G*. On the contrary suppose that *z* is not a detour monophonic simplicial vertex of *G*. We consider the following three cases.

Case(1) *x* and *y* are non-detour simplicial vertices of *G*. Then *M* is the set of *M* contains no detour monophonic simplicial vertices. By Theorem 1.2, $odm(G) \ge 4$, which is a contradiction.

Case(2) x is a detour monophonic simplicial vertex of G and y is not detour monophonic simplicial vertex of G. Since M is an open detour monophonic set of G, we have $y \in J_{dm}(x, z)$ and $z \in J_{dm}(x, y)$. Then we have $d_m(x, z) > d_m(x, y)$ and $d_m(x, y) > d_m(x, y)$ $d_m(x,z)$. Hence $d_m(x,y) > d_m(x,y)$, which is a contradiction. Case(3) x and y are detour monophonic simplicial vertices of G. Since M is an open detour monophonic simplicial vertex of *G*. We have $z \in J_{dm}(x, y)$. Let $d_m(u, v) = l$ and *P* be an *u* - v detour monophonic path of length k. Let us assume that $d(x,z) = k_1$ and $d(y,z) = k_1$. Then $k_1 + k_1 \le k$. Let P' be a xz subpath of P and P'' a z - y subpath of P. We prove that M' = $\{x, y\}$ is an open detour monophonic set of G. Let $v \in V - M'$. Then v is non-detour simplicial vertex of G. It follows that x and y are the only two detour monophonic vertices of G. We have $v \in J_{dm}(y,z)$ or $v \in J_{dm}(x,z)$. If $v \in J_{dm}(x,y)$, then nothing to prove. Let us assume that $v \in I_d(x, z)$. Let v be an internal vertex of detour monophonic x - z, say R. Let a be the x – y walk obtained from R followed by P''. Then |R| = kand so R is a x - y detour monophonic containing v. Thus $v \in J_{dm}(x, y)$. Similarly, if $v \in J_{dm}(x, z)$, we can prove that

 $v \in J_{dm}(x,y)$. Hence M' is an open detour monophonic set of G with $M' \subset M$, which is a contradiction to M a minimal open detour monophonic set of G. Therefore all the vertices of detour monophonic simplicial vertex of G.

Theorem 3.4. For a connected graph G of order n, $odm^+(G) = 3$ if and only if odm(G) = 3.

Proof. Let odm(G) = 3. Let M be a odm-set of G. Since every minimum open detour monophonic set of G is a minimal open detour monophonic set of G, by Theorem 3.3, all the vertices of M are detour simplicial vertices. Then by Theorem $1.1, odm^+(G) = 3$. Conversely, let $odm^+(G) = 3$. Let S be a minimal open detour monophonic set of G. Then by Theorem 1.1, all the vertices of M are detour simplicial vertices. Hence it follows from Theorem 1.1 that odm(G) = 3.

Theorem 3.5. For a connected graph G of order n, $odm^+(G) = n$ if and only if odm(G) = n.

Proof. Let $odm^+(G) = n$. Then M = V(G) is the unique minimal open detour monophonic set of G. Since no proper subset of M is an open detour monophonic set, it is clear that M is the unique minimum open detour monophonic set of G and so odm(G) = n. The converse follows from Theorem 3.1.

Theorem 3.6. For positive integers r_m , d_m and $l \ge 4$ with $r_m < d_m$, there exists a connected graph G with $rad_m G = r_m$, $dia_m G = d_m$ and $odm^+(G) = l$.

Proof. For convenience, we assume $r_m = r$ and $d_m = d$. When r = 1, we let $G = K_l$. Then the result follows from Corollary 2.9. Let $r \ge 2$. Let $C_{r+2}v_1, v_2, ..., v_{r+2}$ be a cycle of length r+2 and let $P_{d-r+1}: u_0, u_1, u_2, ..., u_{d-d}$. Let *H* be a graph obtained from C_{r+2} and P_{d-r+1} by identifying v_1 in C_{r+2} and u_0 in P_{d-r+1} . Now add l-3 new vertices w_1, w_2, \dots, w_{l-3} to H and join each w_i $(1 \le i \le l-3)$ to the vertex u_{d-r-1} and obtain the graph *G* of Figure 3.1. Then $rad_m G = r$ and $diama_m G = d$. Let $W = \{w_1, w_2, \dots, w_{l-3}, u_{d-r}\}$ be the set of all end-vertices of G. Then by Theorem 1.1, W is contained in every open detour monophonic set of G. $M_1 = W \cup \{v_3, v_{r+1}\}$. Then M_1 is an open detour monophonic set of G. If M_1 is not a minimal open detour monophonic set of G, then there is a proper subset T of M_1 such that T is an open detour monophonic set of G. Then there exists $v \in M_1$ such that $v \notin T$. By Theorem 1.1, $v \neq w_i$ $(1 \leq i \leq l-3)$ and $v \neq u_{d-r}$. Therefore v is either v_3 or v_{r+2} . If $v = v_2$, then v_2 does not lie on a detour monophonic path joining some vertices of *T*. If $v = v_{r+1}$, then v_{r+1} does not lie on a detour monophonic path joining some vertices of T and so T is not an open detour monophonic set of G, which is a contradiction. Thus M_1 is a minimal open detour monophonic set of G and so $odm^+(G) \ge l$. We show that $odm^+(G) = l$. Suppose that $odm^+(G) > l+1$. Let T' be a minimal open detour monophonic set of G with $|T'| \ge l+1$. By Theorem 2.4, $W \subseteq T'$. Since $W \cup \{v_i\}$ $(3 \le i \le r+1)$ is an open detour monophonic set of G, $v_i \notin T'$ $(3 \le i \le r+1)$. Since M_1 is an open detour monophonic set of $G, v_2, v_{r+2} \notin T'$. By Theorem 2.6, $u_i \notin T'$ $(0 \in i \in d - r - 1)$. Hence no such T' exists. Therefore $odm^+(G) = l$.

In view of Theorem 3.1, we have the following realization result.

Theorem 3.7. For every pair *a* and *b* of positive integers with $2 \le a \le b$, there exists a connected graph *G* such that odm(G) = a and $odm^+(G) = b$.

Proof. Let $P_7: v_1, v_2, v_3, v_4, v_5, v_6, v_7$ be a path on seven vertices. Let *K* be a graph obtained from K_{a-2} and K_{b-a} with $V(K_{a-2}) = \{z_1, z\{\{2, ..., z_{a-2}\} \text{ and } V(K_{b-a}) = \{h_1, h_2, ..., h_{b-a}\}$ by joining each z_i $(1 \le i \le a - 2)$ with v_1 and each h_i $(1 \le i \le b - a)$. Let *G* be the graph obtained from *H* and *K* by joining each h_i $(1 \le i \le b - a)$ with v_7 . The graph *G* is obtained in Figure 3.2.

First we show that odm(G) = a. Let $Z = \{z_1, z_2, ..., z_{a-2}\}$ be the set of all end vertices of *G*. Then by Theorem 1.1, *Z* is a subset of every open detour monophonic set of *G* and so $od_m(G) \ge a - 2$. It is easily verified that *Z* or $Z \cup \{x\}$, where $u \notin Z$ is not an open detour monophonic set of *G* so that $odm(G) \ge a$. Let $M = Z \cup \{v_4, v_7\}$. Then *M* is an open detour monophonic set of *G* so that $odm(G) \ge a$.

Next we prove that $odm^+(G) = b$. Let $M = Z \cup \{h_1, h_2, ..., h_{b-a}\} \cup \{v_2, v_7\}$. Then M is an open detour monophonic set of G. We prove that M is a minimal open detour monophonic set of G. On the contrary suppose M is not a minimal open detour monophonic set of G. Then there exists an open detour monophonic set M of G such that $M' \subset M$.

Then there exists $x \in M$ such that $x \notin M'$. By Theorem 1.1, $x \neq z_i$ for all $i \ (1 \le i \le a-2)$. If $x = h_i$ for some $(1 \le i \le b-a)$, then $x \in J_{dm}(M)$, If $x = v_2$ then $v_7, h_i \notin I(M)$ for all $i \ (1 \le i \le b-a)$. If $x = v_7$, then $v_2, h_i \notin I(M)$ for all $i \ (1 \le i \le b-a)$. Therefore M' is not an open detour monophonic set of G, which is a contradiction. Therefore M is a minimal open detour monophonic set of G and so $odm^+(G) = b$. Suppose that $odm^+(G) \ge b+1$. Then there exist a minimal open detour monophonic set M' of G such that $|M'| \ge b+1$. Then by similar argument as above, we prove that M' is not a minimal open detour monophonic set of G. Therefore $odm^+(G) = b$.

Acknowledgment

The authors would like to thank anonymous reviewers for their valuable and constructive comments.

References

- [1] M. C. Dourado, Fabio Protti and Jayme. L. Szwarcter, Algorithmic aspects of mono- phonic convexity, *Electronic Notes in Discrete Mathematics*, 30, (2008), 177 - 182.
- ^[2] F. Harary. Graph Theory. Addison-Wesley, 1969.
- ^[3] J. John and S. Panchali, The upper monophonic number of a graph, *Int. J. Math. Combin.* 4, (2010), 46 – 52
- [4] J. John, P. Arul Paul Sudhahar and A. Vijayan, The connected monophonic number of a graph, *International Journal of Combinatorial Graph Theory and Applications*, 5(1), (2012), 83-90.
- [5] J. John ,P. Arul Paul Sudhahar and A. Vijayan, The connected edge monophonic number of a graph, *Journal* of Computer and Mathematical Sciences, 3 (2), (2012), 131-136.
- [6] J. John and S. Panchali, The forcing monophonic number of a graph, *IJMA*-3 (3), (2012), 935–938.
- [7] J. John and K.U. Samundeswari, The forcing edge fixing edge-to-vertex monophonic number of a graph, *Discrete Math. Algorithms Appl.*, 5(4), (2013), 1 – 10.
- [8] J. John and K.U. Samundeswari, The edge fixing edgeto-vertex monophonic number of a graph, *Appl. Math. E-Notes*, 15, (2015), 261 – 275.
- [9] J. John and K.U. Samundeswari, Total and forcing total edge-to-vertex monophonic numbers of graph, *J. Comb. Optim.*, 34, (2017), 1 – 14.
- J. John, D. Stalin and P. Arul Paul Sudhahar, On the (M,D) number of a graph, *Proyecciones Journal of Mathematics*, 38 (2),(2019), 255-266,
- ^[11] J. John, On the forcing monophonic and forcing geodetic numbers of a graph, *Indonesian Journal of Combinatorics*, 4(2), (2020), 114 125.
- ^[12] J. John and V. R. Sunil Kumar, The open detour number of a graph, *Discrete Mathematics, Algorithms and Applications*, 13(1),(2021),2050088(12 pages)
- ^[13] K.Krishna Kumari, S.Kavitha and D.Nidha, The open detour monophonic number of a graph.(communicated)

- [14] K.Krishna Kumari, S.Kavitha and D.Nidha, The open detour monophonic number of join, corona product and cluster product of graphs.(communicated)
- [15] A. P. Santhakumaran and P. Titus, Monophonic Distance in Graphs, Discrete Mathematics, Algorithms and Applications, 3(2), (2011),159-169.
- [16] P. Titus, K. Ganesamoorthy and P. Balakrishnan. The Detour Monophonic Number of a Graph, *J. Combin. Math. Combin. Comput.*, 84(2013), 179-188.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******