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Topological cordial labeling of some graphs
S. Selestin Lina1 and S. Asha2

Abstract
B.D. Acharya [3] introduced the notion of set - valuation as set analogue of number valuation as introduced
by A. Rosa [5]. Let G be a graph and X , a non-empty set. Define an injective function f : V (G)→ 2X such that
{ f (V (G))} is a topology on X . If the induced function f ∗ on E(G) is defined by

f ∗(uv) =
{

1 if f (u)∩ f (v) is not an empty set and singleton set
0 otherwise

for every uv ∈ E(G) such that
∣∣e f (0)− e f (1)

∣∣ ≤ 1 where e f (0) = number of edges labeled with 0 and e f (1) =
number of edges labeled with 1 then f is a topological cordial labeling and a graph which admits such a labeling
is called topological cordial graph. This definition is defined and introduced by us [8]. In this paper we proved
Durer graph, Herchel graph and some constructed graphs are topolological cordial graph.
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1. Introduction
The graphs treated in this paper are simple. For standard
terminology and notations we follow F. Harary [4]. Given
a graph G = (V,E), we can relate it to different topological
structures. The relation between topology and graph theory
is undergone many investigations. In 1983 Acharya [3] es-
tablished another link between graph theory and point - set
topology. He defined a set - indexer as follows: Let G= (V,E)
be a graph, X any non − empty set and 2x denote the set of
all subsets of X . A set - indexer of G is an injective set val-
ued function f : V (G)→ 2X such that the induced function
f ∗ : E(G)→ 2X −{φ} defined by f ∗ (v1v2) = f (v1)∆ f (v2)
for every v1v2 ∈ E(G) is also injective, where ∆ denotes the

symmetric difference of sets. A graph G = (V,E) is said to be
a bitopological graph if there exist a set indexer f : V (G)→
2X such that f (V ) and f ∗(E)∪{φ} are both topologies on
the corresponding ground set. Let G be a graph and X , a non-
empty set. Define an injective function f : V (G)→ 2X such
that { f (V (G))} is a topology on X . If the induced function
f ∗ on E(G) is defined by

f ∗(uv) =

 1 if f (u)∩ f (v) is not an empty set and
singleton set

0 otherwise

for every uv ∈ E(G) such that
∣∣e f (0)− e f (1)

∣∣ ≤ 1 where
e f (0) = number of edges labeled with 0 and e f (1) = number
of edges labeled with 1 then f is a topological cordial labeling
and a graph which admits such a labeling is called topological
cordial graph. This definition is defined and introduced by us
[8]. In this paper we proved Durer graph, Herchel graph and
some constructed graphs are topolological cordial graph.

Definition 1.1 ([6]). The Durer graph is an undirected graph
with 12 vertices and 18 edges.

Definition 1.2 ([6]). The Herschel graph H is a bipartite
graph with 11 vertices and 18 edges, the smallest non Hamil-
tonian polyhedr
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Definition 1.3 ([6]). The octahedral graph is the 6 -node
and 12 -edge platonic graph having the connectivity of the
octahedron.

Definition 1.4 ([8]). Let G be a graph and X, a non-empty
set. Define an injective function f : V (G)→ 2X such that
{ f (V (G))} is a topology on X. If the induced function f ∗ on
E(G) is defined by

f ∗(uv) =

 1 if f (u)∩ f (v) is not an empty set and
singleton set

0 otherwise

for every uv ∈ E(G) such that
∣∣e f (0)− e f (1)

∣∣ ≤ 1 where
e f (0) = number of edges labeled with 0 and e f (1) = num-
ber of edges labeled with 1 then f is a topological cordial
labeling and a graph which admits such a labeling is called
topological cordial graph.

2. Topological cordial labeling of named
graphs

Theorem 2.1. Durer graph is topological cordial graph.

Proof. Let G be a Durer graph with 12 vertices and 18 edges.
Let V (G) = {ui/1≤ i≤ 6}∪{vi/1≤ i≤ 6} and E(G) =

{vivi+1/1≤ i≤ 6 where v7 = v1}∪{uiui+2/1≤ i≤ 6}where
u7 = u1 and u8 = u2}∪{viui/1≤ i≤ 6} . Let X = {1,2, . . . ,11}.
Now, define f :V (G)→ 2X by f (u1)= φ , f (u2)= {1}, f (u3)
= {2}, f (u4)= {1,2} f (u5)= {1,2,3}, f (u6)= {1,3}, f (vi)
= {1,2, . . . , i+3},1≤ i≤ 5, f (v6) = X .

Then the vertex labels are distinct and { f (V (G)) }is a
topology on X . The induced function f ∗ on E(G) is defined
as follows:

f ∗(uv) =

 1 if f (u)∩ f (v) is not an empty set and
singleton set

0 otherwise

for every uv ∈ E(G). Now, f ∗ (vivi+1) = 1,1 ≤ i ≤ 6 where
v7 = v1, f ∗ (uivi)= 0,1≤ i≤ 3, f ∗ (uivi)= 1,4≤ i≤ 6, f ∗(uiui+2)
= 0,1≤ i≤ 6 where u7 = u1 and u8 = u2.

Therefore,
∣∣e f (0)− e f (1)

∣∣≤ 1 where e f (0) = number of
edges labeled with 0 and e f (1) = number of edges labeled
with 1.Hence f is a topological cordial labeling. Thus G is
topological cordial graph.

Example 2.2. Durer graph is topological cordial graph.

Theorem 2.3. The Herschel graph H is topological cordial
graph.

Proof. Let H be a Herschel graph.
Let V (H) = {vi/1≤ i≤ 11} and E(H) = {v1vi/1≤ i≤ 8
where i is even } ∪ {viv11/i = 3,5,7} ∪ {viv10/i = 3,7} ∪
{v2v9}∪{vivi+1/2≤ i≤ 9} . Then |V (H)|= 11 and |E(H)|=
18. Let X = {1,2,3, . . . ,10}. Define f :V (G)→ 2X by f (v1)=
φ , f (v2)= {1,2,3}, f (v3)= {1,2,3,4}, f (v4)= {1,2,3,4,5},

Figure 1

f (v5) = {1}, f (v6) = {1,2, . . . ,6}. f (v7) = {1,2}, f (v8) =
{1,2, . . . ,7}, f (v9) = {1,2, . . . ,8}, f (v10) = {1,2, . . . ,10},
f (v11) = {2}. Therefore the vertex labels are distinct and
{ f (V (H)) } is a topology on X . The induced function f ∗ on
E(H) is defined as follows:

f ∗(uv) =

 1 if f (u)∩ f (v) is not an empty set and
singleton set

0 otherwise

for every uv ∈ E(H). Then,
∣∣e f (0)− e f (1)

∣∣= 9−9 = 0≤ 1
where e f (0) = number of edges labeled with 0 and e f (1) =
number of edges labeled with 1. Hence f is a topological
cordial labeling. Thus H is topological cordial graph.

Example 2.4. Herschel graph H is topological cordial graph.

Figure 2

3. Topological cordial labeling of
constructed graphs

Theorem 3.1. A wheel graph Wn together with a new vertex
attached to the centre vertex is a topological cordial graph.

Proof. Let G be a wheel graph Wn together with a new vertex
attached to the centre vertex.Let v1,v2, . . . ,vn be the vertices
of Wn other than the centre vertex v0 and w be the new vertex
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attached with the centre vertex. Let V (G) = {vi/0≤ i≤ n}∪
{w} and E(G) = {v0vi/1≤ i≤ n}∪{vivi+1/1≤ i≤ n where
vn+1 = v1}∪{v0w}.

Then the graph G has n+2 vertices and 2n+1 edges. Let
X = {1,2, . . . ,n+1}.

Define f :V (G)→ 2X by f (v0)= φ2 f (vi)= {1,2, . . . , i+
1},1≤ i≤ n, f (w) = {1}. Then the vertex labels are distinct
and { f (V (G))} is a topology on X .The induced function f ∗

on E(G) is defined as follows:

f ∗(uv) =

 1 if f (u)∩ f (v) is not an empty set and
singleton set

0 otherwise

for every uv ∈ E(G). f ∗ (v0vi) = 0,1≤ i≤ n, f ∗ (vivi+1) = 1,
1≤ i≤ n where vn+1 = v1, f ∗ (v0w) = 0.

Therefore,
∣∣e f (0)− e f (1)

∣∣≤ 1 where e f (0) = number of
edges labeled with 0 ande f (1) = number of edges labeled
with 1. Hence f is a topological cordial labeling. Thus G is
topological cordial graph.

Example 3.2. A wheel graph W10 together with a new vertex
attached to the centre vertex is a topological cordial graph.

Figure 3

Theorem 3.3. An Octahedral graph in which each rim vertex
is attached to a new vertex is a topological cordial graph.

Proof. Let G be a Octahedral graph in which each rim ver-
tex is attached to a new vertex. Thus it has 9 vertices and 15
edges.Let V (G)= {vi/1≤ i≤ 6}∪{ui/1≤ i≤ 3}anE(G)=
{vivi+1/1≤ i≤ 6 where v7 = v4}∪{uivi+3/1≤ i≤ 3}∪
{v1vi/i = 4,6}∪ {v2vi/i = 5,6}∪ {v3vi/i = 1,5}. Let X =
{1,2, . . . ,8} Define f : V (G)→ 2X by f (v1) = φ , f (vi+1) =
{1,2, . . . , i},1≤ i≤ 5, f (ui)= {1,2, . . . , i+5},1≤ i≤ 3. Then
the vertex labels are distinct and { f (V (G))} is a topology on
X . The induced function f ∗ on E(G) is defined as follows:

f ∗(uv) =

 1 if f (u)∩ f (v) is not an empty set and
singleton set

0 otherwise

for every uv∈E(G).Then,
∣∣e f (0)− e f (1)

∣∣≤ 1 where e f (0) =
number of edges labeled with 0 and e f (1) = number of edges
labeled with 1 .Hence f is a topological cordial labeling. Thus
G is topological cordial graph.

Example 3.4. Octahedral graph in which each rim vertex is
attached to a new vertex is a topological cordial graph.

Figure 4

4. Conclusion
In this paper deals with topological cordial graphs. The aim of
this paper is to make some progress to a better understanding
of topological cordial labeling.
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