Dominating weakly connected set dominating bridge independent graphs

D. Anandha Selvam,1* and M. Davamani Christober2

Abstract
A γwcsd set S of a connected graph G is a dominating weakly connected set dominating (wcsd) set of G with minimum cardinality. A connected graph G is a γwcsd - excellent if each vertex u of G is in some γwcsd set of G. A graph G is a γwcsd - flexible if to each vertex u of G, there is a γwcsd set not containing u. A wcsd set S of G is wcsd - bridge independent set of G if induced graph of S contains no bridge of G. The minimum cardinality of a wcsd - bridge independent dominating set of G is wcsd - bridge independent dominating number of G and is denoted χwcsd bi(G). A graph G is χwcsd - excellent if every vertex u of G is contained in some χwcsd - set of G. In this paper we have proved that (i) every graph G is an induced sub graph of some χwcsd - excellent, γwcsd - excellent and γwcsd - flexible graph H with γwcsd(G) ≤ γwcsd(H) ≤ χwcsd bi(H) ≤ γwcsd(G) + 1 (ii) Every γwcsd - excellent & γwcsd - flexible is γwcsd bi - excellent and further χwcsd bi = γwcsd (iii) A necessary and sufficient condition under which the graph G = (G1 ∪ G2) + uv where G1 and G2 are disjoint γwcsd excellent graphs and u ∈ V(G1) & v ∈ V(G2) is γwcsd excellent.

Keywords
wcsd - sets, γwcsd - sets, γwcsd - excellent graphs, γwcsd - flexible graphs, χwcsd bi - sets and χwcsd bi - excellent graphs.

AMS Subject Classification
05C78.

1,2 Department of Mathematics, The American College, Madurai-625002, Tamil Nadu, India.
*Corresponding author: christober.md@gmail.com
Article History: Received 21 December 2018; Accepted 11 February 2019

1. Introduction

Sampath Kumar and Pushpa Latha [2] have defined set domination in graphs. Hedetniemi et. al. [4] have defined weakly connected domination in graphs. We defined the concept of weakly connected set dominating sets(wcs), dominating weakly connected set dominating sets(wcsd) and elucidate some results in our earlier paper. We extend these to new class of wcsd-bridge independent graphs and its excellent graphs.
Definition 3.3. A connected graph G is a γ_{wcsd} flexible if to each vertex u of G, there is a γ_{wcsd} set not containing u.

Definition 3.4. A wcsd set S of G is wcsd - bridge independent set of G if induced graph of S contains no bridge of G. The minimum cardinality of a wcsd - bridge independent dominating set of G is wcsd - bridge independent dominating number of G and is denoted $\gamma^bi_{\text{wcsd}}(G)$.

Definition 3.5. A connected graph G is γ^bi_{wcsd} - excellent if every vertex u of G is contained in some γ^bi_{wcsd} - set of G.

Definition 3.6. A vertex $u\in V(G)$ is called a γ_{wcsd} level vertex of G if $\gamma_{\text{wcsd}}(G-v) = \gamma_{\text{wcsd}}(G)$.

Definition 3.7. A vertex $u\in V(G)$ is called a γ_{wcsd} non level vertex of G if $\gamma_{\text{wcsd}}(G-v) = \gamma_{\text{wcsd}}(G) - 1$.

Observation 3.8. Every γ_{wcsd} - excellent graph need not be γ_{wcsd} - flexible.

Example

\[
S_1 = \{u,a_2,b_3\}, S_2 = \{u,a_3,b_3\}, S_3 = \{u,a_3,b_1\},
S_4 = \{u,a_4,b_2\} \text{ are } \gamma_{\text{wcsd}} - \text{ sets. There is no } \gamma_{\text{wcsd}} - \text{ set without } u. \text{ Therefore it is not } \gamma_{\text{wcsd}} - \text{ flexible.}
\]

Observation 3.9. There exists graphs with γ_{wcsd} - excellent and γ^bi_{wcsd} - excellent. Any path with even vertices is both γ_{wcsd} - excellent and γ^bi_{wcsd} - excellent.

Example

\[
S_1 = \{2,4\} \text{ is a } \gamma_{\text{wcsd}} \text{ set and induced graph of } S_1 \text{ has no bridge.}
S_2 = \{1,3\} \text{ is a } \gamma_{\text{wcsd}} \text{ set and induced graph of } S_2 \text{ has no bridge.}
\]

Theorem 3.1. Every connected graph G of order n is an induced sub graph of γ^bi_{wcsd} - excellent, γ_{wcsd} - flexible graph H of order $n + \gamma_{\text{wcsd}}(G) + 1$ and further $\gamma_{\text{wcsd}}(G) \leq \gamma^bi_{\text{wcsd}}(H) \leq \gamma^bi_{\text{wcsd}}(H) + \gamma_{\text{wcsd}}(G) + 1$.

Proof. Let G be a connected graph of order n

Let $S = \{v_1, v_2, v_3, \ldots, v_{m-1}, v_m\}$ be a γ_{wcsd} set of G construction of graph H is as follows

\[
V(H) = V(G) \cup \{u_1, u_2, u_3, \ldots, u_{m-1}, u_m, w\}
E(H) = E(G) \cup \{viu_i \mid i = 1, 2, \ldots, m\}
\cup \{vw \mid \forall v \in V - S\}
D = \{v_1, v_2, v_3, \ldots, v_{m-1}, v_m, w\}
D_0 = \{u_1, u_2, u_3, \ldots, u_{m-1}, u_m, w\}
D_i = \{v_1, v_2, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{m-1}, v_m, u_i\}
\forall i = 1, 2, \ldots, m
D_v = \{v_1, v_2, v_3, \ldots, v_{m-1}, v_m, v\}
\forall v \in V - S
\]

are γ_{wcsd} sets of H and for every vertex u in H there exists at least one γ_{wcsd} set of H such that u is not a member of that set. Therefore H is γ_{wcsd} - flexible of order $n + \gamma_{\text{wcsd}}(G) + 1$.

Induced sub graph of these sets contains no bridge of H. Therefore H is γ^bi_{wcsd} - excellent graph.

Thus G is an induced sub graph of H such that $\gamma_{\text{wcsd}}(G) \leq \gamma_{\text{wcsd}}(H) \leq \gamma^bi_{\text{wcsd}}(H) \leq \gamma^bi_{\text{wcsd}}(H) + 1$.

Theorem 3.2. If G is γ_{wcsd} - excellent and γ_{wcsd} - flexible then G is γ^bi_{wcsd} - excellent and further $\gamma^bi_{\text{wcsd}}(G) = \gamma_{\text{wcsd}}(G)$.

Proof. Let G be a connected γ_{wcsd} - excellent and γ_{wcsd} - flexible graph. Let $u \in V(G)$

Since G is γ_{wcsd} - excellent, there exists a γ_{wcsd} - set S of G such that $u \in S$.

Define $d(e) = \min \{d(u,a), d(u,b)/e = ab \text{ is a bridge of } G\}$.

Labeling the bridges of G as e_1, e_2, ..., e_{k-1}, e_k such that $d(e_i) \leq d(e_j)$ whenever $i < j$.

If $<S>$ contains no bridge e_i, then S is a γ^bi_{wcsd} - set containing u.

Suppose S contains bridge e_i for some i such that e_1, e_2, ..., $e_{i-1} \notin S$.

Let $e_i = ab$.

Then $G-e_i$ has components G_1 & G_2 such that G_1 contains a & u and G_2 contains b.

Since γ_{wcsd} - flexible there is a γ_{wcsd} - set S_1 of G not containing b.

Let $D = (S \cap G_1) \cup (S_1 \cap G_2)$.

Since S and S_1 are γ_{wcsd} sets of G, $S \cap G_1$ & $S_1 \cap G_2$ are γ_{wcsd} sets of G_1 & G_2 respectively.

Thus D is γ_{wcsd} set of G.

As e_1, e_2, ..., $e_{i-1} \notin S \supset$ and $e_i \in S \supset$ & e_1, e_2, ..., e_{i-1} in G_1 by our labeling procedure.

Then e_1, e_2, ..., e_{i-1}, $e_i \notin D \supset$.

Proceeding like this for another bridge e_j we get a γ_{wcsd} set D' such that $e_j \notin D' \supset \forall j$.

D' is a γ^bi_{wcsd} - set containing arbitrary u.

G is γ^bi_{wcsd} - excellent and $\gamma^bi_{\text{wcsd}}(G) = \gamma_{\text{wcsd}}(G)$.

Theorem 3.3. Let G_1 and G_2 be two γ_{wcsd} - excellent graphs. Let $H = G_1 \cup G_2 + e$ where $e = u_1u_2,u_1 \in G_1,u_2 \in G_2$ then H is γ_{wcsd} - excellent if and only if either $i)$ u_i is a γ_{wcsd} - level vertex of G_i, $i = 1, 2$ ii) for each i, u_i is...
Assume that which contains u. Assume that at least one of u_i belongs to A_w of G_i such that $w, u_i \in A_w$.

Proof. Let G_1 and G_2 be two γ_{wcd} - excellent graphs. Let $H = G_1 \cup G_2 + e$ where $e = u_1u_2, u_1 \in G_1, u_2 \in G_2$.

Case 1:
Assume that u_i is a γ_{wcd} - level vertex of $G_1 i = 1, 2$.
Let S_1, S_2 be γ_{wcd} - set of G_1 and G_2 respectively. Then $S_1 \cup S_2$ is a wcd set of H

$$\gamma_{wcd}(H) \leq \gamma_{wcd}(G_1) + \gamma_{wcd}(G_2)$$

If D is any γ_{wcd} set of H then $D \cap G_1 \subseteq V(G_1)$ and $D \cap G_2 \subseteq V(G_2)$ such that $D \cap G_1$ is wcd set of $G_1 - u_1$ and $D \cap G_2$ is a wcd set of $G_2 - u_2$.

$$\gamma_{wcd}(H) = |D| = |D \cap G_1| + |D \cap G_2|$$
$$\gamma_{wcd}(H) \geq \gamma_{wcd}(G_1 - u_1) + \gamma_{wcd}(G_2 - u_2)$$
$$\gamma_{wcd}(H) \geq \gamma_{wcd}(G_1) + \gamma_{wcd}(G_2)$$

From 1 & 2

$$\gamma_{wcd}(H) = \gamma_{wcd}(G_1) + \gamma_{wcd}(G_2)$$

Let $w \in H$. Then $w \in V(G_i)$ for some $i = \{1, 2\}$.
Let $i \neq j \in \{1, 2\}$
As G_i is a γ_{wcd} excellent, there exists a γ_{wcd} set S_i of G_i which contains w.
Let S_j be any γ_{wcd} set of G_j.
Then $S_i \cup S_j$ is a γ_{wcd} set of H containing w.
Thus H is γ_{wcd} excellent.

Case 2:
Assume that at least one of u_i is a γ_{wcd} - non level vertex of G_i.
Let u_1 be non level vertex of G_1. Level set of u_1 be S_1 and S_2 be γ_{wcd} set of G_2 such that $u_1 \in S_2$.
Implies $S_1 \cup S_2$ is a wcd set of H.
Hence

$$\gamma_{wcd}(H) \leq |S_1 \cup S_2| = |S_1| + |S_2|$$

$$\gamma_{wcd}(H) \leq \gamma_{wcd}(G_1) - 1 + \gamma_{wcd}(G_2)$$

Let A be any γ_{wcd} set of H and let $A_i = A \cap G_i$.
Then A_i is a wcd set of $G_i - u_i, i = 1, 2$.
And $A_i \cap N(u_i) \neq \emptyset$ for at least one i.
So $|A| = |A_1| + |A_2|$

$$|A| \geq \gamma_{wcd}(G_i - u_i) + \gamma_{wcd}(G_j), \quad i \neq j \in \{1, 2\}$$

$$|A| \geq \gamma_{wcd}(G_1) - 1 + \gamma_{wcd}(G_2)$$

$$\gamma_{wcd}(H) \geq \gamma_{wcd}(G_1) - 1 + \gamma_{wcd}(G_2)$$

3 and 4 implies

$$\gamma_{wcd}(H) = \gamma_{wcd}(G_1) - 1 + \gamma_{wcd}(G_2)$$

Sub Case:

Assume that for each i, u_i is a γ_{wcd} non level vertex of G_i.
For any $w \neq u_i \in G_i$ either w belong to level set of u_i or there is a γ_{wcd} set A_w of G_i.
Such that $w \& u_i$ both in A_w.
We claim that H is a γ_{wcd} - excellent.
Let $w \in H$.
If w belongs to some level set S_1 of u_1 of G_1, for any γ_{wcd} set B of G_2 which contains u_2 then $S_1 \cup B$ is a wcd set of H and

$$|S_1 \cup B| = \gamma(G_1) + \gamma(G_2) - 1 = \gamma_{wcd}(H).$$

Implies that $S_1 \cup B$ is a γ_{wcd} set of H containing w.
Thus H is a γ_{wcd} - excellent.
If there is a γ_{wcd} set A_w of G_1 such that $w \& u_1$ both in A_w.
We can choose a level set B of u_2 of G_2 then $A_w \cup B$ is a wcd set of H containing w

$$|A_w \cup B| = |A_w| + |B|$$
$$= \gamma_{wcd}(G_1) + \gamma_{wcd}(G_2) - 1$$
$$= \gamma_{wcd}(H)$$

Implies that $A_w \cup B$ is a γ_{wcd} set of H containing w.
Thus H is a γ_{wcd} - excellent.

\[\square\]

4. Conclusion

This paper has attempted to establish new class of bridge independent excellent graphs with respect to the parameter dominating weakly connected set domination and enabled to study various properties of such graphs. The future scope of study is to make new class of bridge independent excellent graphs with respect to the parameter weakly connected point set.

References