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1. Introduction and Background

Henstock integral of a function introduced in the mid-1950s by R. Henstock and J. Kursweil is a powerful
generalisation of the Riemann integral, which can handled nowhere-continuous functions which gives a simpler
and more satisfactory version of the fundamental theorem of calculus. Simply put, the Henstock integral
includes the Riemann, Improper Riemann, Newton and Lebesgue integrals and is equivalent to the Denjoy and
Perron integrals(see [1-9]). While the standard definition of the Henstock integral uses the ε− δ definition, then
the Sequential Henstock integral was introduced, by employing sequences of guage functions. Many authors
have worked on the application of the Henstock integral to functions taking real values and have made
generalisations on a number of its’ properties, see [1-16].
For instance, Cao [3] gave a generalization of the definition of the Henstock integral for Banach space-valued
function, and then established some of its properties. Macalalag and Paluga [9] studied the Henstock-type
integral for lp-valued functions with 0 < p < 1 and obtained its basic properties. The authors have studied the
Sequential characterization of the Henstock integral and obtained equivalence results between Henstock and
Certain Sequential Henstock Integrals when dealing with real-valued functions.(see [6]). Wu and Gong[15]
introduced the notion of the Henstock (H) integral of interval valued functions and Fuzzy number-valued
functions and obtained a number of properties. Hamid and Elmuiz[5] established the concept of the Henstock
Stieltjes (HS) integrals of interval valued functions and Fuzzy number-valued functions and obtained some
number of properties of these integrals. It is well known that the class of Lp[0, 1]-valued functions with
0 < p < 1 is a Banach Space with the norm denoted by ‖.‖Lp .
In this paper, we introduce the notion of Sequential Henstock integral for Lp[0, 1]-interval valued functions with
0 < p < 1, and investigate some of its basic properties.
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2. Main Results

Let R denote the set of real numbers, F (X) as an interval valued function, F−, the left endpoint, F+ as right
endpoint, {δn(x)}∞n=1, as set of gauge functions, Pn, as set of partitions of subintervals of a compact interval
[a, b], X , as non empty interval in R and d(X) = X+ − X−, as width of the interval X and� as much more
smaller and consider the integral of interval functions defined on the compact interval and ranging in a
quasi-Banach Lp[0, 1]-space which carries a quasi-norm denoted by ‖.‖Lp .

Let E a Lebesgue measurable set in any euclidean space, and q any positive number, we define Lp(E) to be the
class of all real valued Lebesgue measurable functions f on E for which

∫
E
|f |q < ∞. As it’s well known,

whenever q < 1, this class of functions is a Banach Space with the norm ‖f‖q = (
∫
E
|f |q)

1
q . When 0 < p < 1,

the function ‖f‖p no longer satisfies the triangular inequality but only the weaker condition

‖f1 + f2‖ ≤ 2γ(‖f1‖+ ‖f2‖)

where γ =
(1− p)
p

(see [3]).

Definition 2.1[10,12] A gauge on [a, b] is a positive real-valued function δ : [a, b]→ R+. This gauge is δ-fine if
[ui−1, ui] ⊂ [ti − δ(ti), ti + δ(ti)].

Definition 2.2[10,12] A sequence of tagged partition Pn of [a,b] is a finite collection of ordered pairs
Pn = {(u(i−1)n uin), tin}

mn
i=1 where [ui−1, ui] ∈ [a, b], u(i−1)n ≤ tin ≤ uin and

a = u0 < ui1 <, ..., < umn
= b.

Definition 2.3 [12] A function f : [a, b] → R is Henstock integrable to α on [a, b] if there exists a number
α ∈ R such that if ε > 0 there exists a function δ(x) > 0 such that for δ(x)-fine tagged partitions
P = {(ui−1 ui), ti}ni=1, we have

|
n∑
i=1

f(ti)[ui − u(i−1)]− α| < ε.

where the number α is the Henstock integral of f on [a, b]. The family of all Henstock integrals function on
[a, b] is denoted by H[a, b] with α = (H)

∫
[a,b]

f(x)dx and f ∈ H[a, b].

Definition 2.4 [12] A function f : [a, b] → R is Sequential Henstock integrable to α ∈ R on [a, b] if for any
ε > 0 there exists a sequence of gauge functions δµ(x) = {δn(x)}∞n=1 such that for any δn(x) − fine tagged
partitions Pn = {(u(i−1)n , uin), tin}

mn
i=1, we have

|
mn∈N∑
i=1

f(tin)(uin − u(i−1)n)− α| < ε,

where the sum
∑

is over Pn, we write α = (SH)
∫
[a,b]

f(x)dx and f ∈ SH[a, b].

Lemma 2.5[5] Let f, k be Sequential Henstock (SH)integrable functions on [a, b], if f ≤ k is almost
everywhere on [a, b], then ∫ b

a

f ≤
∫ b

a

k.

Definition 2.6 [11 and 15]
Let IR = {I = [I−, I+]: I is a closed bounded interval on the real line R}.
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For X,Y ∈ IR, we define
i. X ≤ Y if and only if Y − ≤ X− and X+ ≤ Y +,
ii. X + Y = Z if and only if Z− = X− + Y − and Z+ = X+ + Y +,
iii. X.Y = {x.y : x ∈ X, y ∈ Y }, where

(X.Y )− = min{X−.Y −, X−.Y +, X+.Y −, X+.Y +}

and
(X.Y )+ = max{X−.Y −, X−.Y +, X+.Y −, X+.Y +}.

Define d(X,Y ) = max(|X− − Y −|, |X+ − Y +|) as the distance between intervals X and Y .

Definition 2.7 [5]
An interval valued function F : [a, b] → Lp is Henstock integrable(lp-IH[a, b]) to I0 ∈ Lp[0, 1] on [a, b] if for
every ε > 0 there exists a positive gauge function δ(x) > 0 on [a, b] such that for every δ(x) − fine tagged
partitions P = {(ui−1, ui), ti}ni=1, we have

‖
n∈N∑
i=1

F (ti)(ui − ui−1)− Io‖Lp < ε

We say that I0 is the Henstock integral of F on [a, b] with (Lp[0, 1]-IH)
∫
[a,b]

F = I0 and
F ∈ Lp[0, 1]-IH[a, b].

Now, we will define the Sequential Henstock integral of Lp[0, 1]-interval valued function and then discuss some
of the properties of the integral.

Definition 2.8
An interval valued function F : [a, b] → Lp is Sequential Henstock integrable(Lp[0, 1]-ISH[a, b]) to
I0 ∈ Lp[0, 1] on [a, b] if for any ε > 0 there exists a sequence of positive gauge functions {δn(x)}∞n=1 such that
for every δn(x)− fine tagged partitions Pn = {(u(i−1)n , uin), tin}

mn
i=1, we have

‖
mn∈N∑
i=1

F (tin)(uin − u(i−1)n)− lo‖Lp < ε.

We say that Lp[0, 1] is the Sequential Henstock integral of F on [a, b] with (Lp[0, 1]-ISH)
∫
[a,b]

F = α and
F ∈ Lp[0, 1]-ISH[a, b].

In this section, we discuss some of the basic properties of the Lp[0, 1]-interval valued Sequential Henstock
integrals.

Theorem 2.9
If F ∈ Lp[0, 1]-ISH[a, b], then there exists a unique integral value.

Proof. Suppose the integral value are not unique. Let α1 = (Lp[0, 1]-ISH)
∫
[a,b]

F and
α2 = (Lp[0, 1]-ISH)

∫
[a,b]

F with αi 6= α2. Let ε > 0 then there exists a {δ1n(x)}∞n=1 and {δ2n(x)}∞n=1 such
that for each δ1n(x)-fine tagged partitions P 1

n of [a, b] and for each δ2n(x)-fine tagged partitions P 2
n of [a, b], we
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have

‖
mn∈N∑
i=1

F (tin)(uin − u(i−1)n)− α1‖Lp <
ε

2
,

and

‖
mn∈N∑
i=1

F (tin)(uin − u(i−1)n)− α2‖Lp <
ε

2
.

respectively.
Define a positive gauge function δn(x) on [a, b] by δn(x) = min{δ1n(x), δ2n(x)}. Let Pn be any δn(x)-fine tagged

partition of [a, b] and let ε =
‖α1 − α2‖p

2
1
p

. Then we have

‖α1 − α2‖Lp = ‖
mn∈N∑
i=1

F (tin)(uin − u(i−1)n)− α1 +

mn∈N∑
i=1

F (tin)(uin − u(i−1)n)− α2‖Lp

≤ ‖
mn∈N∑
i=1

F (tin)(uin − u(i−1)n)− α1‖Lp + ‖
mn∈N∑
i=1

F (tin)(uin − u(i−1)n)− α2‖Lp

< 2
1
p (
ε

2
+
ε

2
) = 2

1
p ε = ‖α1 − α2‖Lp ,

This is a contradiction. Thus α1 = α2. This completes the proof. �

Theorem 2.10
An interval valued function F ∈ Lp[0, 1]-ISH[a, b] if and only if F−, F+ ∈ Lp[0, 1]-SH[a, b] and

(Lp[0, 1]-ISH)

∫
[a,b]

F = [(lp-SH)

∫
[a,b]

F−, (Lp[0, 1]-SH)

∫
[a,b]

F+] (2.1)

Proof. Let F ∈ Lp[0, 1]-ISH[a, b], from Definition 2.8 there is a unique interval number Io = [I−0 , I
+
0 ] in the

property, then for any ε > 0, there exists a {δn(x)}∞n=1, n ≥ µ on [a, b] ∈ R such that for any δn(x)-fine tagged
partition Pn, we have

‖
mn∈N∑
i=1

F (tin)(uin − u(i−1)n)− I0‖Lp < ε.

Observe that

‖
mn∈N∑
i=1

F (tin)(uin − u(i−1)n)− I0‖Lp = max(‖
mn∈N∑
i=1

F−(tin)(uin − u(i−1)n)− I
−
0 ‖Lp ,

‖
mn∈N∑
i=1

F+(tin)(uin − u(i−1)n)− I
+
0 ‖Lp .

Since uin − u(i−1)n ≥ 0 for 1 ≤ in ≤ mn, hen it follows that

‖
mn∈N∑
i=1

F−(tin)(uin − u(i−1)n)− I
−
0 ‖Lp < ε, ‖

mn∈N∑
i=1

F−(tin)(uin − u(i−1)n − I
+
0 )‖p < ε.
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for every δn(x)-tagged partition Pn = {(u(i−1)n , uin), tin}
mn
i=1. Thus, by Definition 2.8, we obtain F+, F− ∈

Lp[0, 1]-SH[a, b] and

I−o = (Lp[0, 1]-SH)

∫
[a,b]

F−(x)dx

and

I+o = (Lp[0, 1]-SH)

∫
[a,b]

F+(x)dx.

Conversely, Let F− ∈ Lp[0, 1]-SH[a,b]. Then there exist a unique β1 ∈ R with the property, let ε > 0 be given,
then there exists a {δ1n(x)}∞n=1, such that for any δ1n(x)-fine tagged partitions P 1

n we have

‖
mn∈N∑
i=1

F−(tin)(uin − u(i−1)n)− β1‖Lp < ε.

Similarly,
Let F+ ∈ Lp[0, 1]-SH[a, b]. Then there exist a unique β2 ∈ R with the property, let ε > 0 be given, then there
exists a {δ2n(x)}∞n=1, such that for any δ2n(x)-fine tagged partitions P 2

n we have

‖
mn∈N∑
i=1

F+(tin)(uin − u(i−1)n − β2)‖Lp < ε.

Let β = [β1, β2]. If F− ≤ F+, then β1 ≤ β2. We define δn(x) = min(δ1n(x), δ
2
n(x)), then for any δn(x)− fine

tagged partitions Pn we have

‖
mn∈N∑
i=1

F (tin)(uin − u(i−1)n), β‖Lp < ε.

Hence, F : [a, b]→ Lp is Sequential Henstock integrable on [a, b].
This completes the proof.

�

Theorem 2.11
Let F,K ∈ Lp[0, 1]-ISH[a, b] with F = [F−, F+] and H = [K−,K+] and γ, ξ ∈ R. Then γF, ξK ∈
Lp[0, 1]-ISH[a, b] and

(Lp[0, 1]-ISH)

∫
[a,b]

(γF + ξK)dx = γ(Lp[0, 1]-ISH)

∫
[a,b]

Fdx+ ξ(Lp[0, 1]-ISH)

∫
[a,b]

Kdx

Proof. (i) If F,K ∈ Lp[0, 1]-ISH[a, b], then [F−, F+],K = [K−,K+] ∈ Lp[0, 1]-SH[a, b] by Theorem 2.10.
Hence, γF− + ξK−, γF− + ξK+, γF+ + ξK−, γF+ + ξK+ ∈ Lp[0, 1]-SH[a, b].
1) If γ > 0 and ξ > 0, then

(Lp[0, 1]-SH)

∫
[a,b]

(γF + ξK)−dx = (Lp[0, 1]-SH)

∫
[a,b]

(γF− + ξK−)dx

= γ(Lp[0, 1]-SH)

∫
[a,b]

F−dx+ ξ(Lp[0, 1]-SH)

∫
[a,b]

K−dx
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= γ((Lp[0, 1]-ISH)

∫
[a,b]

Fdx)− + ξ((Lp[0, 1]-ISH)

∫
[a,b]

Kdx)−

= (γ(Lp[0, 1]-ISH)

∫
[a,b]

Fdx+ ξ(Lp[0, 1]-ISH)

∫
[a,b]

Kdx)−.

2) If γ < 0 and ξ > 0, then

(Lp[0, 1]-SH)

∫
[a,b]

(γF + ξK)−dx = (Lp[0, 1]-SH)

∫
[a,b]

(γF+ + ξK+)dx

= γ(Lp[0, 1]-SH)

∫
[a,b]

F+dx+ ξ(Lp[0, 1]-SH)

∫
[a,b]

K+dx

= γ((Lp[0, 1]-ISH)

∫
[a,b]

Fdx)+ + ξ((Lp[0, 1]-ISH)

∫
[a,b]

Kdx)+

= (γ(Lp[0, 1]-ISH)

∫
[a,b]

Fdx+ ξ(Lp[0, 1]-ISH)

∫
[a,b]

Kdx)−.

3) If γ > 0 and ξ < 0 (or γ < 0 and ξ > 0), then

(Lp[0, 1]-ISH)

∫
[a,b]

(γF + ξK)−dx = (Lp[0, 1]-SH)

∫
[a,b]

(γF− + ξK+)dx

= γ(Lp[0, 1]-SH)

∫
[a,b]

F−dx+ ξ(Lp[0, 1]-SH)

∫
[a,b]

K+dx

= γ((Lp[0, 1]-ISH)

∫
[a,b]

Fdx)− + ξ((Lp[0, 1]-ISH)

∫
[a,b]

Kdx)+

= (γ(Lp[0, 1]-ISH)

∫
[a,b]

Fdx+ ξ(Lp[0, 1]-ISH)

∫
[a,b]

Kdx)−.

Similarly, for four cases above, we have

(Lp[0, 1]-ISH)

∫
[a,b]

(γF + ξK)+dx = (γ(Lp[0, 1]-ISH)

∫
[a,b]

Fdx+ ξ(Lp[0, 1]-ISH)

∫
[a,b]

Kdx)+

Hence, by Theorem 2.10, γF, ξK ∈ Lp[0, 1]-ISH[a, b] and

(Lp[0, 1]-ISH)

∫
[a,b]

(γF + ξK)dx = γ(Lp[0, 1]-ISH)

∫
[a,b]

Fdx+ ξ(Lp[0, 1]-ISH)

∫
[a,b]

Kdx.

This completes the proof. �

Theorem 2.12
Let F,K ∈ Lp[0, 1]-ISH[a, b] and F (x) ≤ K(x) nearly everywhere on [a, b], then

(Lp[0, 1]-ISH)

∫
[a,b]

F (x)dx ≤ (Lp[0, 1]-ISH)

∫
[a,b]

Kdx

Proof. If F (x) ≤ K(x) nearly everywhere on [a, b] and F,K ∈ Lp[0, 1]-ISH[a, b], then F−, F+,K−,K+ ∈
Lp[0, 1]-SH[a, b] and F− ≤ F+,K− ≤ K+ nearly everywhere on [a, b]. By Lemma 2.5

(Lp[0, 1]-SH)

∫
[a,b]

F−(x)dx ≤ (Lp[0, 1]-SH)

∫
[a,b]

K−dx
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and

(Lp[0, 1]-ISH)

∫
[a,b]

F+(x)dx ≤ (Lp[0, 1]-ISH)

∫
[a,b]

K+dx.

Hence by Theorem 2.10, we have

(Lp[0, 1]-ISH)

∫
[a,b]

F (x)dx ≤ (Lp[0, 1]-ISH)

∫
[a,b]

Kdx.

This completes the proof. �

Theorem 2.13 Let k ∈ R.
1. If F ∈ Lp[0, 1]-ISH[a, b], then kF ∈ Lp[0, 1]-ISH[a, b]. Moreover,∫ b

a

kF = k

∫ b

a

F.

2. If F ∈ Lp[0, 1]-ISH[a, b] and G ∈ Lp[0, 1]-ISH[c, b], then (F +G) ∈ Lp[0, 1]-ISH[a, b]. Moreover∫ b

a

(F +G) =

∫ b

a

F +

∫ b

a

G.

Proof. (1) Suppose F ∈ Lp[0, 1]-ISH[a, b]. The case k = 0 is obvious. Suppose k 6= 0 and
F ∈ Lp[0, 1]-ISH[a, b], there exists a sequence of positive functions{δn(x)}∞n=1 on [a, b] such that

‖
mn∈N∑
i=1

F (tin)(uin − u(i−1)n −
∫ b

a

F‖Lp <
ε

|k|Lp

whenever Pn is δn(x)−fine tagged partitions of [a, b]. Then, exists a sequence of positive functions {δ2n(x)}∞n=1

on [a, c] such that

‖
mn∈N∑
i=1

kF (tin)(uin − u(i−1)n − k
∫ b

a

F‖Lp = ‖k
mn∈N∑
i=1

F (tin)(uin − u(i−1)n − k
∫ b

a

F‖Lp

< |k|Lp

ε

|k|Lp

= ε.

(2) Let ε > 0 Suppose
∫ b
a
F = α1 and

∫ b
a
G = α2. Then there exists a sequence of positive functions{δ1n(x)}∞n=1

on [a, b] such that

‖
mn∈N∑
i=1

F (tin)(uin − u(i−1)n − α1‖Lp <
ε

2(2
1
p )

whenever P 1
n is δ1n(x) − fine tagged partitions of [a, b]. Also, there exists a sequence of positive functions

{δ2n(x)}∞n=1 on [a, b] such that

‖
mn∈N∑
i=1

G(tin)(uin − u(i−1)n − α2‖Lp <
ε

2(2
1
p )

whenever P 2
n is δ2n(x)− fine tagged partitions of [a, b].

Define a positive gauge function δn(x) on [a, b] by δn(x) = min{δ1n(x), δ2n(x)}. Let Pn be any δn(x)-fine tagged
partition of [a, b]. Then

‖
mn∈N∑
i=1

(F +G)(tin)(uin − u(i−1)n)− (α1 + α2)‖Lp
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= (‖
mn∈N∑
i=1

F (tin)(uin − u(i−1)n) +
mn∈N∑
i=1

G(tin)(uin − u(i−1)n − (α1 + α2)‖Lp)

≤ 2
1
p (‖

mn∈N∑
i=1

F (tin)(uin − u(i−1)n − α1‖Lp) + 2
1
p (‖

mn∈N∑
i=1

G(tin)(uin − u(i−1)n − α2‖Lp)

< 2
1
p (

ε

2(2 1
p )

+
ε

2(2 1
p )

)

= ε.

This completes the proof. �
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