A characterization of involutes of a given curve in \mathbb{E}^{3} via directional q-frame

MÜnEvVER YILDIRIM YILMAZ *1 AND ESRA ERDEM ${ }^{2}$
1,2 Faculty of Science, Department of Mathematics, Firat University, Elazığ, Turkey.

Received 12 June 2021; Accepted 17 September 2021

Abstract

The orthogonal trajectories of the first tangents of the curve are called the involutes of α. In the present study, we obtain a characterization of involute curves of order k of the given curve α using directional q -frame. In virtue of the formulas, some results are obtained.

AMS Subject Classifications: Primary 53a04; Secondary 53C26.
Keywords: Frenet curve, Frenet frame, involute curve, directional q-frame.

Contents

$\begin{array}{llc}1 & \text { Introduction } & 239 \\ 2 & \text { Preliminaries } & 240\end{array}$
3 Involutes of order 1 st. and order 2 nd. in \mathbb{E}^{3} according to projection vector

1. Introduction

In differential geometry, there are many significant results and properties of curves. In the light of numerous studies authors introduce new works by using frame fields. The directional q- frame field is known as one of the frame field of the differential geometry. The q-frame has some useful advantages comparing to the other well-known frames Frenet and Bishop. One can define and calculate this frame even along a line ($\kappa=0$). Dede et al. offered the directional q-frame along a space curve to built a tubular surface. They obtained a parametric representation of a directional tubular surface using the q -frame [1].

Involutes of a curve is another attractive research subject among geometers. The idea of a string involute is due to C. Huygens (1658), who is also known as on optician. He discovered involutes trying to build a more accurate clock [2]. There are many brillant works on involutes of a given curve in different aspects. For instance, Frenet frame of involute-evolute couple in the space \mathbb{E}^{3} were given in [3]. T. Soyfidan and M. A. Güngör studied a quaternionic curve Euclidean 4 -space \mathbb{E}^{4} and gave the on the quaternionic involute-evolute curves for quaternionic curve [4]. Another is As and Sarıoğlugil study's. They obtained on the Bishop curvatures of involute-evolute curve couple in $\mathbb{E}^{3}[5]$.

In this paper, the characterization of involutes of the 1 st . and 2 nd . order of a curve are given and proved in . \mathbb{E}^{3} by the help of directional q-frame.

[^0]
2. Preliminaries

There are a number of different adapted frames along a space curve, like the parallel transport frame $[6,7]$ and the Frenet frame [8]. The Frenet frame is the most well-known frame along a space curve. Let $\alpha(s)$ be a space curve with a non-vanishing second derivative. The Frenet frame is described as follows:

$$
t=\frac{\alpha^{\prime}}{\left\|\alpha^{\prime}\right\|}, \quad b=\frac{\alpha^{\prime} \wedge \alpha^{\prime \prime}}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|}, \quad n=b \wedge t
$$

The curvature κ and the torsion τ are obtain by;

$$
\kappa=\frac{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|}{\left\|\alpha^{\prime}\right\|^{3}}, \quad \tau=\frac{\operatorname{det}\left(\alpha^{\prime}, \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right)}{\left\|\alpha^{\prime} \wedge \alpha^{\prime \prime}\right\|^{2}}
$$

The well-known Frenet formulas are obtain by;

$$
\left[\begin{array}{c}
t^{\prime} \\
n^{\prime} \\
b^{\prime}
\end{array}\right]=\varphi\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right]
$$

where $\varphi=\left\|\alpha^{\prime}(s)\right\|$.
As an alternative to the Frenet frame they define a new adapted frame along a space curve, the q -frame [1]. Dede et al. defined the directional q-frame along a space curve [9]. The directional q-frame offers two key advantages over the Frenet Frame $[10,11]$: a) it is well defined even if the curve has vanishing second derivative $[12]$, b) it avoid the redundant twist around the tangent.

The directional q-frame of a regular curve $\alpha(s)$ is obtained by;

$$
\begin{equation*}
t=\frac{\alpha^{\prime}}{\left\|\alpha^{\prime}\right\|}, \quad n_{q}=\frac{t \wedge k}{\|t \wedge k\|}, \quad b_{q}=t \wedge n_{q} \tag{1}
\end{equation*}
$$

where k is the projection vector.
The varitation equations of the directional q-frame is obtained by;

$$
\left[\begin{array}{c}
t^{\prime} \tag{2}\\
n_{q}^{\prime} \\
b_{q}^{\prime}
\end{array}\right]=\left\|\alpha^{\prime}\right\|\left[\begin{array}{ccc}
0 & k_{1} & k_{2} \\
-k_{1} & 0 & k_{3} \\
-k_{2} & -k_{3} & 0
\end{array}\right]
$$

where the q -curvatures are expressed as follows:

$$
\begin{equation*}
k_{1}=\frac{\left\langle t^{\prime}, n_{q}\right\rangle}{\left\|\alpha^{\prime}\right\|}, \quad k_{2}=\frac{\left\langle t^{\prime}, b_{q}\right\rangle}{\left\|\alpha^{\prime}\right\|}, \quad k_{3}=-\frac{\left\langle n_{q}, b_{q}^{\prime}\right\rangle}{\left\|\alpha^{\prime}\right\|} . \tag{3}
\end{equation*}
$$

[9].

3. Involutes of order 1 st. and order 2 nd. in \mathbb{E}^{3} according to projection vector

As is well known q-frame is defined by the help of the projection vector k. For simplicity firstly we have choosen the projection vector $k=(0 ; 0 ; 1)$. For the cases t and k are parallel, the projection vector can be chosen as

A characterization of involutes of a given curve in \mathbb{E}^{3} via directional q-frame
$k=(0 ; 1 ; 0), k=(1 ; 0 ; 0)$ (see $[9])$. This part we classified the q -frame into three types: z axis directional qframes identified with the projection vector $k=(0 ; 0 ; 1)$ (see Theorem 3.1 and 3.2), y axis directional q -frames identified with the projection vector $k=(0 ; 1 ; 0)$ (see Theorem 3.3 and 3.4) and x axis directional q -frames identified with the projection vector $k=(1 ; 0 ; 0)$ (see Theorem 3.5 and 3.6).

Definition 3.1. Let $\alpha=\alpha(s)$ be a regular generic curve in \mathbb{E}^{n} given with the arclength parameter s (i.e., $\left\|\alpha^{\prime}(s)\right\|=$ 1). Then the curves which are orthogonal to the system of k-dimensional osculating hyperplanes of α, are called the involutes of order k [13] of the curve α. For simplicity, we call the involutes of order 1 , simply the involutes of the given curve [14].

The theorems below are given by taking $k=(0 ; 0 ; 1)$.
Theorem 3.1. Let $\alpha=\alpha(s)$ be a regular curve in \mathbb{E}^{3} and any curve $\bar{\alpha}(s)$ be first order involute of $\alpha(s)$. Then q-curvatures $\overline{k_{1}}, \overline{k_{2}}$ and $\overline{k_{3}}$ of the involute $\bar{\alpha}$ of the curve α are obtain by

$$
\begin{aligned}
& \overline{k_{1}}=-\sqrt{k_{1}^{2}+k_{2}^{2}}, \quad \overline{k_{2}}=\frac{\left[k_{1}^{\prime} k_{2}-k_{2}^{\prime} k_{1}\right]-\left\|\alpha^{\prime}\right\| k_{3}\left[k_{1}^{2}+k_{2}^{2}\right]}{\left\|\alpha^{\prime}\right\|\left[k_{1}^{2}+k_{2}^{2}\right]}, \\
& \overline{k_{3}}=0
\end{aligned}
$$

Proof:

$$
s \rightarrow \alpha(s) \rightarrow \sum_{i=1}^{3} \alpha_{i}(s) e_{i} \quad(1 \leq i \leq 3)
$$

by using statement we obtain that

$$
\bar{\alpha}(s)=\alpha(s)+\lambda(s) t(s)
$$

we by using (2), differentiate this equation respect to s, we obtain

$$
\bar{\alpha}^{\prime}(s)=\alpha^{\prime}(s)+\lambda^{\prime}(s) t(s)+\lambda(s)\left\|\alpha^{\prime}\right\|\left[k_{1} n_{q}+k_{2} b_{q}\right]
$$

Since

$$
\left\langle\bar{\alpha}^{\prime}(s), t(s)\right\rangle=0
$$

and

$$
\alpha^{\prime}(s)=\left\|\alpha^{\prime}\right\| t(s)
$$

we write

$$
\lambda(s)=c-\|\alpha\|
$$

So, we get

$$
\begin{gather*}
\bar{\alpha}^{\prime}(s)=\alpha^{\prime}(s)-\left\|\alpha^{\prime}\right\| t(s)+(c-\|\alpha\|)\left\|\alpha^{\prime}\right\|\left[k_{1} n_{q}+k_{2} b_{q}\right] \\
=(c-\|\alpha\|)\left\|\alpha^{\prime}\right\|\left[k_{1} n_{q}+k_{2} b_{q}\right] \tag{4}
\end{gather*}
$$

Using norm of the equation (4), we get

$$
\begin{equation*}
\left\|\bar{\alpha}^{\prime}(s)\right\|=(c-\|\alpha\|) \sqrt{k_{1}^{2}+k_{2}^{2}}\left\|\alpha^{\prime}\right\| \tag{5}
\end{equation*}
$$

and by using the equations (1), (4) and (5), we get

$$
\begin{equation*}
\bar{t}(s)=\frac{\left[k_{1} n_{q}+k_{2} b_{q}\right]}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \tag{6}
\end{equation*}
$$

Münevver YILDIRIM YILMAZ and Esra ERDEM

if we have chosen the projection vector $k=(0 ; 0 ; 1)$

$$
\begin{equation*}
\bar{t} \wedge k=\frac{k_{1} t}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \tag{7}
\end{equation*}
$$

Hence, by taking norm of equation (7), we get

$$
\begin{equation*}
\|\bar{t} \wedge k\|=\sqrt{\frac{k_{1}^{2}}{\left(\sqrt{k_{1}^{2}+k_{2}^{2}}\right)^{2}}} \tag{8}
\end{equation*}
$$

Moreover, using the equations $(1),(7)$ and (8), we have

$$
\begin{equation*}
\overline{n_{q}}(s)=t \tag{9}
\end{equation*}
$$

In addition, using the equations (6), and (9)

$$
\begin{equation*}
\bar{t} \wedge \overline{n_{q}}=\frac{k_{2} n_{q}-k_{1} b_{q}}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \tag{10}
\end{equation*}
$$

Therefore, from (1) and (10), we get

$$
\begin{equation*}
\overline{b_{q}}(s)=\frac{k_{2} n_{q}-k_{1} b_{q}}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \tag{11}
\end{equation*}
$$

Consequently, by using the equations (3), we obtain

$$
\begin{gather*}
\overline{k_{1}}=-\sqrt{k_{1}^{2}+k_{2}^{2}} \tag{12}\\
\overline{k_{2}}=\frac{\left[k_{1}^{\prime} k_{2}-k_{2}^{\prime} k_{1}\right]-\left\|\alpha^{\prime}\right\| k_{3}\left[k_{1}^{2}+k_{2}^{2}\right]}{\left\|\alpha^{\prime}\right\|\left[k_{1}^{2}+k_{2}^{2}\right]} \tag{13}\\
\overline{k_{3}}=0 \tag{14}
\end{gather*}
$$

This completes the proof.
Theorem 3.2. Let $\alpha=\alpha(s)$ be a regular curve in \mathbb{E}^{3} and any curve $\bar{\alpha}(s)$ be second order involute of $\alpha(s)$. Then q-curvatures $\overline{k_{1}}, \overline{k_{2}}$ and $\overline{k_{3}}$ of the involute $\bar{\alpha}$ of the curve α are vanishes.

$$
\overline{k_{1}}=0, \quad \overline{k_{2}}=0, \quad \overline{k_{3}}=0
$$

Proof:

$$
s \rightarrow \alpha(s) \rightarrow \sum_{i=1}^{3} \alpha_{i}(s) e_{i} \quad(1 \leq i \leq 3)
$$

by using statement we obtain that

$$
\bar{\alpha}(s)=\alpha(s)+\lambda_{1}(s) t(s)+\lambda_{2}(s) n_{q}(s)
$$

we by using (2), differentiate this equation respect to s, we obtain

$$
\begin{aligned}
\bar{\alpha}^{\prime}(s)= & \alpha^{\prime}(s)+\lambda_{1}^{\prime}(s) t(s)+\lambda_{1}(s)\left\|\alpha^{\prime}\right\|\left[k_{1} n_{q}+k_{2} b_{q}\right] \\
& +\lambda_{2}^{\prime}(s) n_{q}(s)-\lambda_{2}(s)\left\|\alpha^{\prime}\right\| k_{1} t+\lambda_{2}(s)\left\|\alpha^{\prime}\right\| k_{3} b_{q}
\end{aligned}
$$

A characterization of involutes of a given curve in \mathbb{E}^{3} via directional q-frame

Since

$$
\left\langle\bar{\alpha}^{\prime}(s), t(s)\right\rangle=0, \quad\left\langle\bar{\alpha}^{\prime}(s), n_{q}(s)\right\rangle=0
$$

and

$$
\alpha^{\prime}(s)=\left\|\alpha^{\prime}\right\| t(s)
$$

So, we get

$$
\bar{\alpha}^{\prime}(s)=\left\|\alpha^{\prime}\right\|\left[\lambda_{1} k_{2}+\lambda_{2} k_{3}\right] b_{q}
$$

if we take

$$
\lambda_{1} k_{2}=\theta(s), \quad \lambda_{2} k_{3}=\varphi(s)
$$

we obtain

$$
\begin{equation*}
\bar{\alpha}^{\prime}(s)=\left\|\alpha^{\prime}\right\|[\theta(s)+\varphi(s)] b_{q} \tag{15}
\end{equation*}
$$

Using norm of the equation (15), we get

$$
\begin{equation*}
\left\|\bar{\alpha}^{\prime}(s)\right\|=\sqrt{\left\|\alpha^{\prime}\right\|[\theta(s)+\varphi(s)]^{2}} \tag{16}
\end{equation*}
$$

and by using the equations $(1),(15)$ and (16), we attain

$$
\begin{equation*}
\bar{t}(s)=\frac{\left\|\alpha^{\prime}\right\|[\theta(s)+\varphi(s)] b_{q}}{\sqrt{\left\|\alpha^{\prime}\right\|[\theta(s)+\varphi(s)]^{2}}}=b_{q} \tag{17}
\end{equation*}
$$

if we have chosen the projection vector $k=(0 ; 0 ; 1)$

$$
\begin{equation*}
\bar{t} \wedge k=0 \tag{18}
\end{equation*}
$$

Hence, by taking norm of equation (18), we get

$$
\begin{equation*}
\|\bar{t} \wedge k\|=0 \tag{19}
\end{equation*}
$$

Moreover, using the equations $(1),(18)$ and (19), we have

$$
\begin{equation*}
\overline{n_{q}}(s)=0 \tag{20}
\end{equation*}
$$

In addition, using the equations (17), and (20)

$$
\begin{equation*}
\bar{t} \wedge \overline{n_{q}}=0 \tag{21}
\end{equation*}
$$

Therefore, from (1) and (21), we get

$$
\begin{equation*}
\overline{b_{q}}(s)=0 \tag{22}
\end{equation*}
$$

Consequently, by using the equations (3), we obtain

$$
\begin{align*}
& \overline{k_{1}}=0 \tag{23}\\
& \overline{k_{2}}=0 \tag{24}\\
& \overline{k_{3}}=0 \tag{25}
\end{align*}
$$

This completes the proof.

Münevver YILDIRIM YILMAZ and Esra ERDEM

The theorems below are given by taking $k=(0 ; 1 ; 0)$.
Theorem 3.3. Let $\alpha=\alpha(s)$ be a regular curve in \mathbb{E}^{3} and any curve $\bar{\alpha}(s)$ be first order involute of $\alpha(s)$. Then q-curvatures $\overline{k_{1}}, \overline{k_{2}}$ and $\overline{k_{3}}$ of the involute $\bar{\alpha}$ of the curve α are obtain by

$$
\begin{aligned}
& \overline{k_{1}}=\sqrt{k_{1}^{2}+k_{2}^{2}}, \quad \overline{k_{2}}=\frac{\left[k_{2}^{\prime} k_{1}-k_{2} k_{1}^{\prime}\right]+\left\|\alpha^{\prime}\right\| k_{3}\left[k_{1}^{2}+k_{2}^{2}\right]}{\left\|\alpha^{\prime}\right\|\left[k_{1}^{2}+k_{2}^{2}\right]} \\
& \overline{k_{3}}=0
\end{aligned}
$$

Proof:

$$
s \rightarrow \alpha(s) \rightarrow \sum_{i=1}^{3} \alpha_{i}(s) e_{i} \quad(1 \leq i \leq 3)
$$

by using statement we obtain that

$$
\bar{\alpha}(s)=\alpha(s)+\lambda(s) t(s)
$$

we by using (2), differentiate this equation respect to s, we obtain

$$
\bar{\alpha}^{\prime}(s)=\alpha^{\prime}(s)+\lambda^{\prime}(s) t(s)+\lambda(s)\left\|\alpha^{\prime}\right\|\left[k_{1} n_{q}+k_{2} b_{q}\right]
$$

Since

$$
\left\langle\bar{\alpha}^{\prime}(s), t(s)\right\rangle=0
$$

and

$$
\alpha^{\prime}(s)=\left\|\alpha^{\prime}\right\| t(s)
$$

we write

$$
\lambda(s)=c-\|\alpha\|
$$

So, we get

$$
\begin{align*}
\bar{\alpha}^{\prime}(s)=\alpha^{\prime}(s) & -\left\|\alpha^{\prime}\right\| t(s)+(c-\|\alpha\|)\left\|\alpha^{\prime}\right\|\left[k_{1} n_{q}+k_{2} b_{q}\right] \\
& =(c-\|\alpha\|)\left\|\alpha^{\prime}\right\|\left[k_{1} n_{q}+k_{2} b_{q}\right] \tag{26}
\end{align*}
$$

Using norm of the equation (26), we get

$$
\begin{equation*}
\left\|\bar{\alpha}^{\prime}(s)\right\|=(c-\|\alpha\|) \sqrt{k_{1}^{2}+k_{2}^{2}}\left\|\alpha^{\prime}\right\| \tag{27}
\end{equation*}
$$

and by using the equations $(1),(26)$ and (27), we get

$$
\begin{equation*}
\bar{t}(s)=\frac{\left[k_{1} n_{q}+k_{2} b_{q}\right]}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \tag{28}
\end{equation*}
$$

if we have chosen the projection vector $k=(0 ; 1 ; 0)$

$$
\begin{equation*}
\bar{t} \wedge k=\frac{-k_{2} t}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \tag{29}
\end{equation*}
$$

Hence, by taking norm of equation (29), we get

$$
\begin{equation*}
\|\bar{t} \wedge k\|=\sqrt{\frac{k_{2}^{2}}{\left(\sqrt{k_{1}^{2}+k_{2}^{2}}\right)^{2}}} \tag{30}
\end{equation*}
$$

A characterization of involutes of a given curve in \mathbb{E}^{3} via directional q-frame

Moreover, using the equations (1), (29) and (30), we have

$$
\begin{equation*}
\overline{n_{q}}(s)=-t \tag{31}
\end{equation*}
$$

In addition, using the equations (28), and (31)

$$
\begin{equation*}
\bar{t} \wedge \overline{n_{q}}=\frac{-k_{2} n_{q}+k_{1} b_{q}}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \tag{32}
\end{equation*}
$$

Therefore, from (1) and (32), we get

$$
\begin{equation*}
\overline{b_{q}}(s)=\frac{-k_{2} n_{q}+k_{1} b_{q}}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \tag{33}
\end{equation*}
$$

Consequently, by using the equations (3), we obtain

$$
\begin{gather*}
\overline{k_{1}}=\sqrt{k_{1}^{2}+k_{2}^{2}} \tag{34}\\
\overline{k_{2}}=\frac{\left[k_{2}^{\prime} k_{1}-k_{2} k_{1}^{\prime}\right]+\left\|\alpha^{\prime}\right\| k_{3}\left[k_{1}^{2}+k_{2}^{2}\right]}{\left\|\alpha^{\prime}\right\|\left[k_{1}^{2}+k_{2}^{2}\right]} \tag{35}\\
\overline{k_{3}}=0 \tag{36}
\end{gather*}
$$

This completes the proof.
Theorem 3.4. Let $\alpha=\alpha(s)$ be a regular curve in \mathbb{E}^{3} and any curve $\bar{\alpha}(s)$ be second order involute of $\alpha(s)$. Then q-curvatures $\overline{k_{1}}, \overline{k_{2}}$ and $\overline{k_{3}}$ of the involute $\bar{\alpha}$ of the curve α are obtain by

$$
\overline{k_{1}}=k_{2}, \quad \overline{k_{2}}=k_{3}, \quad \overline{k_{3}}=k_{1}
$$

Proof:

$$
s \rightarrow \alpha(s) \rightarrow \sum_{i=1}^{3} \alpha_{i}(s) e_{i} \quad(1 \leq i \leq 3)
$$

by using statement we obtain that

$$
\bar{\alpha}(s)=\alpha(s)+\lambda_{1}(s) t(s)+\lambda_{2}(s) n_{q}(s)
$$

we by using (2), differentiate this equation respect to s, we obtain

$$
\begin{aligned}
\bar{\alpha}^{\prime}(s)= & \alpha^{\prime}(s)+\lambda_{1}^{\prime}(s) t(s)+\lambda_{1}(s)\left\|\alpha^{\prime}\right\|\left[k_{1} n_{q}+k_{2} b_{q}\right] \\
& +\lambda_{2}^{\prime}(s) n_{q}(s)-\lambda_{2}(s)\left\|\alpha^{\prime}\right\| k_{1} t+\lambda_{2}(s)\left\|\alpha^{\prime}\right\| k_{3} b_{q}
\end{aligned}
$$

Since

$$
\left\langle\bar{\alpha}^{\prime}(s), t(s)\right\rangle=0, \quad\left\langle\bar{\alpha}^{\prime}(s), n_{q}(s)\right\rangle=0
$$

and

$$
\alpha^{\prime}(s)=\left\|\alpha^{\prime}\right\| t(s)
$$

So, we get

$$
\bar{\alpha}^{\prime}(s)=\left\|\alpha^{\prime}\right\|\left[\lambda_{1} k_{2}+\lambda_{2} k_{3}\right] b_{q}
$$

if we take

$$
\lambda_{1} k_{2}=\theta(s), \quad \lambda_{2} k_{3}=\varphi(s)
$$

Münevver YILDIRIM YILMAZ and Esra ERDEM

we obtain

$$
\begin{equation*}
\bar{\alpha}^{\prime}(s)=\left\|\alpha^{\prime}\right\|[\theta(s)+\varphi(s)] b_{q} \tag{37}
\end{equation*}
$$

Using norm of the equation (37), we get

$$
\begin{equation*}
\left\|\bar{\alpha}^{\prime}(s)\right\|=\sqrt{\left\|\alpha^{\prime}\right\|[\theta(s)+\varphi(s)]^{2}} \tag{38}
\end{equation*}
$$

and by using the equations (1), (37) and (38), we attain

$$
\begin{equation*}
\bar{t}(s)=\frac{\left\|\alpha^{\prime}\right\|[\theta(s)+\varphi(s)] b_{q}}{\sqrt{\left\|\alpha^{\prime}\right\|[\theta(s)+\varphi(s)]^{2}}}=b_{q} \tag{39}
\end{equation*}
$$

if we have chosen the projection vector $k=(0 ; 1 ; 0)$

$$
\begin{equation*}
\bar{t} \wedge k=-t \tag{40}
\end{equation*}
$$

Hence, by taking norm of equation (40), we get

$$
\begin{equation*}
\|\bar{t} \wedge k\|=1 \tag{41}
\end{equation*}
$$

Moreover, using the equations (1), (40) and (41), we have

$$
\begin{equation*}
\overline{n_{q}}(s)=-t \tag{42}
\end{equation*}
$$

In addition, using the equations (39), and (42)

$$
\begin{equation*}
\bar{t} \wedge \overline{n_{q}}=-n_{q} \tag{43}
\end{equation*}
$$

Therefore, from (1) and (43), we get

$$
\begin{equation*}
\overline{b_{q}}(s)=-n_{q} \tag{44}
\end{equation*}
$$

Consequently, by using the equations (3), we obtain

$$
\begin{align*}
& \overline{k_{1}}=k_{2} \tag{45}\\
& \overline{k_{2}}=k_{3} \tag{46}\\
& \overline{k_{3}}=k_{1} \tag{47}
\end{align*}
$$

This completes the proof.
The theorems below are given by taking $k=(1 ; 0 ; 0)$.
Theorem 3.5. Let $\alpha=\alpha(s)$ be a regular curve in \mathbb{E}^{3} and any curve $\bar{\alpha}(s)$ be first order involute of $\alpha(s)$. Then q-curvatures $\overline{k_{1}}, \overline{k_{2}}$ and $\overline{k_{3}}$ of the involute $\bar{\alpha}$ of the curve α are obtain by

$$
\begin{aligned}
& \overline{k_{1}}=\frac{\left[k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}\right]-\left\|\alpha^{\prime}\right\| k_{3}\left[k_{1}^{2}+k_{2}^{2}\right]}{\left\|\alpha^{\prime}\right\|\left[k_{1}^{2}+k_{2}^{2}\right]}, \quad \overline{k_{2}}=\sqrt{k_{1}^{2}+k_{2}^{2}} \\
& \overline{k_{3}}=0
\end{aligned}
$$

Proof:

$$
s \rightarrow \alpha(s) \rightarrow \sum_{i=1}^{3} \alpha_{i}(s) e_{i} \quad(1 \leq i \leq 3)
$$

A characterization of involutes of a given curve in \mathbb{E}^{3} via directional q-frame
by using statement we obtain that

$$
\bar{\alpha}(s)=\alpha(s)+\lambda(s) t(s)
$$

we by using (2), differentiate this equation respect to s, we obtain

$$
\bar{\alpha}^{\prime}(s)=\alpha^{\prime}(s)+\lambda^{\prime}(s) t(s)+\lambda(s)\left\|\alpha^{\prime}\right\|\left[k_{1} n_{q}+k_{2} b_{q}\right]
$$

Since

$$
\left\langle\bar{\alpha}^{\prime}(s), t(s)\right\rangle=0
$$

and

$$
\alpha^{\prime}(s)=\left\|\alpha^{\prime}\right\| t(s)
$$

we write

$$
\lambda(s)=c-\|\alpha\|
$$

So, we get

$$
\begin{align*}
\bar{\alpha}^{\prime}(s)=\alpha^{\prime}(s) & -\left\|\alpha^{\prime}\right\| t(s)+(c-\|\alpha\|)\left\|\alpha^{\prime}\right\|\left[k_{1} n_{q}+k_{2} b_{q}\right] \\
& =(c-\|\alpha\|)\left\|\alpha^{\prime}\right\|\left[k_{1} n_{q}+k_{2} b_{q}\right] \tag{48}
\end{align*}
$$

Using norm of the equation (48), we get

$$
\begin{equation*}
\left\|\bar{\alpha}^{\prime}(s)\right\|=(c-\|\alpha\|) \sqrt{k_{1}^{2}+k_{2}^{2}}\left\|\alpha^{\prime}\right\| \tag{49}
\end{equation*}
$$

and by using the equations (1), (48) and (49), we get

$$
\begin{equation*}
\bar{t}(s)=\frac{\left[k_{1} n_{q}+k_{2} b_{q}\right]}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \tag{50}
\end{equation*}
$$

if we have chosen the projection vector $k=(1 ; 0 ; 0)$

$$
\begin{equation*}
\bar{t} \wedge k=\frac{\left[k_{2} n_{q}-k_{1} b_{q}\right]}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \tag{51}
\end{equation*}
$$

Hence, by taking norm of equation (51), we get

$$
\begin{equation*}
\|\bar{t} \wedge k\|=\sqrt{\frac{k_{1}^{2}}{\left(\sqrt{k_{1}^{2}+k_{2}^{2}}\right)^{2}}} \tag{52}
\end{equation*}
$$

Moreover, using the equations $(1),(51)$ and (52), we have

$$
\begin{equation*}
\overline{n_{q}}(s)=\frac{\left[k_{2} n_{q}-k_{1} b_{q}\right]}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \tag{53}
\end{equation*}
$$

In addition, using the equations (50), and (53)

$$
\begin{equation*}
\bar{t} \wedge \overline{n_{q}}=t \tag{54}
\end{equation*}
$$

Therefore, from (1) and (54), we get

$$
\begin{equation*}
\overline{b_{q}}(s)=t \tag{55}
\end{equation*}
$$

Consequently, by using the equations (3), we obtain

$$
\begin{equation*}
\overline{k_{1}}=\frac{\left[k_{1}^{\prime} k_{2}-k_{1} k_{2}^{\prime}\right]-\left\|\alpha^{\prime}\right\| k_{3}\left[k_{1}^{2}+k_{2}^{2}\right]}{\left\|\alpha^{\prime}\right\|\left[k_{1}^{2}+k_{2}^{2}\right]} \tag{56}
\end{equation*}
$$

Münevver YILDIRIM YILMAZ and Esra ERDEM

$$
\begin{gather*}
\overline{k_{2}}=\sqrt{k_{1}^{2}+k_{2}^{2}} \tag{57}\\
\overline{k_{3}}=0 \tag{58}
\end{gather*}
$$

This completes the proof
Theorem 3.6. Let $\alpha=\alpha(s)$ be a regular curve in \mathbb{E}^{3} and any curve $\bar{\alpha}(s)$ be second order involute of $\alpha(s)$. Then q-curvatures $\overline{k_{1}}, \overline{k_{2}}$ and $\overline{k_{3}}$ of the involute $\bar{\alpha}$ of the curve α are obtain by

$$
\overline{k_{1}}=-k_{3}, \quad \overline{k_{2}}=k_{2}, \quad \overline{k_{3}}=k_{1}
$$

Proof:

$$
s \rightarrow \alpha(s) \rightarrow \sum_{i=1}^{3} \alpha_{i}(s) e_{i} \quad(1 \leq i \leq 3)
$$

by using statement we obtain that

$$
\bar{\alpha}(s)=\alpha(s)+\lambda_{1}(s) t(s)+\lambda_{2}(s) n_{q}(s)
$$

we by using (2), differentiate this equation respect to s, we obtain

$$
\begin{aligned}
\bar{\alpha}^{\prime}(s)= & \alpha^{\prime}(s)+\lambda_{1}^{\prime}(s) t(s)+\lambda_{1}(s)\left\|\alpha^{\prime}\right\|\left[k_{1} n_{q}+k_{2} b_{q}\right] \\
& +\lambda_{2}^{\prime}(s) n_{q}(s)-\lambda_{2}(s)\left\|\alpha^{\prime}\right\| k_{1} t+\lambda_{2}(s)\left\|\alpha^{\prime}\right\| k_{3} b_{q}
\end{aligned}
$$

Since

$$
\left\langle\bar{\alpha}^{\prime}(s), t(s)\right\rangle=0, \quad\left\langle\bar{\alpha}^{\prime}(s), n_{q}(s)\right\rangle=0
$$

and

$$
\alpha^{\prime}(s)=\left\|\alpha^{\prime}\right\| t(s)
$$

So, we get

$$
\bar{\alpha}^{\prime}(s)=\left\|\alpha^{\prime}\right\|\left[\lambda_{1} k_{2}+\lambda_{2} k_{3}\right] b_{q}
$$

if we take

$$
\lambda_{1} k_{2}=\theta(s), \quad \lambda_{2} k_{3}=\varphi(s)
$$

we obtain

$$
\begin{equation*}
\bar{\alpha}^{\prime}(s)=\left\|\alpha^{\prime}\right\|[\theta(s)+\varphi(s)] b_{q} \tag{59}
\end{equation*}
$$

Using norm of the equation (59), we get

$$
\begin{equation*}
\left\|\bar{\alpha}^{\prime}(s)\right\|=\sqrt{\left\|\alpha^{\prime}\right\|[\theta(s)+\varphi(s)]^{2}} \tag{60}
\end{equation*}
$$

and by using the equations $(1),(59)$ and (60), we attain

$$
\begin{equation*}
\bar{t}(s)=\frac{\left\|\alpha^{\prime}\right\|[\theta(s)+\varphi(s)] b_{q}}{\sqrt{\left\|\alpha^{\prime}\right\|[\theta(s)+\varphi(s)]^{2}}}=b_{q} \tag{61}
\end{equation*}
$$

if we have chosen the projection vector $k=(1 ; 0 ; 0)$

$$
\begin{equation*}
\bar{t} \wedge k=n_{q} \tag{62}
\end{equation*}
$$

A characterization of involutes of a given curve in \mathbb{E}^{3} via directional q-frame

Hence, by taking norm of equation (62), we get

$$
\begin{equation*}
\|\bar{t} \wedge k\|=1 \tag{63}
\end{equation*}
$$

Moreover, using the equations (1), (62) and (63), we have

$$
\begin{equation*}
\overline{n_{q}}(s)=n_{q} \tag{64}
\end{equation*}
$$

In addition, using the equations (61), and (64)

$$
\begin{equation*}
\bar{t} \wedge \overline{n_{q}}=-t \tag{65}
\end{equation*}
$$

Therefore, from (1) and (65), we get

$$
\begin{equation*}
\overline{b_{q}}(s)=-t \tag{66}
\end{equation*}
$$

Consequently, by using the equations (3), we obtain

$$
\begin{gather*}
\overline{k_{1}}=-k_{3} \tag{67}\\
\overline{k_{2}}=k_{2} \tag{68}\\
\overline{k_{3}}=k_{1} \tag{69}
\end{gather*}
$$

This completes the proof.

References

[1] M. Dede, C. Ekici and H. Tozak, Directional tubular surfaces, International Journal of Algebra, 9(2015), 527-535.
[2] C. Boyer, A History of Mathematics, New York: Wiley, 1968.
[3] H. H. Hacisalihoğlu, Hareket Geometrisi ve Kuaterniyonlar Teorisi, Gazi Universitesi, Fen-Edebiyat Fakultesi Yayinlari 2, 1983.
[4] T. Soyfidan and M. A. Güngör, On the Quaternionic involute-evolute curves, arXiv: 1311. 0621 [math. GT], 2013.
[5] E. As and A. SarioğLugil, On the Bishop curvatures of involute-evolute curve couple in \mathbb{E}^{3}, International Journal of Physical Sciences, 9(7)(2014), 140-145.
[6] R.L. Bishop, There is more than one way to frame a curve, Am. Math. Mon., 82(3)(1975), 246-251.
[7] S. Yilmaz and M. Turgut, A new version of Bishop frame and an application to spherical images, J. Math. Anal. Appl., 371(2010), 764-776.
[8] P.M. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, New Jersey, 1976.
[9] M. Dede, C. Ekici and A. Görgülü, Directional q-frame along a space curve, Int. J. Adv. Res. Comp. Sci. Soft. Eng., 5(12)(2015), 1-6.
[10] J. Bloomenthal, Calculation of Reference Frames Along a Space Curve, Graphics Gems, Academic Press Professional, Inc., San Diego, CA, 1990.

Münevver YILDIRIM YILMAZ and Esra ERDEM

[11] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematicia, Second Edition, CRC Press, Boca Raton, 1998.
[12] A. MD. SAID, Vector-projection approach to curve framing for extruded surfaces, ICCSA 2013 Lecture Notes in Computer Science, 7971(2013), 596-607.
[13] B. DivJaK and Z. M. Sipus, Involutes and evolutes in n-dimensional simply isotropic space $\mathbb{I}_{n}^{(1)}$, J. Inf. Org. Sci., 23(1)(1999), 71-79.
[14] G. Öztürk, K. Arslan and B. Bulca, A characterization of involutes and evolutes of a given curve in \mathbb{E}^{n}, Kyungpook Math. J., 58(2018), 117-135.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^0]: * Corresponding author. Email address: munyildirim@firat.edu.tr (" Münevver YILDIRIM YILMAZ")

