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Abstract. The orthogonal trajectories of the first tangents of the curve are called the involutes of α. In the present study,
we obtain a characterization of involute curves of order k of the given curve α using directional q-frame. In virtue of the
formulas, some results are obtained.
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1. Introduction

In differential geometry, there are many significant results and properties of curves. In the light of numerous
studies authors introduce new works by using frame fields. The directional q- frame field is known as one of
the frame field of the differential geometry. The q-frame has some useful advantages comparing to the other
well-known frames Frenet and Bishop. One can define and calculate this frame even along a line (κ = 0). Dede
et al. offered the directional q-frame along a space curve to built a tubular surface. They obtained a parametric
representation of a directional tubular surface using the q-frame [1] .

Involutes of a curve is another attractive research subject among geometers. The idea of a string involute
is due to C. Huygens (1658), who is also known as on optician. He discovered involutes trying to build a
more accurate clock [2]. There are many brillant works on involutes of a given curve in different aspects. For
instance, Frenet frame of involute-evolute couple in the space E3 were given in [3]. T. Soyfidan and M. A.
Güngör studied a quaternionic curve Euclidean 4-space E4 and gave the on the quaternionic involute-evolute
curves for quaternionic curve [4] . Another is As and Sarıoğlugil study’s. They obtained on the Bishop curvatures
of involute-evolute curve couple in E3 [5].

In this paper, the characterization of involutes of the 1 st. and 2 nd. order of a curve are given and proved in
.E3 by the help of directional q-frame.
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2. Preliminaries

There are a number of different adapted frames along a space curve, like the parallel transport frame [6, 7] and
the Frenet frame [8] . The Frenet frame is the most well-known frame along a space curve. Let α (s) be a space
curve with a non-vanishing second derivative. The Frenet frame is described as follows:

t =
α

′

‖α′‖
, b =

α
′ ∧ α′′

‖α′ ∧ α′′‖
, n = b ∧ t

The curvature κ and the torsion τ are obtain by;

κ =

∥∥∥α′ ∧ α′′
∥∥∥

‖α′‖3
, τ =

det
(
α

′
, α

′′
, α

′′′
)

‖α′ ∧ α′′‖2

The well-known Frenet formulas are obtain by; t′n′

b
′

 = ϕ

 0 κ 0

−κ 0 τ

0 −τ 0


where ϕ =

∥∥∥α′
(s)
∥∥∥ .

As an alternative to the Frenet frame they define a new adapted frame along a space curve, the q-frame [1] .

Dede et al. defined the directional q-frame along a space curve [9] . The directional q-frame offers two key
advantages over the Frenet Frame [10, 11] : a) it is well defined even if the curve has vanishing second derivative
[12] , b) it avoid the redundant twist around the tangent.

The directional q-frame of a regular curve α (s) is obtained by;

t =
α

′

‖α′‖
, nq =

t ∧ k
‖t ∧ k‖

, bq = t ∧ nq (1)

where k is the projection vector.
The varitation equations of the directional q-frame is obtained by; t

′

n
′

q

b
′

q

 =
∥∥∥α′
∥∥∥
 0 k1 k2
−k1 0 k3
−k2 −k3 0

 (2)

where the q-curvatures are expressed as follows:

k1 =

〈
t
′
, nq

〉
‖α′‖

, k2 =

〈
t
′
, bq

〉
‖α′‖

, k3 = −

〈
nq, b

′

q

〉
‖α′‖

. (3)

[9] .

3. Involutes of order 1 st. and order 2 nd. in E3 according to projection vector

As is well known q-frame is defined by the help of the projection vector k. For simplicity firstly we have choosen
the projection vector k = (0; 0; 1) . For the cases t and k are parallel, the projection vector can be chosen as
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k = (0; 1; 0) , k = (1; 0; 0) (see [9]) . This part we classified the q-frame into three types: z axis directional q-
frames identified with the projection vector k = (0; 0; 1) (see Theorem 3.1 and 3.2) , y axis directional q-frames
identified with the projection vector k = (0; 1; 0) (see Theorem 3.3 and 3.4) and x axis directional q-frames
identified with the projection vector k = (1; 0; 0) (see Theorem 3.5 and 3.6) .

Definition 3.1. Letα=α(s) be a regular generic curve in En given with the arclength parameter s (i.e.,
∥∥∥α′

(s)
∥∥∥ =

1). Then the curves which are orthogonal to the system of k-dimensional osculating hyperplanes of α, are called
the involutes of order k [13] of the curve α. For simplicity, we call the involutes of order 1, simply the involutes
of the given curve [14] .

The theorems below are given by taking k = (0; 0; 1) .

Theorem 3.1. Let α = α (s) be a regular curve in E3 and any curve α (s) be first order involute of α (s) .

Then q-curvatures k1, k2 and k3 of the involute α of the curve α are obtain by

k1 = −
√
k21 + k22, k2 =

[
k

′

1k2 − k
′

2k1

]
−
∥∥∥α′
∥∥∥ k3 [k21 + k22

]
‖α′‖ [k21 + k22]

,

k3 = 0

Proof:

s→ α (s)→
3∑

i=1

αi (s) ei (1 ≤ i ≤ 3)

by using statement we obtain that
α (s) = α (s) + λ (s) t (s)

we by using (2) , differentiate this equation respect to s, we obtain

α
′
(s) = α

′
(s) + λ

′
(s) t (s) + λ (s)

∥∥∥α′
∥∥∥ [k1nq + k2bq]

Since
〈α

′
(s) , t (s)〉 = 0

and
α

′
(s) =

∥∥∥α′
∥∥∥ t (s)

we write
λ (s) = c− ‖α‖

So, we get
α

′
(s) = α

′
(s)−

∥∥∥α′
∥∥∥ t (s) + (c− ‖α‖)

∥∥∥α′
∥∥∥ [k1nq + k2bq]

= (c− ‖α‖)
∥∥∥α′
∥∥∥ [k1nq + k2bq] (4)

Using norm of the equation (4), we get∥∥∥α′
(s)
∥∥∥ = (c− ‖α‖)

√
k21 + k22

∥∥∥α′
∥∥∥ (5)

and by using the equations (1), (4) and (5), we get

t (s) =
[k1nq + k2bq]√

k21 + k22
(6)
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if we have chosen the projection vector k = (0; 0; 1)

t ∧ k =
k1t√
k21 + k22

(7)

Hence, by taking norm of equation (7), we get

∥∥t ∧ k∥∥ =

√√√√ k21(√
k21 + k22

)2 (8)

Moreover, using the equations (1), (7) and (8), we have

nq (s) = t (9)

In addition, using the equations (6),and (9)

t ∧ nq =
k2nq − k1bq√

k21 + k22
(10)

Therefore, from (1) and (10) , we get

bq (s) =
k2nq − k1bq√

k21 + k22
(11)

Consequently, by using the equations (3) , we obtain

k1 = −
√
k21 + k22 (12)

k2 =

[
k

′

1k2 − k
′

2k1

]
−
∥∥∥α′
∥∥∥ k3 [k21 + k22

]
‖α′‖ [k21 + k22]

(13)

k3 = 0 (14)

This completes the proof.

Theorem 3.2. Let α = α (s) be a regular curve in E3 and any curve α (s) be second order involute of α (s) .

Then q-curvatures k1, k2 and k3 of the involute α of the curve α are vanishes.

k1 = 0, k2 = 0, k3 = 0

Proof:

s→ α (s)→
3∑

i=1

αi (s) ei (1 ≤ i ≤ 3)

by using statement we obtain that

α (s) = α (s) + λ1 (s) t (s) + λ2 (s)nq (s)

we by using (2) , differentiate this equation respect to s, we obtain

α
′
(s) = α

′
(s) + λ

′

1 (s) t (s) + λ1 (s)
∥∥∥α′
∥∥∥ [k1nq + k2bq]

+λ
′

2 (s)nq (s)− λ2 (s)
∥∥∥α′
∥∥∥ k1t+ λ2 (s)

∥∥∥α′
∥∥∥ k3bq
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Since
〈α

′
(s) , t (s)〉 = 0, 〈α

′
(s) , nq (s)〉 = 0

and
α

′
(s) =

∥∥∥α′
∥∥∥ t (s)

So, we get
α

′
(s) =

∥∥∥α′
∥∥∥ [λ1k2 + λ2k3] bq

if we take
λ1k2 = θ (s) , λ2k3 = ϕ (s)

we obtain
α

′
(s) =

∥∥∥α′
∥∥∥ [θ (s) + ϕ (s)] bq (15)

Using norm of the equation (15), we get∥∥∥α′
(s)
∥∥∥ =

√
‖α′‖ [θ (s) + ϕ (s)]

2 (16)

and by using the equations (1), (15) and (16), we attain

t (s) =

∥∥∥α′
∥∥∥ [θ (s) + ϕ (s)] bq√
‖α′‖ [θ (s) + ϕ (s)]

2
= bq (17)

if we have chosen the projection vector k = (0; 0; 1)

t ∧ k = 0 (18)

Hence, by taking norm of equation (18), we get ∥∥t ∧ k∥∥ = 0 (19)

Moreover, using the equations (1), (18) and (19), we have

nq (s) = 0 (20)

In addition, using the equations (17),and (20)

t ∧ nq = 0 (21)

Therefore, from (1) and (21) , we get
bq (s) = 0 (22)

Consequently, by using the equations (3) , we obtain

k1 = 0 (23)

k2 = 0 (24)

k3 = 0 (25)

This completes the proof.
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Münevver YILDIRIM YILMAZ and Esra ERDEM

The theorems below are given by taking k = (0; 1; 0) .

Theorem 3.3. Let α = α (s) be a regular curve in E3 and any curve α (s) be first order involute of α (s) .

Then q-curvatures k1, k2 and k3 of the involute α of the curve α are obtain by

k1 =
√
k21 + k22, k2 =

[
k

′

2k1 − k2k
′

1

]
+
∥∥∥α′
∥∥∥ k3 [k21 + k22

]
‖α′‖ [k21 + k22]

,

k3 = 0

Proof:

s→ α (s)→
3∑

i=1

αi (s) ei (1 ≤ i ≤ 3)

by using statement we obtain that
α (s) = α (s) + λ (s) t (s)

we by using (2) , differentiate this equation respect to s, we obtain

α
′
(s) = α

′
(s) + λ

′
(s) t (s) + λ (s)

∥∥∥α′
∥∥∥ [k1nq + k2bq]

Since
〈α

′
(s) , t (s)〉 = 0

and
α

′
(s) =

∥∥∥α′
∥∥∥ t (s)

we write
λ (s) = c− ‖α‖

So, we get
α

′
(s) = α

′
(s)−

∥∥∥α′
∥∥∥ t (s) + (c− ‖α‖)

∥∥∥α′
∥∥∥ [k1nq + k2bq]

= (c− ‖α‖)
∥∥∥α′
∥∥∥ [k1nq + k2bq] (26)

Using norm of the equation (26), we get∥∥∥α′
(s)
∥∥∥ = (c− ‖α‖)

√
k21 + k22

∥∥∥α′
∥∥∥ (27)

and by using the equations (1), (26) and (27), we get

t (s) =
[k1nq + k2bq]√

k21 + k22
(28)

if we have chosen the projection vector k = (0; 1; 0)

t ∧ k =
−k2t√
k21 + k22

(29)

Hence, by taking norm of equation (29), we get

∥∥t ∧ k∥∥ =

√√√√ k22(√
k21 + k22

)2 (30)
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Moreover, using the equations (1), (29) and (30), we have

nq (s) = −t (31)

In addition, using the equations (28),and (31)

t ∧ nq =
−k2nq + k1bq√

k21 + k22
(32)

Therefore, from (1) and (32) , we get

bq (s) =
−k2nq + k1bq√

k21 + k22
(33)

Consequently, by using the equations (3) , we obtain

k1 =
√
k21 + k22 (34)

k2 =

[
k

′

2k1 − k2k
′

1

]
+
∥∥∥α′
∥∥∥ k3 [k21 + k22

]
‖α′‖ [k21 + k22]

(35)

k3 = 0 (36)

This completes the proof.

Theorem 3.4. Let α = α (s) be a regular curve in E3 and any curve α (s) be second order involute of α (s) .

Then q-curvatures k1, k2 and k3 of the involute α of the curve α are obtain by

k1 = k2, k2 = k3, k3 = k1

Proof:

s→ α (s)→
3∑

i=1

αi (s) ei (1 ≤ i ≤ 3)

by using statement we obtain that

α (s) = α (s) + λ1 (s) t (s) + λ2 (s)nq (s)

we by using (2) , differentiate this equation respect to s, we obtain

α
′
(s) = α

′
(s) + λ

′

1 (s) t (s) + λ1 (s)
∥∥∥α′
∥∥∥ [k1nq + k2bq]

+λ
′

2 (s)nq (s)− λ2 (s)
∥∥∥α′
∥∥∥ k1t+ λ2 (s)

∥∥∥α′
∥∥∥ k3bq

Since
〈α

′
(s) , t (s)〉 = 0, 〈α

′
(s) , nq (s)〉 = 0

and
α

′
(s) =

∥∥∥α′
∥∥∥ t (s)

So, we get
α

′
(s) =

∥∥∥α′
∥∥∥ [λ1k2 + λ2k3] bq

if we take
λ1k2 = θ (s) , λ2k3 = ϕ (s)
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we obtain
α

′
(s) =

∥∥∥α′
∥∥∥ [θ (s) + ϕ (s)] bq (37)

Using norm of the equation (37), we get∥∥∥α′
(s)
∥∥∥ =

√
‖α′‖ [θ (s) + ϕ (s)]

2 (38)

and by using the equations (1), (37) and (38), we attain

t (s) =

∥∥∥α′
∥∥∥ [θ (s) + ϕ (s)] bq√
‖α′‖ [θ (s) + ϕ (s)]

2
= bq (39)

if we have chosen the projection vector k = (0; 1; 0)

t ∧ k = −t (40)

Hence, by taking norm of equation (40), we get ∥∥t ∧ k∥∥ = 1 (41)

Moreover, using the equations (1), (40) and (41), we have

nq (s) = −t (42)

In addition, using the equations (39),and (42)

t ∧ nq = −nq (43)

Therefore, from (1) and (43) , we get
bq (s) = −nq (44)

Consequently, by using the equations (3) , we obtain

k1 = k2 (45)

k2 = k3 (46)

k3 = k1 (47)

This completes the proof.

The theorems below are given by taking k = (1; 0; 0) .

Theorem 3.5. Let α = α (s) be a regular curve in E3 and any curve α (s) be first order involute of α (s) .

Then q-curvatures k1, k2 and k3 of the involute α of the curve α are obtain by

k1 =

[
k

′

1k2 − k1k
′

2

]
−
∥∥∥α′
∥∥∥ k3 [k21 + k22

]
‖α′‖ [k21 + k22]

, k2 =
√
k21 + k22,

k3 = 0

Proof:

s→ α (s)→
3∑

i=1

αi (s) ei (1 ≤ i ≤ 3)
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by using statement we obtain that
α (s) = α (s) + λ (s) t (s)

we by using (2) , differentiate this equation respect to s, we obtain

α
′
(s) = α

′
(s) + λ

′
(s) t (s) + λ (s)

∥∥∥α′
∥∥∥ [k1nq + k2bq]

Since
〈α

′
(s) , t (s)〉 = 0

and
α

′
(s) =

∥∥∥α′
∥∥∥ t (s)

we write
λ (s) = c− ‖α‖

So, we get
α

′
(s) = α

′
(s)−

∥∥∥α′
∥∥∥ t (s) + (c− ‖α‖)

∥∥∥α′
∥∥∥ [k1nq + k2bq]

= (c− ‖α‖)
∥∥∥α′
∥∥∥ [k1nq + k2bq] (48)

Using norm of the equation (48), we get∥∥∥α′
(s)
∥∥∥ = (c− ‖α‖)

√
k21 + k22

∥∥∥α′
∥∥∥ (49)

and by using the equations (1), (48) and (49), we get

t (s) =
[k1nq + k2bq]√

k21 + k22
(50)

if we have chosen the projection vector k = (1; 0; 0)

t ∧ k =
[k2nq − k1bq]√

k21 + k22
(51)

Hence, by taking norm of equation (51), we get

∥∥t ∧ k∥∥ =

√√√√ k21(√
k21 + k22

)2 (52)

Moreover, using the equations (1), (51) and (52), we have

nq (s) =
[k2nq − k1bq]√

k21 + k22
(53)

In addition, using the equations (50),and (53)

t ∧ nq = t (54)

Therefore, from (1) and (54) , we get
bq (s) = t (55)

Consequently, by using the equations (3) , we obtain

k1 =

[
k

′

1k2 − k1k
′

2

]
−
∥∥∥α′
∥∥∥ k3 [k21 + k22

]
‖α′‖ [k21 + k22]

(56)
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k2 =
√
k21 + k22 (57)

k3 = 0 (58)

This completes the proof

Theorem 3.6. Let α = α (s) be a regular curve in E3 and any curve α (s) be second order involute of α (s) .

Then q-curvatures k1, k2 and k3 of the involute α of the curve α are obtain by

k1 = −k3, k2 = k2, k3 = k1

Proof:

s→ α (s)→
3∑

i=1

αi (s) ei (1 ≤ i ≤ 3)

by using statement we obtain that

α (s) = α (s) + λ1 (s) t (s) + λ2 (s)nq (s)

we by using (2) , differentiate this equation respect to s, we obtain

α
′
(s) = α

′
(s) + λ

′

1 (s) t (s) + λ1 (s)
∥∥∥α′
∥∥∥ [k1nq + k2bq]

+λ
′

2 (s)nq (s)− λ2 (s)
∥∥∥α′
∥∥∥ k1t+ λ2 (s)

∥∥∥α′
∥∥∥ k3bq

Since
〈α

′
(s) , t (s)〉 = 0, 〈α

′
(s) , nq (s)〉 = 0

and
α

′
(s) =

∥∥∥α′
∥∥∥ t (s)

So, we get
α

′
(s) =

∥∥∥α′
∥∥∥ [λ1k2 + λ2k3] bq

if we take
λ1k2 = θ (s) , λ2k3 = ϕ (s)

we obtain
α

′
(s) =

∥∥∥α′
∥∥∥ [θ (s) + ϕ (s)] bq (59)

Using norm of the equation (59), we get∥∥∥α′
(s)
∥∥∥ =

√
‖α′‖ [θ (s) + ϕ (s)]

2 (60)

and by using the equations (1), (59) and (60), we attain

t (s) =

∥∥∥α′
∥∥∥ [θ (s) + ϕ (s)] bq√
‖α′‖ [θ (s) + ϕ (s)]

2
= bq (61)

if we have chosen the projection vector k = (1; 0; 0)

t ∧ k = nq (62)
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Hence, by taking norm of equation (62), we get ∥∥t ∧ k∥∥ = 1 (63)

Moreover, using the equations (1), (62) and (63), we have

nq (s) = nq (64)

In addition, using the equations (61),and (64)

t ∧ nq = −t (65)

Therefore, from (1) and (65) , we get
bq (s) = −t (66)

Consequently, by using the equations (3) , we obtain

k1 = −k3 (67)

k2 = k2 (68)

k3 = k1 (69)

This completes the proof.
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Münevver YILDIRIM YILMAZ and Esra ERDEM

[11] A. GRAY, Modern Differential Geometry of Curves and Surfaces with Mathematicia, Second Edition, CRC
Press, Boca Raton, 1998.

[12] A. MD. SAID, Vector-projection approach to curve framing for extruded surfaces, ICCSA 2013 Lecture Notes
in Computer Science, 7971(2013), 596–607.

[13] B. DIVJAK AND Z. M. SIPUS, Involutes and evolutes in n-dimensional simply isotropic space I(1)n , J. Inf. Org.
Sci., 23(1)(1999), 71–79.
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