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Abstract. In this study, a dissipative conformable fractional singular Sturm–Liouville operator is studied. For this operator,
a completeness theorem is proved by Krein’s theorem.
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1. Introduction and Background

In recent years, Khalil and his friends ([9]) defined conformable fractional derivative as

Tαu(ζ) = lim
ε→∞

u
(
ζ + εζ1−α

)
− u (ζ)

ε
, (1.1)

where 0 < α < 1 and u : (0,∞) −→ R : =(−∞,∞) is a function. Conformable fractional derivative aims
to expand the derivative definition as known by providing the natural characteristics of classical derivative and to
pain new perspectives for differential equation theory with the help of conformable differential equations obtained
as using this derivative definition ([10]). Later in ([1]), Abdeljawad defined the right and left conformable
fractional derivatives, the fractional chain rule and fractional integrals of higher orders.

In [2], the authors studied a conformable fractional Sturm–Liouville (CFSL) problem. In [4], Belanau et al.
conctructed Weyl’s theory for the conformable sequential equation with distributional potentials.

In this paper, using Krein’s theorems, we prove that the system of all eigenvectors and associated vectors of
dissipative CFSL operator is complete.

Now, some preliminary concepts related to conformable fractional calculus and the essentials of Krein’s
theorem are given.
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Definition 1.1 ([1]). The conformable fractional entire is given by

(Iαu) (ζ) =

ζ∫
0

sα−1u(s)ds =

ζ∫
0

u(s)dαs.

Let

L2
α(I) =

{
z :

(∫ a

0

|z (ζ)|2 dαζ
)1/2

<∞

}
,

where I = [0, a) and 0 < a <∞. L2
α(I) is a Hilbert space with the inner product

⟨u, z⟩ :=
∫ a

0

u (ζ) z (ζ)dαζ, where u, z ∈ L2
α(I).

Theorem 1.2 (Krein [7]). The system of root vectors of a compact dissipative operatorB with nuclear imaginary
component is complete in the Hilbert space H so long as at least one of the following two conditions is fulfilled:

lim
σ→∞

n+ (σ,BR)

σ
= 0, or lim

σ→∞

n− (σ,BR)

σ
= 0,

where n+ (σ,BR) and n− (σ,BR) denote the numbers of the characteristic values of the real component BR of
the operator B in the intervals [0, σ] and [−σ, 0], respectively.

Definition 1.3. Let Ξ be an entire function. If for each ε > 0 there exists a finite constant Cε > 0, such that

|Ξ (µ) | ≤ Cεe
ε|µ|, µ ∈ C (1.2)

then Ξ is called an entire function of the order ≤ 1 of growth and minimal type ([7]).

Theorem 1.4 ([11]). If the entire function Ξ satisfies (1.2), then

lim
σ→∞

n+ (σ,Ξ)

σ
= lim

σ→∞

n− (σ,Ξ)

σ
= 0,

where n+ (σ,Ξ) and n− (σ,Ξ) denote the numbers of the zeros of Ξ in the intervals [0, σ] and [−σ, 0],
respectively.

2. Main Results

Consider the following singular problem

l[z] = −T 2
αz(ζ) + q(ζ)z(ζ) = µy, ζ ∈ I = [0, a), (2.1)

where q is a real-valued function on I , q ∈ L1
α,loc(I), and a is a singular point.

The maximal operator is given by

Lmaxz := l[z],

where
Dmax :=

{
z ∈ L2

α(I) : z, Tαz ∈ ACα,loc (I) , l[z] ∈ L2
α(I)

}
.

Green’s formula [2] is defined as∫ a

0

l[z1](ζ)z2(ζ)dαζ −
∫ a

0

z1(ζ)l[z2](ζ)dαζ = [z1, z2] (a)− [z1, z2] (0) , (2.2)
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where z1, z2 ∈ Dmax and

[z1, z2](ζ) = z1(ζ)Tαz2(ζ)− Tαz1(ζ)z2(ζ) =W (z1, z2) .

Set
Dmin := {z ∈ Dmax : z (0) = Tαz (0) = 0, [z, χ](a) = 0} ,

for arbitrary χ ∈ Dmax.The minimal operator Lmin is the restriction of Lmax to Dmin and Lmax = L∗
min

([4, 6, 12, 15]).
In this paper, we will assume that Lmin has the deficiency indices (2, 2) .
We will denote by ϕ (ζ, µ) , ψ (ζ, µ) two linearly independent solutions of Eq. (2.1) satisfying the following

conditions
ϕ (0, µ) = cosβ, Tαϕ (0, µ) = sinβ,

ψ (0, µ) = − sinβ, Tαψ (0, µ) = cosβ,
(2.3)

where β ∈ R. ϕ (ζ, µ) and ψ (ζ, µ) are entire functions of µ ([2]). Due to Lmin has the deficiency indices (2, 2),
ϕ (ζ, µ) , ψ (ζ, µ) ∈ L2

α(I).

Let r(ζ) = ϕ (ζ, 0) and v(ζ) = ψ(ζ, 0). Then we have

r (0) = cosβ, Tαr (0) = sinβ,

v (0) = − sinβ, Tαv (0) = cosβ.
(2.4)

Clearly, r, v ∈ L2
α(I) and r, v ∈ Dmax.

Let

D(L) =

{
z ∈ Dmax :

z (0) cosβ + Tαz(0) sinβ = 0,

[z, r] (a)− h [z, v] (a) = 0

}
, (2.5)

where h ∈ C and Imh > 0. Then, for all z ∈ D(L), the operator L is defined by Ly = l[z].

Theorem 2.1. L is a dissipative operator.

Proof. Let z ∈ D(L). From (2.2), we find

⟨Lz, z⟩ − ⟨z, Lz⟩ = [z, z] (a)− [z, z] (0) . (2.6)

By (2.5), we obtain
[r, z] (a) = −h[z, v] (a)

and
[z, z] (0) = 0.

Since
[z1, z2] (ζ) = [z1, v] (ζ) [r, z2] (ζ)− [z1, r] (ζ) [v, z2] (ζ) , ζ ∈ I, (2.7)

where z1, z2 ∈ Dmax, we see that

[z, z] (a) = [z, v] (a) [r, z] (a)− [z, r] (a) [v, z] (a)

= −h|[z, v] (a) |2 + h|[z, v] (a) |2

= 2i(Imh)|[z, v] (a) |2.

Hence
Im⟨Lz, z⟩ = (Imh)|[z, v] (a) |2 ≥ 0. (2.8)

■
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Corollary 2.2. Since the operator L is dissipative, all eigenvalues of L lie in the closed upper half-plane Imµ ≥
0.

Theorem 2.3. L has no real eigenvalue.

Proof. Assume that µ0 is a real eigenvalue of L and ψ0 = ψ0(ζ, µ0) is a corresponding eigenfunction. Due to

Im(Lψ0, ψ0) = Im(µ0, ||ψ0||2) = 0,

and we see that [ψ0, v] (a) = 0. From (2.5), we obtain [ψ0, r] (a) = 0. By (2.7), we conclude that

1 =W0(ϕ0, ψ0) =Wa(ϕ0, ψ0) = [ϕ0, ψ0] (a)

= [ϕ0, v] (a) [r, ψ0] (a)− [ϕ0, r] (a) [v, ψ0] (a) = 0,

a contradiction. ■

Theorem 2.4 ([3]). Every nontrivial solution z of Eq.(2.1) and Tαz are entire functions of µ of the order at most
1
2 in the interval [0, c], c < a.

Let
Θ1(µ) = [ψ(ζ, µ), r(ζ)] (a) ,

Θ2(µ) = [ψ(ζ, µ), v(ζ)] (a) ,

where ψ(ζ, µ) is the solution of Eq.(2.1). Clearly,

σp(L) = {µ ∈ C : Θ(µ) = 0} ,

where
Θ(µ) = Θ1(µ)− hc2(µ), (2.9)

and σp(L) is the point spectrum of L.

Theorem 2.5. The functions Θ1(µ) and Θ2(µ) are entire functions of order ≤ 1 of growth and minimal type.

Proof. Let
Θak,1(µ) = [ψ(ζ, µ), r(ζ)] (ak) ,

Θak,2(µ) = [ψ(ζ, µ), v(ζ)] (ak) ,

where ak ∈ I.

By Theorem 8, ψ(ak, µ) and Tαψ(ak, µ) are entire functions of order 1
2 for arbitrary fixed ak. Consequently,

Θak,1(µ) and Θak,2(µ) are entire functions of order 1
2 .

If we define
Ξ1(ζ, µ) = [z, r] (ζ) ,

Ξ2(ζ, µ) = [z, v] (ζ) ,

then we see that Ξ1(ζ, µ) and Ξ2(ζ, µ) satisfy the following system

Tα,ζΞ1(ζ, µ) = λz(ζ, µ)r(ζ), Tα,ζΞ2(ζ, µ) = λz(ζ, µ)v(ζ), ζ ∈ I. (2.10)

Using (2.10), we deduce that
Tα,ζΞ(ζ, µ) = λΩ(ζ)Ξ(ζ, µ), ζ ∈ I. (2.11)

Tα,ζΞ(ζ, µ) = Tα,ζ

[
Ξ1(ζ, µ)

Ξ2(ζ, µ)

]
=

[
λz(ζ, µ)r(ζ)

λz(ζ, µ)v(ζ)

]
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= µ

[
[z, v]r2 − [z, r]vr

[z, v]vr − [z, v]v2

]
= µ

[
Ξ2r

2 − Ξ1vr

Ξ2vr − Ξ1v2

]

= µ

[
−vr r2

−v2 rv

][
Ξ1

Ξ2

]
,

where

Ξ(ζ, µ) =

[
Ξ1(ζ, µ)

Ξ2(ζ, µ)

]
, Ω(ζ) =

[
−r(ζ)v(ζ) r2(ζ)

−v2(ζ) r(ζ)v(ζ)

]
,

and the elements Ω(ζ) are in L1
α(I). For

w =

[
w1

w2

]
,

we put ∥w∥ = |w1|+ |w2| . The inclusion ∥Ω(ζ)∥ ∈ L1
α(I) holds.

If z(ζ, µ) = ψ(ζ, µ), then (2.11) is equivalent to the following equation

Ξ(ζ, µ) = Ξ(ak, µ) + µ

∫ ζ

ak

Ω(s)Ξ(s, µ)dαs, ζ ∈ I, (2.12)

where

Ξ(ak, µ) =

[
Ξ1(ak, µ)

Ξ2(ak, µ)

]
=

[
[z, r] (ak)

[z, v] (ak)

]
=

[
Θak,1(µ)

Θak,2(µ)

]
,

Ξ(0, µ) =

[
Ξ1(0, µ)

Ξ2(0, µ)

]
=

[
[z, r] (0)

[z, v] (0)

]
=

[
−1

0

]
,

Ξ(a, µ) =

(
Θ1(µ)

Θ2(µ)

)
.

Using Gronwall’s inequality in (2.12), we find

∥Ξ(ζ, µ)∥ ≤ ∥Ξ(ak, µ)∥ exp

(
|µ|
∫ ζ

ak

∥Ω(s)∥ dαs

)
;

hence

∥Ξ(a, µ)− Ξ(ak, µ)∥ ≤ |µ| exp
{
|µ|
∫ a

0

∥Ω(s)∥ ds
}∫ a

ak

∥Ω(s)∥ dαs, (2.13)

∥Ξ(a, µ)∥ ≤ exp

(
|µ|
∫ a

ak

∥Ω(s)∥ dαs
)
∥Ξ(ak, µ)∥ . (2.14)

(2.13) shows that Θak,j(µ) → Θj(µ) as ak → a, uniformly in µ in a compact set. Thus, Θ,j(µ), j = 1, 2, are
entire functions.

By (2.14), we obtain

∥Ξ(a, µ)∥ ≤ exp

|µ|
a∫

0

∥Ω(x)∥ dαx

 .

Therefore Θ,j(µ) are of not higher than the first order. By (2.14), we see that Θ,j(µ), j = 1, 2, are of minimal
type. ■
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From (2.2), we conclude that

Θ1(µ) = [ψ(ζ, µ), r(ζ)] (a) = −1 + µ

∫ a

0

ψ(ζ, µ)r(ζ)dαζ (2.15)

Θ2(µ) = [ψ(ζ, µ), v(ζ)] (a) = µ

∫ a

0

ψ(ζ, µ)v(ζ)dαζ. (2.16)

From (2.9), (2.15) and (2.16) we find that Θ(0) = −1.

By Theorem 7, the inverse operator L−1 exists. Now we obtain L−1.
Define u(ζ) = r(ζ)− hv(ζ). Clearly, we see that v, u ∈ L2

α(I) and W (v, u) = −1.

Let

Y Ξ =

∫ a

0

G(ζ, t)Ξ(x)dαt, (2.17)

where Ξ ∈ L2
α(I) and

G(ζ, t) =

{
v(ζ)u(t), 0 ≤ ζ ≤ t

v(t)u(ζ) t ≤ ζ < a.
(2.18)

Since ∫ a

0

∫ a

0

|G(ζ, t)|2 dαtdαt <∞,

we see that Y = L−1 and the operator Y is Hilbert–Schmidt([2]). Therefore, the root lineals of L and Y coincide
and the completeness of the system of all eigen- and associated functionss of L is equivalent to the completeness
of those for Y .

Each eigenvector of L may have only a finite number of linear independent associated vectors due to the
algebraic multiplicity of nonzero eigenvalues of a compact operator is finite.

Theorem 2.6. The system of all root vectors of L (also of Y ) is complete in L2
α(I).

Proof. Due to u(ζ) = r(ζ)−hv(ζ), setting h = h1+ih2 we get from (2.17) in view of (2.18) that Y = Y1+iY2,
where

Y1Ξ = ⟨G1 (t, ζ) ,Ξ (ζ)⟩,

Y2Ξ = ⟨G2 (t, ζ) ,Ξ (ζ)⟩

and

G1 (t, ζ) =

{
v (t) [u (ζ)− h1v (ζ)], 0 ≤ ζ ≤ t ≤ a,

v (ζ) [u (t)− h1v (t)], 0 ≤ ζ ≤ t ≤ a,

G2 (t, ζ) = −h2v (t) v (ζ) , h2 = Imh > 0.

Y1 is the self-adjoint Hilbert–Schmidt operator in L2
α(I), and Y2 is the self-adjoint one-dimensional operator

in L2
α(I).
Let us denote by L1 the operator in L2

α(I) generated by l[z] and the following conditions

z (0) cosα+ Tαz (0) sinα = 0,

[z, r] (a)− h1[z, v] (a) = 0,

where h1 = Reh. It is obviously that Y1 is the inverse of the operator L1. Let

ρp (L1) = {µ : µ ∈ C, Ψ(µ) = 0} , (2.19)

where
Ψ(µ) := Θ1 (µ)− h1Θ2 (µ) . (2.20)
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Thus we obtain
|Ψ(µ) | ≤ Cεe

ε|µ|, ∀µ ∈ C. (2.21)

Let Z = −Y and Z = Z1 + iZ2, where Z1 = −Y1, Z2 = −Y2. It follows from (2.19), (2.21) and Theorem
5 that

lim
σ→∞

m+ (σ, Z1)

σ
= 0 or lim

σ→∞

m− (σ, Z1)

σ
= 0,

where m+ (σ, Z1) and m− (σ, Z1) denote the numbers of the characteristic values of the real component ZR =

Z1 in the intervals [0, σ] and [−σ, 0], respectively. Thus the dissipative operator Z (also of Y ) carries out all the
conditions of Krein’s theorem on completeness. ■
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