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On a conformable fractional differential equations with maxima
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Abstract. This study deals with the existence and uniqueness of solutions for a class of first order conformable fractional
differential equations with maxima. We also provide some examples to illustrate the application of the results.
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1. Introduction

The purpose of this study the following problem{
(Dαu) (τ) = f(τ, u (τ) , max

s∈[τ−r,τ ]
u (s)), τ ∈ J = [0,T],

u (τ) = φ (τ) , τ ∈ [−r, 0] ,
(1.1)

where Dα represents the conformable fractional derivative of order α, 0 < α ≤ 1, T > 0 and r > 0, f :

J × R× C → R is continuous with C = C ([−r,T] ,R) and φ : [−r, 0] → R continuous.
Conformable fractional derivative was first introduced in [23], later developed in [1] and it appears in many

fields (see [2], [3], [11], [17], [25], [35] along with the cited references therein).
However differential equations with maxima and differential inequalities with maxima were initially used in

automatic control and in the study stability of equations with retarded argument (see [30] and [19, Chapter 4
Section 5]). Nevertheless, a variety of fields, including there are a wide range of areas such as psychology (e.g.,
dynamic model for happiness), optimal control, theory of lateral inhibition, chemostat models and economy (see
[5], [6], [8], [15], [18], [20], [21], [28] and [33]) use differential equations with maxima.

∗Corresponding author. Email address: derhab@yahoo.fr (Mohammed Derhab)

https://www.malayajournal.org/index.php/mjm/index ©2024 by the authors.



Mohammed Derhab

Some authors have studied conformable fractional differential equations with deviating arguments using fixed
point theorems, numerical methods, monotone iterative technique, and upper and lower solutions method see [14],
[16], [22], [24] and [31]). Let us recall some of them.

In [14], the authors studied the problem{
(Dαu)(τ) = f(τ, u (τ) , u (θ (τ))), τ ∈ J = [0,T],

u (0) = u (T ) ,
(1.2)

where 0 < α ≤ 1, T > 0, f : J × R× C (J,R) → R and θ : J → J are continuous with θ(J) ⊆ J .
The authors used the monotone iterative technique to establish some sufficient conditions for the existence of

extremal solutions for periodic boundary value problem (1.2).
In [16], the author studied the following problem{

(Dαv)(τ) = f(τ, v(τ), v (θ (τ))), τ ∈ J = [0,T],

v (0) = g (v) ,
(1.3)

where 0 < α ≤ 1, T > 0, f : J × R × C (J,R) → R and θ : J → J continuous with θ(J) ⊆ J , and
g : C (J,R) → R continuous increasing.

The author established the existence of minimal and maximal solutions for the problem (1.3) by combining
the upper and lower solutions method with the monotone iterative technique.

In [22], the authors studied the following problem{
(Dαy)(τ) + y (τ) = µy (µτ) , τ > 0,

y (0) = λ,
(1.4)

where 0 < α ≤ 1, λ and µ are real numbers with µ < 1.
The approximate solution for problem (1.4) was provided by the authors using the homotopy perturbation

method.
One well know that the existence of solutions for first order differential equations with maxima is proved

using the monotone iterative technique (see [4], [7], [8, Chapter 6] and the references cited therein). The aim of
this work is to demonstrate its successful application to problems of type (1.1).

This work is structured to the following plan. We provide some definitions and preliminaries results in Section
2. Section 3 presents and demonstrates the main results and finally Section 4 offers how our results are applied.

2. Definitions and Preliminary Results

Definition 2.1. [23]Let h : J → R continuous 0 < α ≤ 1. The conformable fractional integral of order α of h
is defined by

(Iαh)(τ) =

τ∫
0

sα−1h (s) ds, for τ > 0.

Definition 2.2. [23]Let h : J → R and 0 < α ≤ 1 . The Conformable fractional derivative of order α of h is
defined by  (Dαh)(τ) = lim

ρ→0

h(τ+ρτ1−α)−h(τ)

ρ , for τ > 0,

(Dαh)(0) = lim
τ→0+

(Dαh)(τ).
(2.1)

Example 2.3. We have

(i) (Dαc)(τ) = 0, where c ∈ R.
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(ii) (Dατ
λ)(τ) =


λτλ−α if τ > 0,
λ if λ = α and τ = 0,
0 if λ > α and τ = 0.

(iii) (Dαe
τα

)(τ) = αeτ
α

.

(iv) (Dα sin

(
tα

α

)
)(τ) = cos

(
τα

α

)
.

(v) (Dα cos

(
tα

α

)
)(τ) = − sin

(
τα

α

)
.

Theorem 2.4. [23, Theorem 2.1]If h : J → R is α-differentiable at τ0 > 0, then h is continuous at τ0.

Lemma 2.5. [23, Theorem 3.1]Let h : J → R be a continuous function and 0 < α ≤ 1, then we have
(Dα ◦ Iα)h = h.

Lemma 2.6. [23, Theorem 2.4]Let h : [a, b] → R continuous with 0 ≤ a < b and 0 < α ≤ 1. If h is
α-differentiable in (a, b), then

h (b)− h (a) =

(
bα − aα

α

)
(Dαh) (c) ,

with c in (a, b).

Notation 2.7. For 0 < α ≤ 1, we define Cα,0 (J,R) as follows

Cα,0 (J,R) = {h ∈ C (J,R) : Dαh ∈ C (J,R)} .

Lemma 2.8. Let h ∈ Cα,0 ([a, b] ,R) with 0 ≤ a < b. Then Dαh ≡ 0 in [a, b] if and only if h ≡ c in [a, b],
where c is a real constant.

Proof. Assume that h ∈ Cα,0 ([a, b] ,R) with 0 ≤ a < b.
Suppose that Dαh ≡ 0 in [a, b] and we put by definition

h (τ0) = min
τ∈[a,b]

h (τ) and h (τ1) = max
t∈[a,b]

h (t) .

From Lemma 2.6, one has
h (τ0) = h (τ1) ,

which means that
h ≡ c in [a, b], with c ∈ R.

Conversely if h ≡ c in [a, b] with c ∈ R, then by using the definition of Conformable fractional derivative,
we obtain h ∈ Cα,0 ([a, b] ,R). ■

Lemma 2.9. Assume that h ∈ Cα,0 (J,R), then we have

(Iα ◦Dα) (h (τ)) = h (τ)− h (0) , for τ ∈ J.

Proof. We put by definition
g (τ) = (Iα ◦Dα) (h (τ)) , for t ∈ J.

From Lemma 2.5, we obtain
(Dαg) (τ) = (Dαh) (τ) , for τ ∈ J,

which means that
(Dα) (g − h) (t) = 0, for t ∈ J ,
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and consequently since g (0) = 0 and from the preceding Lemma, we deduce that

g (τ) = h (τ)− h (0) , for τ ∈ J.

That is
(Iα ◦Dα) (h (τ)) = h (τ)− h (0) , for τ ∈ J.

■

Lemma 2.10. [32, Theorem 1 page 44] If the functions u : [c, d] → R and v : [c, d] → R are continuous on the
segment [c, d], then

max
τ∈[c,d]

|u (τ)− v (τ)| ≥
∣∣∣∣ max
τ∈[c,d]

u (τ)− max
τ∈[c,d]

v (τ)

∣∣∣∣ .
Lemma 2.11. If the functions u : [c, d] → R and v : [c, d] → R are continuous on the segment [c, d], then

max
τ∈[c,d]

u (τ)− max
τ∈[c,d]

v (τ) ≥ min
τ∈[c,d]

(u (τ)− v (τ)) .

Proof. We have
max
τ∈[c,d]

u (τ)− max
τ∈[c,d]

v (τ) = max
τ∈[c,d]

u (τ)− v (ς) ,

where ς ∈ [c, d].
Which implies that

max
τ∈[c,d]

u (τ)− max
τ∈[c,d]

v (τ) ≥ u (ς)− v (ς)

≥ min
τ∈[c,d]

(u (τ)− v (τ)) .

That is
max
τ∈[c,d]

u (τ)− max
τ∈[c,d]

v (τ) ≥ min
τ∈[c,d]

(u (τ)− v (τ)) .

■

Now consider the problem{
(Dαu) (τ) = g̃(τ, u (τ) , max

s∈[τ−r,τ ]
u (τ)), τ ∈ J,

u(τ) = ψ (t) , τ ∈ [−r, 0] ,
(2.2)

where 0 < α ≤ 1, g̃ : J × R×C ([−r,T] ,R)→ R continuous and ψ ∈ C ([−r, 0] ,R) .

Notation 2.12. For 0 < α ≤ 1 the space Cα ([−r,T] ,R) is defined as follows

Cα ([−r,T] ,R) = {u ∈ C ([−r, T ] ,R) : Dαu ∈ C (J,R)} .

The following result is an immediate consequence of Lemma 2.5 and Lemma 2.9.

Lemma 2.13. Let 0 < α ≤ 1. If u ∈ Cα ([−r, T ] ,R), then u is a solution of the following integral equation u (τ) = ψ (0) +
τ∫
0

sα−1g̃(s, u (s) , max
t∈[s−r,s]

u (t))ds, for all τ ∈ J,

u(τ) = ψ (τ) , for all τ ∈ [−r, 0] ,

if, and only if, u is a solution of the Cauchy problem (2.2).
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Now, we have the following result.

Theorem 2.14. Assume that the following hypothesis are satisfied

(H) There exists a positive constants L1 and L2 such that

|g̃ (t, u1, v1)− g̃ (t, u2, v2)| ≤ L1 |u1 − u2|+ L2 |v1 − v2| ,

for all t ∈ J , ui ∈ R and vi ∈ R for i = 1, 2.

Then the problem (2.2) admits a unique solution u ∈ Cα ([−r,T] ,R) .

Proof. Let u ∈ Cα ([−r,T] ,R) and consider the following equation

 u (τ) = ψ (0) +
τ∫
0

sα−1g̃(s, u (s) , max
t∈[s−r,s]

u (t))ds, for all τ ∈ J,

u(τ) = ψ (τ) , for all τ ∈ [−r, 0] .

Now we define the operator

A : Cα ([−r,T] ,R) → Cα ([−r,T] ,R)

u 7→ (Au) (τ) =

ψ (0) +
τ∫
0

sα−1g̃(s, u (s) , max
t∈[s−r,s]

u (t))ds, for all τ ∈ J,

u(τ) = ψ (τ) , for all τ ∈ [−r, 0] ,

and we define the following norm

∥v∥ = max
τ∈[−r,T]

e
−
λ

α
|τ |α

|v (τ)| ,

where v ∈ Cα ([−r,T] ,R) and λ > 0.

Since the norms ∥.∥∗ and ∥.∥0 are equivalent, then (Cα ([−r,T] ,R) , ∥.∥∗) is a Banach space.

Now let u1, u2 ∈ Cα ([−r,T] ,R), then for all τ ∈ J , one has

e
−
λ

α
τα

|(Au1) (τ)− (Au2) (τ)|

= e
−
λ

α
τα

∣∣∣∣∣∣
τ∫

0

sα−1

(
g̃(s, u1 (s) , max

t∈[s−r,s]
u1 (t))− g̃(s, u2 (s) , max

t∈[s−r,s]
u2 (t))

)
ds

∣∣∣∣∣∣
≤ e

−
λ

α
τα

τ∫
0

sα−1

∣∣∣∣g̃(s, u1 (s) , max
t∈[s−r,s]

u1 (t))− g̃(s, u2 (s) , max
t∈[s−r,s]

u2 (t))

∣∣∣∣ ds
≤ e

−
λ

α
τα

τ∫
0

sα−1

(
L1 |u1 (s)− u2 (s)|+ L2

∣∣∣∣ max
t∈[s−r,s]

u1 (t)− max
t∈[s−r,s]

u2 (t)

∣∣∣∣) ds.
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From Lemma 2.10, we obtain

e
−
λ

α
τα

|(Au1) (τ)− (Au2) (τ)|

e
−
λ

α
τα

τ∫
0

sα−1

(
L1 |u1 (s)− u2 (s)|+ L2 max

t∈[s−r,s]
|u1 (t)− u2 (t)|

)
ds

≤ e
−
λ

α
τα

(L1 + L2) ∥u1 − u2∥
τ∫

0

e

λ

α
sα

sα−1ds

= e
−
λ

α
τα

(L1 + L2) ∥u1 − u2∥

e
λ

α
τα

− 1

λ



= (L1 + L2) ∥u1 − u2∥

1− e
−
λ

α
τα

λ


<

(L1 + L2)

λ
∥u1 − u2∥ .

If we choose λ ≥ (L1 + L2), we obtain A is a contraction on (Cα ([−r,T] ,R) , ∥.∥) and therefore by Banach’s
fixed point theorem, the operator A admits a unique fixed point and consequently from Lemma 2.13, it follows
that the problem (2.2) admits a unique solution u ∈ Cα ([−r,T] ,R) . ■

Lemma 2.15. Let u ∈ Cα ([−r,T] ,R) satisfying{
(Dαu) (τ) ≤ −M1u (τ)−N1 min

s∈[τ−r,τ ]
u (s) , τ ∈ J ,

u (0) ≤ u (τ) ≤ 0, for all τ ∈ [−r, 0] ,
(2.3)

where 0 < α ≤ 1 and M1 and N1 are positive real numbers.
If

(M1 +N1)
Tα

α
≤ 1,

then u ≤ 0 in [−r,T] .

Proof. Assume that there exists t0 ∈ (0,T] such that

u (t0) > 0. (2.4)

We put by definition
u (η) = min

t∈[−r,t0]
u (t) ≤ 0,

where η ∈ [0, t0).
From Lemma 2.6, there exists σ ∈ (η, t0) such that

u (t0)− u (η) =

(
tα0 − ηα

α

)
(Dαu) (σ) .

Then by using (2.3) and (2.4), we obtain

−u (η) < −
(
M1u (σ) +N1 min

s∈[σ−r,σ]
u (σ)

)(
tα0 − ηα

α

)
.
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Which implies that

−u (η) < − (M1 +N1) u (η)

(
tα0 − ηα

α

)
< − (M1 +N1) u (η)

Tα

α
.

That is
(M1 +N1)

Tα

α
> 1 if u (η) < 0.

Which is a contradiction with the assumption

(M1 +N1)
Tα

α
≤ 1.

If u (η) = 0, we obtain also a contradiction.
Then, we have

u (t) ≤ 0, for all t ∈ [−r,T] .

■

Remark 2.16. The idea of the proof of the preceding Lemma 2.15 is similar to that of [26, Lemma 2.1 part i)].

Lemma 2.17. Assume that u ∈ Cα ([−r,T] ,R) satisfying{
(Dαu) (t) ≤ −M̃1u (t)− Ñ1 max

s∈[t−r,t]
u (s) , t ∈ J ,

u (t) ≤ 0, for all t ∈ [−r, 0] ,

where 0 < α ≤ 1, M̃1 ≤ 0 and Ñ1 ≤ 0.
If

−
(
M̃1 + Ñ1

) Tα

α
< 1,

then u (t) ≤ 0, for all t ∈ [−r,T].

Proof. Assume that there exists t1 ∈ (0, T ] such that

u (t1) > 0.

We put by definition
u
(
t̃
)
= max

t∈[−r,t1]
u (t) > 0,

where t̃ ∈ (0, t1].
We have

(Dαu) (t) ≤ −M̃1u (t)− Ñ1 max
s∈[t−r,t]

u (s) , t ∈ J .

Which implies
(Dαu) (t) ≤ −

(
M̃1 + Ñ1

)
u
(
t̃
)

Applying the operator Iα to the both sides of the previous inequality, we obtain

u
(
t̃
)
− u (0) ≤ −

(
M̃1 + Ñ1

)
u
(
t̃
) t̃∫

0

sα−1ds
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That is

u
(
t̃
)
− u (0) ≤ −

(
M̃1 + Ñ1

)
u
(
t̃
)

α
t̃α.

Which implies

u
(
t̃
)
≤ −

(
M̃1 + Ñ1

)
u
(
t̃
)

α
Tα.

Since u
(
t̃
)
> 0, we obtain

1 ≤ −

(
M̃1 + Ñ1

)
α

Tα.

Which is a contradiction with the assumption

−

(
M̃1 + Ñ1

)
α

Tα < 1,

and then, we get
u (t) ≤ 0, for all t ∈ [−r,T] .

■

3. Main Results

Definition 3.1. We say that u ∈ Cα ([−r,T] ,R) is a lower solution of (1.1) if{
(Dαu)(τ) ≤ f(τ, u (τ) , max

s∈[τ−r,τ ]
u (s)), τ ∈ J,

u (τ) ≤ φ (τ) , τ ∈ [−r, 0] .

Definition 3.2. We say that u ∈ Cα ([−r,T] ,R) is an upper solution of (1.1) if (Dαu) (τ) ≥ f

(
τ, u (τ) , max

s∈[τ−r,τ ]
u (s)

)
, τ ∈ J,

u (τ) ≥ φ (τ) , τ ∈ [−r, 0] .

Definition 3.3. If u ∈ Cα ([−r,T] ,R) and fulfills (1.1), then we say that u is a solution of (1.1).

We have the following result.

Theorem 3.4. Assume that there two constants M ≥ 0, N ≥ 0 satisfying

(H1) f(τ, x1, y1) − f (τ, x2, y2) ≥ −M (x1 − x2) − N (y1 − y2), for all τ ∈ J , u (t) ≤ x2 ≤ x1 ≤ u (t) and
max

s∈[t−r,t]
u (s) ≤ y2 ≤ y1 ≤ max

s∈[t−r,t]
u (s) , where u and u are lower and upper solutions respectively for

problem (1.1) such that u ≤ u in [−r,T].

(H2) u (τ)− u (0) ≤ φ (t)− φ (0) ≤ u (τ)− u (0) , for all τ ∈ [−r, 0] .

(H3) (M +N)
Tα

α
≤ 1.

Then the problem (1.1) has a minimal solution u− and a maximal solution u+ such that for every solution u

of (1.1) with u ≤ u ≤ u in [−r,T], we have

u ≤ u− ≤ u ≤ u+ ≤ u in [−r,T] .
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Proof. We take u0 = u, and we define the sequences (un)n≥1 by{
(Dαun+1) (τ) +Mun+1 (τ) +N min

s∈[τ−r,τ ]
un+1 (s) = fn (τ) , τ ∈ J,

un+1(τ) = φ (τ) , τ ∈ [−r, 0] ,
(3.1)

where
fn (τ) = f(τ, un (τ) , max

s∈[τ−r,τ ]
un (s)) +Mun (τ) +N min

s∈[τ−r,τ ]
un (s) .

Analogously, we take u0 = u and we define the sequences (un)n≥1 by{
(Dαun+1) (τ) +Mun+1 (τ) +N min

s∈[τ−r,τ ]
un+1 (s) = f̃n (τ) , τ ∈ J,

un+1(τ) = φ (τ) , τ ∈ [−r, 0] ,
(3.2)

where
f̃n (τ) = f(τ, un (τ) , max

s∈[τ−r,τ ]
un(s)) +Mun (τ) +N min

s∈[τ−r,τ ]
un (s) .

Step 1: For all n ∈ N, we have
un ≤ un+1 ≤ un+1 ≤ un in [−r,T] .

Let
v0 (τ) := u0 (τ)− u1 (τ) , τ ∈ [−r,T] .

By (3.1) and using the definition of lower solution and the hypothesis (H2), we have (Dαv0) (τ) +Mv0 (τ) +N

(
max

s∈[τ−r,τ ]
u0 (s)− max

s∈[τ−r,τ ]
u1 (s)

)
≤ 0, τ ∈ J,

v0 (0) ≤ v0 (τ) ≤ 0, for all τ ∈ [−r, 0] .

Then from Lemma 2.11, we obtain{
(Dαv0) (τ) +Mv0 (τ) +N min

s∈[τ−r,τ ]
v0 (s) ≤ 0, τ ∈ J,

v0 (0) ≤ v0 (τ) ≤ 0, for all τ ∈ [−r, 0] .

From Lemma 2.15, one has
v0 ≤ 0 in [−r,T] .

Which means that
u0 ≤ u1 in [−r,T] . (3.3)

Similarly, we can prove that
u1 ≤ u0 in [−r,T] . (3.4)

Now, we put by definition
w1 (t) = u1 (t)− u1 (t) , t ∈ [−r,T] .

Using (3.1) and (3.2), we have

(Dαw1) (τ) +Mw1 (t) +N min
s∈[τ−r,τ ]

w1 (s)

= f0 (τ)− f̃0 (τ)−N max
s∈[τ−r,τ ]

u1 (τ) +N max
s∈[τ−r,τ ]

u1 (τ) +N min
s∈[τ−r,τ ]

w1 (s) .

From Lemma 2.11, we obtain

(Dαw1) (τ) +Mw1 (τ) +N min
s∈[τ−r,τ ]

w1 (s) ≤ f0 (τ)− f̃0 (τ) , τ ∈ J.
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Since u0 = u ≤ u = u0 in [−r, 0] and using the hypothesis (H1) , we obtain

(Dαw1) (τ) +Mw1 (τ) +N min
s∈[τ−r,τ ]

w1 (s) ≤ 0, τ ∈ J. (3.5)

On the other hand, we have
w1(τ) = 0, for all τ ∈ [−r, 0] .

That is
w1(0) = w1(τ) = 0, for all τ ∈ [−r, 0] . (3.6)

By the previous equality and (3.5), we have{
(Dαw1) (τ) +Mw1 (τ) +N min

s∈[τ−r,τ ]
w1 (s) ≤ 0, τ ∈ J ,

w1(0) = w1(τ) = 0, for all τ ∈ [−r, 0] .

Then by hypothesis (H3) Lemma 2.15 implies

w1 ≤ 0 in [−r,T] .

Which means that
u1 ≤ u1 in [−r,T] . (3.7)

Then by (3.3), (3.4) and (3.7), we have

u0 ≤ u1 ≤ u1 ≤ u0 in [−r,T] .

Now we assume for fixed n ≥ 1, we have

un ≤ un+1 ≤ un+1 ≤ un in [−r,T] ,

and we show that
un+1 ≤ un+2 ≤ un+2 ≤ un+1 in [−r,T] .

We put by definition
vn+1 (τ) := un+1 (τ)− un+2 (τ) , τ ∈ [−r,T] .

By (3.1), we have {
(Dαvn+1) (τ) +Mvn+1 (τ) +N min

s∈[τ−r,τ ]
vn+1 (s) = gn (τ) , τ ∈ J,

vn+1(0) = vn+1(τ) = 0, τ ∈ [−r, 0] ,

where
gn (τ) = fn (τ)− fn+1 (τ) , for all τ ∈ J.

Since by the hypothesis of recurrence, we have un ≤ un+1 in J and from Lemma 2.11 and using the hypothesis
(H1), we obtain {

(Dαvn+1) (τ) +Mvn+1 (τ) +N min
s∈[τ−r,τ ]

vn+1 (s) ≤ 0, τ ∈ J,

vn+1(0) = vn+1(τ) = 0, τ ∈ [−r, 0] ,

and then from Lemma 2.15, we get
vn+1 ≤ 0 in [−r,T] .

That is
un+1 ≤ un+2 in [−r,T] . (3.8)
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Similarly, we can prove that
un+2 ≤ un+1 in [−r,T] , (3.9)

and
un+2 ≤ un+2 in [−r,T] . (3.10)

Then by (3.8), (3.9) and (3.10), we obtain

un+1 ≤ un+2 ≤ un+2 ≤ un+1 in [−r,T] .

Hence for all n ∈ N, we have
un ≤ un+1 ≤ un+1 ≤ un in [−r,T] .

Step 2: The consequence (un)n∈N converges to a minimal solution of (1.1).
By Step 1 and using Dini theorem, it follows that the sequence of functions (un)n∈N converges uniformly to

u−.
Let n ∈ N∗ and t ∈ J , then from Lemma 2.13 we get

un+1(τ)− un+1 (0) =

∫ τ

0

sα−1Fn (s) ds,

where
Fn (s) = fn (s)−Mun+1 (s)−N max

t∈[s−r,s]
un+1 (t) .

Now, as n tends to +∞, we obtain

Fn (s) → f(s, u− (s) , max
t∈[s−r,s]

u− (s)).

Which implies

−u−(τ)− u−(0) =

∫ τ

0

sα−1f(s, u− (s) , max
t∈[s−r,s]

u− (s))ds,

and from Lemma 2.13, we deduce

(Dαu−)(t) = f(τ, u− (τ) , max
t∈[τ−r,τ ]

u− (t)), τ ∈ J.

On the other hand, we have
u− = φ in [−r, 0] ,

and consequently it follows that u− is a solution of (1.1).
Now, we prove that if u is another solution of (1.1) such that u ≤ u ≤ u, then u− ≤ u.
Since u is an upper solution of (1.1), then by Step 1, we have

∀n ∈ N, un ≤ u.

Which implies that
u− = lim

n→+∞
un ≤ u.

This means that u− is a minimal solution of (1.1).
The second step’s proof is finished.
In a similar way, we can prove that the sequence (un)n∈N converges to a maximal solution u+ of (1.1).
The proof of Theorem 3.4 is complete. ■

For the uniqueness of solutions for the problem (1.1), it is necessary to impose additional conditions on f.
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(H4) There exists a negative real number M1 such that the function x 7−→ f(τ, x, y) +M1y is decreasing for all
τ ∈ J and y ∈ R.

(H5) There exists a negative real number N1 such that the function y 7−→ f(τ, x, y) +N1y is decreasing for all
τ ∈ J and x ∈ R.

(H6) − (M1 +N1)
Tα

α
< 1.

We have the following result.

Theorem 3.5. Assume that hypothesis (Hi) for i = 1,...,6 are satisfied, then the problem (1.1) admits a unique
solution u such that u ≤ u ≤ u in [−r,T].

Proof. By Theorem 3.4, the problem (1.1) admits a minimal and a maximal solutions u− and u+ such that

u ≤ u− ≤ u+ ≤ u in [−r,T] .

We put by definition
z (τ) = u+ (τ)− u− (τ) , τ ∈ [−r,T] .

We have
z ≥ 0 in [−r,T] . (3.11)

Now, we are going to prove that
z ≤ 0 in [−r,T] .

As we have {
(Dαz)(τ) = f(τ, u+ (τ) , max

t∈[τ−r,τ ]
u+ (t))− f(τ, u− (τ) , max

t∈[τ−r,τ ]
u− (t)), τ ∈ J,

z (0) = z (τ) = 0, τ ∈ [−r, 0] .

By using the hypothesis (H4), we obtain
(Dαz)(τ) +M1z(τ) ≤
f(τ, u− (τ) , max

t∈[τ−r,τ ]
u+ (t))− f(τ, u− (τ) , max

t∈[τ−r,τ ]
u− (t)), τ ∈ J,

z (0) = z (τ) = 0, τ ∈ [−r, 0] .

Now from Lemma 2.10, we have

max
t∈[τ−r,τ ]

z (t) = max
t∈[τ−r,τ ]

∣∣u+ (t)− u− (t)
∣∣ ≥ max

t∈[τ−r,τ ]
u+ (t)− max

t∈[τ−r,τ ]
u− (t) ,

and then according to hypothesis (H4), we obtain{
(Dαz)(τ) +M1z(τ) +N1 max

t∈[τ−r,τ ]
z (t) ≤ 0, τ ∈ J,

z (0) = z (τ) = 0, τ ∈ [−r, 0] .

From Lemma 2.17, we get
z (t) ≤ 0 in [−r,T],

and therefore, there is a unique solution to problem (1.1).
■
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4. Applications

4.1. Example 1

Consider the problem D 1
2
u (τ) =

√
τu (τ)− max

s∈[τ−1,τ ]
u (s) + cos τ, τ ∈

[
0,

1

4

]
,

u(τ) = τ, τ ∈ [−1, 0] .
(4.1)

Let u(τ) = τ and u(τ) = τ + 1 in
[
−1,

1

4

]
.

For the problem (4.1), u is a lower solution ifD 1
2
u (τ) ≤

√
τu (τ)− max

s∈[τ−1,τ ]
u (s) + cos τ, τ ∈

[
0,

1

4

]
,

u(τ) ≤ τ , , τ ∈ [−1, 0] .

That is 
√
τ ≤ τ

3
2 − τ + cos τ, τ ∈

[
0,

1

4

]
,

τ ≤ τ , τ ∈ [−1, 0] .

Since φ1(τ) =
√
τ − τ

3
2 + τ − cos τ ≤ 0 in

[
0,

1

4

]
,

Figure 1: Graph of the function φ1

we conclude that u is a lower solution for the problem (4.1).
Similarly if we have D 1

2
u (τ) ≥

√
τu (τ)− max

s∈[τ−1,τ ]
u (s) + cos τ, τ ∈

[
0,

1

4

]
,

u(τ) ≥ τ , τ ∈ [−1, 0] .

we obtain u is an upper solution for the problem (4.1).
That is  τ

3
2 − τ − 1 + cos τ ≤ 0, τ ∈

[
0,

1

4

]
,

τ + 1 ≥ τ , τ ∈ [−1, 0] .

Since φ2(τ) = τ
3
2 − τ − 1 + cos τ ≤ 0, for all τ ∈

[
0,

1

4

]
,
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Figure 2: Graph of the function φ2

we obtain the desired upper solution for the problem (4.1).
Now, if we select N = 1 and M = 0, then

(M +N)
Tα

α
=

(
1

4

) 1
2

1

2

= 1 ≤ 1,

and if we choose M1 = − 1
2 and N1 = 0, we have

− (M1 +N1)
Tα

α
=

(
1

4

) 1
2

2× 1

2

=
1

2
< 1.

Nevertheless, it is evident that the function τ 7→
√
τu (τ) − max

s∈[τ−1,τ ]
u (s) + cos τ satisfies the remaining

assumptions of Theorem 3.5. As a result, the problem (4.1) admits a unique solution u such that u ≤ u ≤ u.

4.2. Example 2

Consider the problemD 2
3
u (τ) =

τ
2
3

4
u (τ)−

max
s∈[τ−1,τ ]

u (s)

8
+

2

3
(τ

2
3 + 1) +

1

8
, τ ∈

[
0, 12

]
,

u(τ) = τ
2
3 , , τ ∈ [−1, 0] .

(4.2)

Let u(τ) = τ
2
3 and u(τ) = 2τ

2
3 + 1, in

[
−1, 12

]
.

For the problem (4.2), u is a lower solution if we haveD 2
3
u (τ) ≤ τ

2
3

4
u (τ)−

max
s∈[τ−1,τ ]

u (s)

8
+

2

3
(τ

2
3 + 1) +

1

8
, τ ∈

[
0,

1

2

]
,

u(τ) ≤ τ
2
3 , τ ∈ [−1, 0] .

That is 
2

3
≤ τ

4
3

4
− (τ − 1)

2
3

8
+

2

3
(τ

2
3 + 1) +

1

8
, τ ∈

[
0,

1

2

]
,

τ
2
3 ≤ τ

2
3 , τ ∈ [−1, 0] .
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Figure 3: Graph of the function φ3

Since φ3(τ) =
τ

4
3

4
− (τ − 1)

2
3

8
+

2

3
τ

2
3 +

1

8
≥ 0, for all τ ∈

[
0,

1

2

]
,

we get u is a lower solution for the problem (4.2).
Similarly if D 2

3
u (τ) ≥ τ

2
3

4
u (τ)−

max
s∈[τ−1,τ ]

u (s)

8
+

2

3
(τ

2
3 + 1) +

1

8
, τ ∈

[
0,

1

2

]
,

u(τ) ≥ τ
2
3 , τ ∈ [−1, 0] .

we obtain u is an upper solution for the problem (4.2).
That is 

4

3
≥ τ

2
3

4

(
2τ

2
3 + 1

)
−

(
2 (τ − 1)

2
3 + 1

8

)
+

2

3
(t

2
3 + 1) +

1

8
, τ ∈

[
0,

1

2

]
,

2τ
2
3 + 1 ≥ τ

2
3 , τ ∈ [−1, 0] .

That is 
τ

4
3

2
+

11

8
τ

2
3 − (τ − 1)

2
3

4
− 2

3
≤ 0, τ ∈

[
0,

1

2

]
,

τ
2
3 + 1 ≥ 0, , τ ∈ [−1, 0] .

Since φ4(τ) =
τ

4
3

2
+

11

8
τ

2
3 − (τ − 1)

2
3

4
− 2

3
≤ 0, for all τ ∈

[
0,

1

2

]
,

we obtain the desired upper solution for the problem (4.2).

Now, if we select M = 0 and N =
1

8
, then

(M +N)
Tα

α
=

1

8

(
1

2

) 2
3

2

3

= 0.11812 ≤ 1,
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Figure 4: Graph of the function φ4

and if we choose M1 = − 1
2 and N1 = 0, we have

− (M1 +N1)
Tα

α
=

(
1

2

) 2
3

2× 2

3

= 0.47247 < 1.

Nevertheless, it is evident that the function τ 7→ τ
2
3

4
u (τ) −

max
s∈[τ−1,τ ]

u (s)

8
+

2

3
(τ

2
3 + 1) +

1

8
satisfies the

remaining assumptions of Theorem 3.5. As a result, the problem (4.2) admits a unique solution u such that
u ≤ u ≤ u.

4.3. Example 3

Consider the problemD 1
2
u (τ) = −u (τ)

2
−

max
s∈[τ−π

2 ,τ]
u (s)

2
+
√
τ cos (τ) + sin (τ) , τ ∈

[
0,
π

16

]
,

u(τ) = 1 + τ , τ ∈
[
−π
2
, 0
]
.

(4.3)

Let u(τ) = sin (τ) and u(τ) = 1, for all τ ∈
[
0,
π

16

]
.

First u is a lower solution ifD 1
2
u (τ) ≤ −u (τ)

2
−

max
t∈[τ−π

2 ,τ]
u (t)

2
+

√
τ cos (τ) + sin (τ) , τ ∈

[
0,
π

16

]
,

u (τ) ≤ 1 + τ , τ ∈
[
−π
2
, 0
]
.

That is 
√
τ cos (τ) ≤

(
1− 2

2

)
sin (τ)

2
+

√
τ cos (τ) , τ ∈

[
0,
π

16

]
,

sin (τ) ≤ 1 + τ , τ ∈
[
−π
2
, 0
]
.

100



On a conformable fractional differential equations with maxima

Since sin(τ)− 1− τ ≤ 0 , for all τ ∈
[
−π
2
, 0
]
, we conclude that u is a lower solution for the problem (4.3).

Similarly if we have,D 1
2
u (τ) ≥ −u (τ)

2
−

max
s∈[τ−π

2 ,τ]
u (s)

2
+

√
τ cos (τ) + sin (τ) , τ ∈

[
0,
π

16

]
,

u(τ) ≥ 1 + τ , τ ∈
[
−π
2
, 0
]
.

we obtain u is an upper solution for the problem (4.3).
That is  0 ≥ −1 +

√
τ cos (τ) + sin (τ) , τ ∈

[
0,
π

16

]
,

1 ≥ 1 + τ , τ ∈
[
−π
2
, 0
]
.

Since φ5(τ) = −1 +
√
τ cos (τ) + sin (τ) ≤ 0, for all τ ∈

[
0,
π

16

]
,

Figure 5: Graph of the function φ5

we obtain the desired upper solution for the problem (4.3).

Now, if we select M = N +
1

2
, then

( π
16

) 1
2

1

2

= 0.88623 ≤ 1 and the function τ 7→ −
u
(
τ
2

)
2π

+
cos (

√
τ)

2
+

sin
(√

τ
2

)
satisfies the remaining assumptions of Theorem 3.5. As a result, the problem (4.3) admits a unique

solution u such that u ≤ u ≤ u.
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