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Abstract. We consider here a frictionless contact problem for elastic-viscoplastic materials, in a quasi-static process. The
contact with a rigid base is modeled without friction with condition of wear and damage. The damage the elastic deformations
of the material is modeled by an internal variable of the body called the damage field. The problem formula is given as a
system that includes a variational equation with respect to the displacement field, and a variational inequality of the parabolic
type with respect to the damage field. We prove a weak solution existence and uniqueness theorem relating to the problem.
The methods utilised are grounded in the concept of monotonic operators, followed by fixed-point arguments.
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1. Introduction

Contact-related problems, whether involving friction or not, between deformable bodies or between a rigid
body and a deformable one, are frequently encountered in both industrial settings and everyday experiences.
Considering the importance and the multitude of these phenomena, vast studies have been undertaken, also
the literature concerning contact mechanics is vast and addresses as many different subjects as are modeling,
mathematical analysis or approximation numerical contact problems, see the works [1, 2, 10, 11].

This paper explores an investigation concerning boundary conditions that mirror real-world phenomena like
contact, material wear and damage. In our study, we adopt an elastic-viscoplastic constitutive law to describe the
behavior of the material.

To illustrate the procedure of deformation of an elastic-viscoplastic body with wear when it contacts with
a rigid body foundation, been touched on many quasi-static elastic-viscoplastic frictional Contact problems
involving wear have been introduced and investigated under various conditions. For further details, we direct
the reader to [5, 6] and the cited references therein.
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Chen et al.[4] were among the first to provide error estimates for fully discrete schemes designed to solve
quasi-static viscoplastic frictional contact problems with wear. Gasinski et al. [7] introduced a mathematical
model to describe quasi-static frictional contact with wear between a thermo-viscoelastic body and a moving
foundation. In a recent development, Jureczka and Ochal [9] conducted numerical analysis and simulations for
the quasi-static elastic frictional contact problem that accounts for wear.

There are other real phenomena which are very important. Such as material damage and body adhesion.
The consideration of damage holds fundamental significance in the field of design engineering since it has a
direct impact on the useful lifespan of the designed structure or component. There exists a substantial body of
engineering literature devoted to this subject. Mathematical models that incorporate the influence of internal
material damage on the contact process have been thoroughly examined. In [8], novel comprehensive damage
models have been derived based on the principle of virtual power. Further mathematical analyses of one-
dimensional problems related to this topic can be found in [3]. the material damage is described by capacity
damage. The damage function α varies between 0 and 1. When α = 1 there is no damage in the material,
when α = 0 the material is completely damaged, when 0 ≺ α ≺ 1 the damage is partial. This work is a
continuation in this line of research to the mathematical study of a frictionlessly contact problem for Viscoplastic
materials, in a quasi-static process. The contact with a rigid base is modeled without friction with condition of
wear and damage. Our focus is to establish the existence of a unique weak solution for the abstract problem
with regularized boundary conditions. The structure of the remainder of this paper is as follows: In Section 2,
we provide an inventory of notations and outline the assumptions concerning the problem data. Additionally, we
state our primary result regarding the existence and uniqueness of solutions. In Section 3, we delve into the proof
of the theorem, where we consider the existence and uniqueness of the solution, utilizing arguments derived from
the theory of monotonic operators and the Banach fixed-point theorem. In Section 4, we present an illustrative
example that demonstrates the practical application of the abstract result.

Problem P

Find the displacement field u : [0, T ] → V , the stress field σ : [0, T ] → H, the damage field α : [0, T ] → R.

(Au̇ (t) ,v)V + (Bu (t) ,v)V +

 t∫
0

F (σ (s)−Au̇ (t) ,u (s) , α (s)) ds,v


H

= (f (t) ,v)V a.e. t ∈ (0, T ) ,

(1.1)

(α̇(t), ξ − α(t))L2(Ω) + a(α(t), ξ − α(t))

≥ (S(σ (s)−Au̇ (t) ,u(t), α(t)), ξ − α(t))L2(Ω), ξ ∈ K, a.e t ∈ (0, T ),
(1.2)

u(0) = u0, α(0) = α0. (1.3)

We have three spaces denoted as V , H, and K. These spaces correspond to admissible displacements, stress,
and damage, and they are all Hilbert spaces. Notably, K is a nonempty, closed, and convex set within the space
V . It is defined as follows:

K = {ζ ∈ V | 0 ≤ ζ(x) ≤ 1 a.e. x ∈ Ω}.

The operators A,B, and F are associated with the constitutive law governing an elastic-viscoplastic material
with damage. The functional S is determined by the source function of the damage and the friction occurring on
part Γ3. The data f relates to both traction forces and body forces. The functions u0 and α0 represent the initial
data for displacement and damage, respectively. We denote the displacement field as u and the stress tensor field
as σ. The constitutive law applied here pertains to an elastic-viscoplastic material with damage. The interval
[0, T ] signifies the time span of observation. A dot above u and α indicates the derivative of displacement u and
the derivative of damage α with respect to the variable t.
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2. Preliminaries and notion

In this section, we introduce important tools for our main results. Specifically, we denote:
Sd as the space comprising second-order symmetric tensors defined on Ω ⊂ Rd (where d = 2, 3), and with a

smooth boundary ∂Ω = Γ. We designate Γ3 as the boundary contact .
We define ν = (νi) as the unit outward normal vector, and x ∈ Ω = Ω ∪ ∂Ω represents the position vector.

It’s worth noting that unless specified otherwise, the indices i, j range from 1 to d, and we apply the summation
convention to repeated indices. For the sake of simplicity, we do not explicitly indicate the variables’ dependence
on x.

The inner products and norms for Rd and Sd are denoted as follows:

u ·w = uiwi ∥w∥Rd = (w,w)1/2 for all u = (ui) ,w = (wi) ∈ Rd,

σ.ϑ = σijϑij ∥ϑ∥Sd = (ϑ,ϑ)1/2 for all σ = (σij) ,ϑ = (ϑij) ∈ Sd,

We denote the following quantities:
u = (ui) represents the displacement vector.
σ = (σij) denotes the stress tensor.
ε(u) = (ε(uij)) represents the linear strain tensor.
Furthermore, we use the following notation for components of displacement u on Γ:
Normal component: uν = u.ν

Tangential component: uτ = u− uνν

Similar notation is applied to u̇ν and u̇τ , which represent the normal and tangential velocities on the boundary,
respectively.

Regarding the stress field σ on the boundary, we define its components as:
Normal component: σν = (σν).ν

Tangential component: στ = σν − σνν

We use the following notations

H = L2(Ω)d =
{
u = (ui) | ui ∈ L2(Ω)

}
, H1 = {u = (ui) | ε(u) ∈ H} ,

H =
{
σ = (σij) | σij = σji ∈ L2(Ω)

}
, H1 = {σ ∈ H | Divσ ∈ H}.

The deformation operator ε and the divergence operator Div are defined as follows:

ε(u) = (εij(u)) , εij(u) =
1

2
(ui,j + uj,i) , Div σ = (σij,j) .

The spaces H , H1, H, and H1 are real Hilbert spaces equipped with the canonical inner products defined as
follows:

(u,w)H =

∫
uiwidx, ∀u,w ∈ H,

(u,w)H1
= (u,w)H + (ε(u), ε(w))H,∀u,w ∈ H1,

(σ,ϑ)H =

∫
σijϑijdx, ∀σ,ϑ ∈ H,

(σ,ϑ)H1 = (σ,ϑ)H + (Divσ,Divϑ)H , ∀σ,ϑ ∈ H1.

The associated norm in the space H , H1, H and H1, is denoted by ∥.∥H , ∥.∥H1
, ∥.∥H and ∥.∥H1

, respectively.
When σ is a regular function. The following Green-type formula holds

(σ, ε (w))H + (Divσ,w)H =

∫
Γ

σν.wda ∀w ∈ H1. (2.1)

For the displacement field, we necessitate the closed subspace of H1 defined as
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V = {w ∈ H1 | w = 0, on Γ1}.

Given that meas(Γ1) > 0, Korn’s inequality is satisfied, and there exists a positive constant Ck, which solely
depends on Ω and Γ1, such that

∥ε(w)∥H ≥ Ck∥w∥H1(Ω)d , ∀w ∈ V.

We define inner product on V by

(u,w)V = (ε(u), ε(w))H, ∥w∥V = ∥ε(w)∥H, ∀u,w ∈ V, (2.2)

and let ∥.∥V be the associated norm. Consequently, the norms ∥.∥H1(Ω)d and ∥.∥V are equivalent on V , and as
a result, (V, (, )V ) forms a real Hilbert space. Furthermore, in accordance with the Sobolev trace theorem, there
exists a constant C̃0, which relies solely on Ω, Γ1, and Γ3, such that

∥v∥L2(Γ3)
d ≤ C̃0∥v∥V , ∀v ∈ V. (2.3)

We recall some spaces W k,p(0, T ;V ), Hk(0, T ;V ), C(0;T ;V ) and C1(0;T ;V ) for a Banach space V

equipped with the norm ∥.∥V for 1 < p < +∞ and k ≥ 1. Let W k,p(0, T ;V ) be the space of all functions
from [0, T ] to V with the norm

∥ω∥Wk,p(0,T ;V ) =


∫ T

0

∑
1≤l≤k

∥∥∂l
tω
∥∥p
V
dt

1/p

, if 1 ≤ p < +∞

max0≤l≤k0≤t≤T supt
∥∥∂l

tω
∥∥
V
, if p = +∞.

When p = 2 or k = 0, W k,2([0, T ];V ) is written as Hk([0, T ];V ) or Lp([0, T ];V ), respectively. We denote by
C([0, T ];V ) the space of continuous functions from [0, T ] to V , and by C1(0, T ;V ) the space of continuously
differentiable functions from (0, T ) to V . These spaces are equipped with the following norms:

∥ω∥C([0,T ];V ) = max
t∈[0,T ]

∥ω(t)∥V .

∥ω∥C1([0,T ];V ) = max
t∈[0,T ]

∥ω(t)∥V + max
t∈[0,T ]

∥ω̇(t)∥V .

Clearly, C([0, T ];V ), W k,p([0, T ];V ) and Hk([0, T ];V ) are all Banach spaces when V is a Banach space.
In order to solve Problem P , we impose the following assumptions.
We consider operators A,B : V → V , F : H × H × H1(Ω) → V , the damage source function S :

H × H × H1(Ω) → R, and two initial values u0 ∈ V and α0 ∈ K. These operators and values satisfy the
following properties

There exists a constant MA ≻ 0 such that

(Av1 −Av2,v1 − v2) ≥ MA∥v1 − v2∥2,∀v1,v2 ∈ V. (2.4)

There exists a constant LA ≻ 0 such that

∥Av1 −Av2∥V ′ ≤ LA∥v1 − v2∥V , ∀v1,v2 ∈ V. (2.5)

There exists a constant LB ≻ 0 such that

∥Bv1 −Bv2∥V ≤ LB∥v1 − v2∥, ∀v1,v2 ∈ V. (2.6)

The f function satisfies:

f ∈ L2 (0, T ;V ) . (2.7)
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There exists a constant LF ≻ 0 such that

∥F (σ1,u1, ζ1)− F (σ2,u2, ζ2)∥ ≤ LF (∥σ1 − σ2∥+ ∥u1 − u2∥+ ∥ζ1 − ζ2∥), (2.8)

for all σi ∈ H, ui ∈ V, ζi ∈ H1(Ω), i = 1, 2.

There exists MS ≻ 0 such that

∥S (σ1,u1, ζ1)− S (σ2,u2, ζ2)∥ ≤ MS (∥σ1 − σ2∥+ ∥u1 − u2∥+ ∥ζ1 − ζ2∥), (2.9)

for all σi ∈ H, ui ∈ V, ∀ζi ∈ H1(Ω), i = 1, 2.

Now let problem P1 as it follows

Problem P1

Find u ∈ C1(0, T ;V ) such that {
Au(t) = f ,

u(0) = u0.
(2.10)

Theorem 2.1. If conditions (2.4),(2.5) and (2.7) are satisfied Then there exists u ∈ C1(0, T ;V ) solution to the
problem P1 satisfying

u ∈ H1(0, T ;V ) ∩ C1(0, T ;H). (2.11)

The previous result is a special case of the Minty-Browder Theorem.

Problem P2

Find α(t) ∈ K such that

(α̇(t), ρ− α(t))V ′×V + a(α̇(t), ρ− α(t)) ≥ (S(t), ρ− α(t))L2(Ω), ∀ρ ∈ K, (2.12)

α(0) = α0. (2.13)

We consider two real Hilbert spaces, denoted as V and H . It is important to note that V is densely embedded in
H , and this injection map is continuous. Furthermore, we identify the space H with both its own dual and as a
subspace of the dual space V ′ of V . In other words, we express this relationship as V ⊂ H ⊂ V ′, and this set of
inclusions is what defines a Gelfand triple.

The following is a well-established result for parabolic variational inequalities, and you can find it in standard
references such as [12].

Theorem 2.2. Consider a Gelfand triple V ⊂ H ⊂ V ′, where K is a nonempty, closed, and convex set in V .
Assume the existence of a continuous and symmetric bilinear form a(., .) : V × V → R satisfying the following
inequality for constants λ and γ:

a(α, α) + γ∥α∥2H ≥ λ∥α∥2V , ∀α ∈ V.

Under these conditions, for any initial value α0 ∈ K and source function S ∈ L2(0, T ;H), there exists a unique
function α ∈ H1(0, T ;H) ∩ L2(0, T ;V ) such that α(0) = α0 and α(t) ∈ K for all t ∈ [0, T ]. This α is the
unique solution to Problem P2.

The next section is dedicated to investigating the existence of a unique solution to Problem P .
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3. Proof of the main result

Theorem 3.1. Under the assumptions (2.4)-(2.9), there exists a unique solution of the problem P , Moreover the
solution satisfies:

u ∈ H1 (0, T ;V ) ∩ C1 (0, T ;H) , (3.1)

σ ∈ L2(0, T ;H), Divσ ∈ L2 (0, T ;H) , (3.2)

α ∈ W 1,2
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1 (Ω)

)
. (3.3)

The proof of Theorem 3.1 is conducted through several sequential steps and relies on the subsequent abstract
result concerning evolutionary variational inequalities.

Suppose we have η ∈ L2(0, T ;V ), and let’s consider the following problem

Problem Pη

Find a displacement field uη : [0, T ] → V, such that
(Au̇η(t),v)V + (η(t),v)V = (f ,v)V ,

a.e. t ∈ (0, T ), ∀v ∈ V,

uη(0) = u0.

(3.4)

Here is the given result concerning Pη .

Lemma 3.2. A unique solution uη ∈ C1(0, T ;V ) to the problem Pη exists, and it satisfies the condition (3.1) .

Proof. We apply Theorem 2.1, The Riesz representation theorem allows us to define fη : [0, T ] → V, by(
fη (t) ,v

)
V

= (f (t)− η (t) ,v)V . Using hypotheses (2.4)-(2.7), and uη(t) = u0 +

∫ t

0

u̇η(s)ds, ∀t ∈

(0, T ), we directly find the result. ■

Subsequently, introduce θ ∈ L2(0, T ;L2(Ω)), and let’s examine the following problem

Problem Pθ

Find the damage field αθ : [0, T ] → R,

αθ(t) ∈ K, (α̇θ(t), ρ− αθ(t))L2(Ω) + a (αθ(t), ρ− αθ(t))

≥ (θ(t), ρ− αθ(t))L2(Ω) ,∀ρ ∈ K, a.e.t ∈ (0, T ),
(3.5)

αθ (0) = α0. (3.6)

Lemma 3.3. problem Pθ has a unique solution αθ such that

αθ ∈ W 1,2
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1 (Ω)

)
. (3.7)

For the proof, we apply Theorem 2.2.
Finally, in the concluding step, formulate the subsequent Cauchy problem for the stress field
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Problem Pη,θ

Find the stress field ση,θ : (0, T ) → H, solution of the problem

ση,θ(t) = Buη(t) +

∫ t

0

F (ση,θ(s)−Au̇η(s),uη(s), αθ(s)) ds, a.e.t ∈ (0, T ). (3.8)

Lemma 3.4. The problem Pη,θ has a unique solution. Additionally, if uηi
, αθi , and σηi,θi represent the solutions

to problems Pη , Pθ, and Pη,θ for i = 1, 2, then there exists a positive constant C such that

∥ση1,θ1(t)− ση2,θ2(t)∥
2
H ≤C

(
∥uη1(t)− uη2(t)∥

2
V +

∫ t

0

∥uη1(s)− uη2(s)∥
2
V ds

+

∫ t

0

∥αθ1(s)− αθ2(s)∥
2
L2(Ω) ds

)
.

(3.9)

Proof. Consider the mapping
∑
η,θ

: L2 (0, T ;H) → L2 (0, T ;H) defined as

∑
η,θ

ση,θ(t) = Buη(t) +

∫ t

0

F (ση,θ(s)−Au̇η(s),uη(s), αθ(s)) ds. (3.10)

let σi ∈ L2 (0, T ;H) , i = 1, 2 and t1 ∈ (0, T ), we use the assumption (2.8) and the HÖlder inequality we find∥∥∥∥∥∥
∑
η,θ

σ1 (t1)−
∑
η,θ

σ2 (t1)

∥∥∥∥∥∥
2

H

≤ L2
FT

∫ t1

0

∥σ1(s)− σ2(s)∥2H ds. (3.11)

We have more ∥∥∥∥∥∥
∑
η,θ

∑
η,θ

σ1 (t1)

−
∑
η,θ

∑
η,θ

σ2 (t1)

∥∥∥∥∥∥
2

H

≤ L2
FT

∫ t1

0

∥∥∥∥∥∥
∑
η,θ

σ1 (t1)−
∑
η,θ

σ2 (t1)

∥∥∥∥∥∥
2

H

dt2

≤ L4
FT

2

∫ t1

0

∫ t2

0

∥σ1(s)− σ2(s)∥2H dsdt2.

By extending the inequality through recurrence, we deduce that for all t1, t2, ..., tn ∈ (0, T ) ,∥∥∥∥∥∥
(n)∑
η,θ

σ1 (tn)−
(n)∑
η,θ

σ2 (tn)

∥∥∥∥∥∥
2

H

≤ L2n
F Tn

∫ t1

0

∫ t2

0

. . .

∫ tn

0

∥σ1(s)− σ2(s)∥2H dsdtn . . . dt2.

Thus, we can deduce by integrating with respect to (0, T ) the following inequality∥∥∥∥∥∥
(n)∑
η,θ

σ1 −
(n)∑
η,θ

σ2

∥∥∥∥∥∥
2

H

≤ L2n
F T 2n

n!
∥σ1 − σ2∥2H . (3.12)

Then from (3.12), for n sufficiently large, the operator
∑(n)

η,θ , is a contraction on space L2 (0, T ;H) and
according to the Banach fixed point theorem, there is a single element ση,θ ∈ L2 (0, T ;H) such that
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∑(n)
η,θ ση,θ = ση,θ, which represents the unique solution of problem Pη,θ . Moreover, if uηi

, αθi and σηi,θi ,
represents the solutions of problem Pηi

,Pθi and Pηi,θi respectively. For i = 1, 2. designate
uηi

= ui,σηi,θi = σi, αθi = αi.
We have

σi(t) = Bui(t) +

∫ t

0

F (σi(s)−Au̇i(s), ui(s), αi(s)) ds, a.e. t ∈ (0, T ),

we use the assumption (2.6),(2.8)), we find

∥σ1(t)− σ2(t)∥2H ≤ C

(
∥u1(t)− u2(t)∥2V +

∫ t

0

∥σ1(s)− σ2(s)∥2H ds

+

∫ t

0

∥u1(s)− u2(s)∥2V ds+

∫ t

0

∥α1(s)− α2(s)∥2L2(Ω) ds

)
.

We employ the Gronwall argument within the resulting inequality to derive (3.9). ■

Now, let’s contemplate the mapping

Λ : L2(0, T ;H× L2(Ω)) → L2(0, T ;H× L2(Ω)),

Λ (η, θ) (t) =
(
Λ1 (η, θ) (t) ,Λ2 (η, θ) (t)

)
, (3.13)

defined by equalities

Λ1(η, θ)(t),= Buη(t) +

∫ t

0

F (ση,θ(s)−Au̇(s),uη(s), αθ(s)) ds, (3.14)

Λ2(η, θ)(t) = S ((ση,θ(t),uη(t)) , αθ(t)) . (3.15)

We have the following result.

Lemma 3.5. For (η, θ) ∈ L2
(
0, T ;H× L2 (Ω)

)
, the operator Λ(η, θ) : [0, T ] → H × L2(Ω) have a unique

fixed point denoted as (η∗, θ∗) ∈ L2
(
0, T ;H× L2 (Ω)

)
, satisfying

Λ (η∗, θ∗) = (η∗, θ∗).

Proof. Let t ∈ (0, T ) and (η1, θ1) , (η2, θ2) ∈ L2
(
0, T ;H× L2(Ω)

)
. We use the notation uηi

= ui, u̇ηi
=

u̇i, αηi
= αi, σηi,θi = σi ,For i = 1, 2 and using the assumptions (2.5),(2.6) and (2.8)

∥Λ1(η1, θ1) (t)− Λ1(η2, θ2) (t) ∥2H

= ∥Bu1(t) +

∫ t

0

F (σ1(s)−Au̇1(s),u1(s), α1(s)) ds

−Bu2(t)−
∫ t

0

F (σ2(s)−Au̇2(s),u2(s), α2(s)) ds∥2H

≤ LB∥u1(t)− u2(t)∥2V + LF

∫ t

0

(∥σ1(s)− σ2(s)∥2H+

LA∥u̇1(s)− u̇2(s)∥2V + ∥u1 (s)− u2 (s) ∥2V + ∥α1 (s)− α2 (s) ∥2L2(Ω))ds.

We utilise the estimate (3.9) to derive

∥Λ1(η1, θ1) (t)− Λ1(η2, θ2) (t) ∥2H

≤ C(∥u1 (t)− u2 (t) ∥2V +

∫ t

0

(∥u̇1(s)− u̇2(s)∥2V

+ ∥u1 (s)− u2 (s) ∥2V + ∥α1 (s)− α2 (s) ∥2L2(Ω)))ds.
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On the other hand, we know that ui(t) = u0 +

∫ t

0

u̇i(s)ds, for all t ∈ (0, T )

∥u1 (s)− u2 (s) ∥2V ≤
∫ t

0

∥u̇1 (s)− u̇2 (s) ∥2V ds. (3.16)

By Apply the inequality (3.16) becomes

∥Λ1(η1, θ1) (t)− Λ1(η2, θ2) (t) ∥2H ≤ C

∫ t

0

(∥u̇1(s)− u̇2(s)∥2V

+ ∥u1 (s)− u2 (s) ∥2V + ∥α1 (s)− α2 (s) ∥2L2(Ω))ds.

(3.17)

By a similar argument, from (3.9),(3.15) and (2.9) it follows that

∥Λ2(η1, θ1) (t)− Λ2(η2, θ2) (t) ∥2L2(Ω) ≤ C(

∫ t

0

(∥u̇1(s)− u̇2(s)∥2V

+ ∥u1 (s)− u2 (s) ∥2V + ∥α1 (s)− α2 (s) ∥2L2(Ω))ds

+ ∥u1 (t)− u2 (t) ∥2V + ∥α1 (t)− α2 (t) ∥2L2(Ω)).

(3.18)

Therefore,

∥Λ(η1, θ1) (t)− Λ(η2,θ2) (t) ∥2H×L2(Ω) ≤ C(

∫ t

0

(∥u̇1(s)− u̇2(s)∥2V

+ ∥u1 (s)− u2 (s) ∥2V + ∥α1 (s)− α2 (s) ∥2L2(Ω))ds

+ ∥u1 (t)− u2 (t) ∥2V + ∥α1 (t)− α2 (t) ∥2L2(Ω)).

(3.19)

Combine the inequality (3.16) with (3.19) to obtain

∥Λ(η1, θ1) (t)− Λ(η2,θ2) (t) ∥2H×L2(Ω) ≤ C

∫ t

0

(∥u̇1(s)− u̇2(s)∥2V

+ ∥u1 (s)− u2 (s) ∥2V + ∥α1 (s)− α2 (s) ∥2L2(Ω))ds.

(3.20)

Using the inequality (3.4), by adding the results obtained we have

(Au̇1(t)−Au̇2(t), u̇1(t)− u̇2(t))V = (η1(t)− η2(t), u̇1(t)− u̇2(t))V , t ∈ (0, T ), (3.21)

using inequality (2.4), we find

MA∥u̇1 − u̇2∥2V ≤ ∥η1 − η2∥V ∥u̇1 − u̇2∥V .

Therefore
∥u̇1(t)− u̇2(t)∥V ≤ C∥η1(t)− η2(t)∥V , ∀t ∈ [0, T ].

Let’s use (3.16)

∥u1(t)− u2(t)∥V ≤ C

∫ t

0

∥η1(t)− η2(t)∥V ds, ∀t ∈ [0, T ]. (3.22)

Using (3.5) we find

(α̇1 − α̇2, α1 − α2)L2(Ω) + a (α1 − α2, α1 − α2) ≤ (θ1 − θ2, α1 − α2)L2(Ω) ,

a · e · t ∈ (0, T ),
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By integrating the inequality with respect to time and incorporating the initial conditions α1 (0) = α2 (0) =

α0, along with the inequality a (α1 − α2, α1 − α2) ≥ 0, we combine this inequality with Gronwall’s lemma,
resulting in the following result

∥α1(t)− α2(t)∥2L2(Ω) ≤ C

∫ t

0

∥θ1(s)− θ2(s)∥2L2(Ω) ds,∀t ∈ [0, T ]. (3.23)

From the previous inequality and estimates (3.20), (3.22) and (3.23) it follows that now

∥Λ (η1, θ1) (t)− Λ (η2, θ2) (t)∥
2
H×L2(Ω)

≤ C

(∫ t

0

∥(η1, θ1) (s)− (η2, θ2) (s)∥
2
H×L2(Ω)ds

)
.

Let is introduce the following notations
I1 =

∫ t

0

∥(η1, θ1) (s)− (η2, θ2) (s)∥H×L2(Ω) ds,

...

Ik =

∫ t

0

∫ sk−1

0

· · ·
∫ s1

0

∥(η1, θ1) (r)− (η2, θ2) (r)∥H×L2(Ω) ,

Through an inductive process, denoting the mth power of the operator Λ as Λm, we arrive at the following
conclusion

∥Λm (η1, θ1) (t)− Λm (η2, θ2) (t)∥H×L2(Ω)

≤ Cm

(
m∑

k=1

Ck
mIm−k∥(η1, θ1) (t)− (η2, θ2) (t)∥H×L2(Ω)

)
,

(3.24)

for all t ∈ [0, T ] and m ∈ N,

Im−k ((η1, θ1)− (η2, θ2)) =

∫
(m−k) fois

.

∫
∥(η1, θ1)− (η2, θ2)∥

≤
∫ s

0

∫
· · ·
∫
(m−k) fois

∥(η1, θ1)− (η2, θ2)∥L2(0,T ;H×L2(Ω))

≤ tm−k

k!
∥(η1, θ1)− (η2, θ2)∥L2(0,T ;H×L2(Ω))

≤ Tm−k

k!
∥(η1, θ1)− (η2, θ2)∥L2(0,T ;H×L2(Ω)) ,

Consequently,

∥Λm (η1, θ1) (t)− Λm (η2, θ2) (t)∥2L2(0,T ;H×L2(Ω))

≤ Cm

(
m∑

k=1

Ck
m

Tm−k

k!
∥(η1, θ1) (t)− (η2, θ2) (t)∥

2
L2(0,T ;H×L2(Ω))

)

≤ (CT )m

m!
∥(η1, θ1) (t)− (η2, θ2) (t)∥

2
L2(0,T ;H×L2(Ω)) ,

this implies that for m large enough, the operator Λm of Λ is a contraction on Banach space
L2
(
0, T ;H× L2 (Ω)

)
. So Λm has a unique fixed point (η∗, θ∗) ∈ L2

(
0, T ;H× L2 (Ω)

)
, and therefore

(η∗, θ∗) is the only fixed point of Λ. ■
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Existence

Let (η∗, θ∗) ∈ L2
(
0, T ;H× L2 (Ω)

)
, be the fixed point of Λ defined by (3.14)-(3.15) and let uη, αθ, be

the solutions of problems Pη , Pθ, for η = η∗, θ = θ∗, u = uη∗ , α = αθ∗ , we find (u,σ, α) is a solution of
problem P . properties (3.1)-(3.3) follow from lemma 3.2, 3.3, 3.4.

Uniqueness

The uniqueness of the solution is a result of the uniqueness of the fixed point of operator Λ.

4. Application

In this section, we will utilise the main result from Section 3 to analyse a problem of contact without friction
with condition of wear and damage. between an elastic-viscoplastic body and a rigid base in a quasistatic process.
We provide the physical context for the contact problem and introduce certain notations that will be employed
in the subsequent discussion. We consider a elastic-viscoplastic body which occupies a domain Ω ⊂ Rd, where
d = 2, 3, such that the boundary Γ = ∂Ω is Lipschitz continuous. The boundary ∂Ω is divided into three disjoint
measurable parts Γ1,Γ2 and Γ3 with meas(Γ1) > 0. We are interested in an evolution of the body in a finite
time interval (0, T ).

We consider the following classical formulation of the problem

Problem P

Find a displacement field u : Ω × [0, T ] → Rd, the stress field σ : Ω × [0, T ] → Sd, the damage field
α : Ω× [0, T ] → R.

0 = Divσ + f0, in Ω× (0, T ), (4.1)

σ(t) = Aε(u̇(t)) + Bε(u(t))

+

∫ t

0

F (σ(s)−Aε(u̇(s)), ε (u(s)) , α(s)) ds
in Ω× (0, T ), (4.2)

α̇− k0∆α+ ∂φK(α) ∋ ϕ(σ, ε(u), α), in Ω× (0, T ), (4.3)

u = 0, on Γ1 × (0, T ), (4.4)

σν = f2, on Γ2 × (0, T ), (4.5){
−σν = k∥u̇ν∥
στ = 0

on Γ3 × (0, T ), (4.6)

∂α

∂ν
= 0, on Γ× (0, T ), (4.7)

u(0) = u0, α(0) = α0, in Ω. (4.8)

Equation (4.1) describes the equation of motion, where f0 stands for the density of the voluminal forces exerted
upon the deformable body Ω. Equation (4.2) describes the constitutive law applicable to an elastic-viscoplastic
material with damage, (4.3) represents a differential inclusion describing the evolution of the damage field where
S is a damage source function. φK is the sub-differential of the indicator function of the set of admissible
damage functions K. The conditions (4.4) and (4.5) are displacement-traction conditions, (4.6) represent the
boundary contact conditions with wear and without friction. (4.7) represents the boundary condition of Neumann,
Finally,(4.8) represents the initial conditions.
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Next, we outline the assumptions concerning the data of the problem, starting with the viscosity operator
A : Ω× Sd −→ Sd satisfied

(a) There exists LA > 0 such that

∥A(x,υ1)−A(x,υ2)∥ ≤ LA∥υ1 − υ2∥, ∀υ1,υ2 ∈ Sd, a.e. x ∈ Ω.

(b) There exists mA > 0 such that

(A(x,υ1)−A(x,υ2)).(υ1 − υ2) ≥ mA∥υ1 − υ2∥2, ∀υ1,υ2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ A(x,υ) is lebesgue measurable on Ω,∀υ ∈ Sd.
(d) The mapping x 7→ A(x,0) ∈ H.

(4.9)

The elasticity operator B : Ω× Sd → Sd satisfied

(a) There exists LB > 0 such that

∥B(x,υ1)− B(x,υ2)∥ ≤ LB∥υ1 − υ2∥, ∀υ1,υ2 ∈ Sd, a.e. x ∈ Ω.

(b) There exists mB > 0 such that

(B(x,υ1)− B(x,υ2)).(υ1 − υ2) ≥ mB∥υ1 − υ2∥2, ∀υ1,υ2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x 7→ B(x,υ) is lebesgue measurable on Ω,

∀υ ∈ Sd.
(d) The mapping x 7→ B(x,0) ∈ H.

(4.10)

The relaxation function F : Ω× Sd × Sd × R → Sd, satisfied

(a) There exists LF > 0 such that

∥F(x,σ1,υ1, α1)−F(x,σ2,υ2, α2)∥ ≤
LF (∥σ1 − σ2∥+ |υ1 − υ2∥+ ∥α1 − α2∥)

∀σ1,σ2,υ1,υ2 ∈ Sd,∀α1, α2 ∈ R,∀t ∈ [0, T ], a.e. x ∈ Ω.

(b) The mapping x 7→ F(x,σ,υ, α) is lebesgue measurable on Ω,

∀σ,υ ∈ Sd, ∀t ∈ [0, T ], ∀α ∈ R.
(c) The mapping x 7→ F(x,0,0, 0) ∈ H,∀t ∈ [0, T ].

(4.11)

The function describing the source of damages, denoted as ϕ : Ω× Sd × R → R, is satisfied

(a) There exists Mϕ > 0 such that

∥ϕ(x,υ1, α1)− ϕ(x,υ2, α2)∥ ≤ Mϕ(∥υ1 − υ2∥+ ∥α1 − α2∥),
∀υ1,υ2 ∈ Sd,∀α1, α2 ∈ R, a.e. x ∈ Ω.

(b) The mapping x 7→ ϕ(x,υ, α) is lebesgue measurable on Ω,

∀υ ∈ Sd,∀α ∈ R.
(c) The mapping x 7→ ϕ(x,0, 0) ∈ L2(Ω).

(4.12)

The body force f0, surface traction f2, coefficient of friction k, initial conditions u0, have the following
properties 

f0 ∈ L2 (0, T ;H) ,

f2 ∈ L2
(
0, T ;L2 (Γ2)

d
)
,

k ∈ L∞ (Γ3) , k(x) ≥ 0 for a.e. x ∈ Γ3,

u0 ∈ V.

(4.13)
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We establish the bilinear form a : H1(Ω)×H1(Ω) → R as follows

a(ξ, ζ) = k0

∫
Ω

∇ξ∇ζdx (4.14)

and the micro crack diffusion coefficient verifies k0 > 0.
The initial damage α0 field satisfies

α0 ∈ K. (4.15)

To consider the field of displacements, we require the closed subspace V within the space H1, defined by:

V = {u ∈ H1 | u = 0 onΓ1 } . (4.16)

Using Riesz’s representation theorem, we find

(f(t),v)V =

∫
Γ

f0 · vdx+

∫
Γ2

f2 · vdx, ∀v ∈ V, t ∈ [0, T ]. (4.17)

It’s important to observe that condition (4.13) results in the implication that

f ∈ L2 (0, T ;V ) . (4.18)

Now, consider the application j : V × V → R, defined as follows

j (u,v) =

∫
Γ3

k ∥uν∥ vνda. (4.19)

The variational formulation for problem P is presented as follows

σ(t) = Aε(u̇(t)) + Bε(u(t))

+

∫ t

0

F (σ(s)−Aε(u̇(s)), ε (u(s)) , α(s)) ds a.e .t ∈ (0, T ),
(4.20)

(σ(t), ε(v))H + j(u̇(t),v) = (f ,v)V , ∀v ∈ V, (4.21)

α(t) ∈ K, (α̇(t), ζ − α(t))L2(Ω) + a(α(t), ζ − α(t))

≥ (ϕ(σ(t), ε(u(t)), α(t)), ζ − α(t))L2(Ω), ∀ζ ∈ K, t ∈ [0, T ],
(4.22)

u(0) = u0, α(0) = α0. (4.23)

Utilising Riesz’s representation theorem, we define the operator A : V → V as follows:

(Au,v)V = (A(ε(u)), ε(v))H + j(u,v), ∀u,v ∈ V. (4.24)

We will verify the hypotheses (2.4),(2.5). Let u1,u2 ∈ V . Using (4.9),(4.24) and the definition of j given by
(4.19), we let’s find

∥Au1 −Au2∥V = ∥Aε(u1)−Aε(u2)∥H + C2
0∥k∥L∞(Γ3)∥u1 − u2∥V

≤ LA∥ε(u1)− ε(u2)∥H + C2
0∥k∥L∞(Γ3)∥u1 − u2∥V

=
(
LA + C2

0∥k∥L∞(Γ3)

)
∥u1 − u2∥V , ∀u1,u2 ∈ V.

(4.25)

Similarly for all u1,u2 ∈ V we have

(Au1 −Au2,u1 − u2)V ≥
(
mA − C2

0∥k∥L∞(Γ3)

)
∥u1 − u2∥2V , ∀u1,u2 ∈ V. (4.26)

Let γ0 =
mA

C2
0

, it is clear that γ0 is positive which depends on Ω1,Γ3, and A. Then A is strongly monotonic on V

if
∥k∥L∞(Γ3) < γ0.

After confirming that all the assumptions of Theorem 3.1 are met, we can conclude that a unique weak solution
to problem P exists, satisfying (4.20)-(4.23), along with the regularity conditions (3.1)-(3.3).
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