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Abstract. In this study, invariant total geodesic submanifolds, which are important submanifolds of Lorentz-Sasakian space
forms, have been investigated. An important class of the considered invariant submanifolds, called pseudoparallel, 2-
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defined and the characterizations of Lorentz-Sasakian space forms for these types of invariant submanifolds have been
revealed. Then, conditions are given for these obtained invariant submanifolds to be total geodesic by means of concircular
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1. Introduction

ϕ−sectional curvature plays the an important role for Sasakian manifold. If the ϕ−sectional curvature of a
Sasakian manifold is constant, then the manifold is a Sasakian-space-form [1]. P. Alegre and D. Blair described
generalized Sasakian space forms [2]. P. Alegre and D. Blair obtained important properties of generalized
Sasakian space forms in their studies and gave some examples. P. Alegre and A. Carriazo later discussed
generalized indefinite Sasakian space forms [3]. Generalized indefinite Sasakian space forms are also called
Lorentz-Sasakian space forms, and Lorentz manifolds are of great importance for Einstein’s theory of Relativity.
Sasakian space forms, generalized Sasakian space forms and Lorentz-Sasakian space forms have been discussed
by many scientists and important properties of these manifolds have been obtained ([4]-[8]).

Many mathematicians have considered the submanifolds of manifolds such as K−paracontak, Lorentzian
para-Kenmotsu, almost Kenmotsu and studied their various characterizations ([9],[10],[11]).
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In this study, invariant total geodesic submanifolds, which are important submanifolds of Lorentz-Sasakian
space forms, have been investigated. An important class of the considered invariant submanifolds, called
pseudoparallel, 2-pseudoparallel, Ricci generalized pseudoparallel, and 2-Ricci generalized pseudoparallel
invariant submanifolds, has been defined and the characterizations of Lorentz-Sasakian space forms for these
types of invariant submanifolds have been revealed. Then, conditions are given for these obtained invariant
submanifolds to be total geodesic by means of concircular and projective curvature tensors.

Starting from this part of the article, for the sake of brevity, Lorentz Sasakian space form with LSS-form,
pseudoparallel submanifold with P-submanifolds, 2-pseudoparallel submanifold with 2-P submanifold, Ricci
generalized pseudoparallel submanifold with RGP-submanifold and 2-Ricci generalized pseudoparallel
submanifold with 2- RGP submanifold will be shown.

2. Preliminary

Let Ψ̃ be a (2m + 1)−dimensional Lorentz manifold. If the Ψ̃ Lorentz manifold with (ϕ, ξ, η, g) structure
tensors satisfies the following conditions, this manifold is called a Lorentz-Sasakian manifold

ϕ2Λ1 = −Λ1 + η (Λ1) ξ, η (ξ) = 1, η (ϕΛ1) = 0,

g (ϕΛ1, ϕΛ2) = g (Λ1,Λ2) + η (Λ1) η (Λ2) , η (Λ1) = −g (Λ1, ξ) ,(
▽̃Λ1

ϕ
)
Λ2 = −g (Λ1,Λ2) ξ − η (Λ2) Λ1, ▽̃Λ1

ξ = −ϕΛ1,

where, ▽̃ is the Levi-Civita connection according to the Riemann metric g.
The plane section Π in TxΨ̃. If the Π plane is spanned by Λ1 and ϕΛ1, this plane is called the ϕ-section. The

curvature of the ϕ-section is called the ϕ-sectional curvature. If the Lorentz-Sasakian manifold has a constant
ϕ-sectional curvature, this manifold is called the LSS−form and is denoted by Ψ̃ (c). The curvature tensor of
the LSS−form Ψ̃ (c) is defined as

R̃ (Λ1,Λ2) Λ3 =
(
c−3
4

)
{g (Λ2,Λ3) Λ1 − g (Λ1,Λ3) Λ2}

+
(
c+1
4

)
{g (Λ1, ϕΛ3)ϕΛ2 − g (Λ2, ϕΛ3)ϕΛ1

+2g (Λ1, ϕΛ2)ϕΛ3 + η (Λ2) η (Λ3) Λ1 − η (Λ1) η (Λ3) Λ2

+g (Λ1,Λ3) η (Λ2) ξ − g (Λ2,Λ3) η (Λ1) ξ} ,

(1)

for all Λ1,Λ2,Λ3 ∈ χ
(
Ψ̃
)
.

Lemma 2.1. Let Ψ̃ (c) be the (2m + 1)−dimensional LSS−form. The following relations are provided for the
LSS−forms.

▽̃Λ1
ξ = −ϕΛ1, (2)(

▽̃Λ1
ϕ
)
Λ2 = −g (Λ1,Λ2) ξ − η (Λ2) Λ1, (3)(
▽̃Λ1

η
)
Λ2 = g (ϕΛ1,Λ2) , (4)

R̃ (ξ,Λ2) Λ3 = −g (Λ2,Λ3) ξ − η (Λ3) Λ2, (5)

R̃ (ξ,Λ2) ξ = η (Λ2) ξ − Λ2, (6)
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R̃ (Λ1,Λ2) ξ = η (Λ2) Λ1 − η (Λ1) Λ2, (7)

S (Λ1, ξ) = −
[
(c+ 1)− 4m

2

]
η (Λ1) , (8)

where R̃, S and Q are the Riemann curvature tensor, Ricci curvature tensor and Ricci operator of Ψ̃ (c),
respectively.

Let Ψ be the immersed submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). Let the tangent and
normal subspaces of Ψ in Ψ̃ (c) be Γ (TΨ) and Γ

(
T⊥Ψ

)
, respectively. Gauss and Weingarten formulas for

Γ (TΨ) and Γ
(
T⊥Ψ

)
are

▽̃Λ1
Λ2 = ▽Λ1

Λ2 + h (Λ1,Λ2) , (9)

▽̃Λ1
Λ5 = −AΛ5

Λ1 +▽⊥
Λ1
Λ5, (10)

respectively, for all Λ1,Λ2 ∈ Γ (TΨ) and Λ5 ∈ Γ
(
T⊥Ψ

)
, where ▽ and ▽⊥ are the connections on Ψ and

Γ
(
T⊥Ψ

)
, respectively, h and A are the second fundamental form and the shape operator of Ψ. There is a relation

g (AΛ5Λ1,Λ2) = g (h (Λ1,Λ2) ,Λ5) (11)

between the second basic form and shape operator defined as above. The covariant derivative of the second
fundamental form h is defined as(

▽̃Λ1
h
)
(Λ2,Λ3) = ▽⊥

Λ1
h (Λ2,Λ3)− h (▽Λ1Λ2,Λ3)− h (Λ2,▽Λ1Λ3) . (12)

Specifically, if ▽̃h = 0, Ψ is said to be in the parallel second fundamental form or 1−parallel.
Let R be the Riemann curvature tensor of Ψ. In this case, the Gauss equation can be expressed as

R̃ (Λ1,Λ2) Λ3 = R (Λ1,Λ2) Λ3 +Ah(Λ1,Λ3)Λ2 −Ah(Λ2,Λ3)Λ1

+
(
▽̃Λ1

h
)
(Λ2,Λ3)−

(
▽̃Λ1

h
)
(Λ1,Λ3) .

(13)

Let Ψ be a Riemannian manifold, T is (0, k)−type tensor field and A is (0, 2)−type tensor field. In this case,
the tensor field Q (A, T ) is defined as

Q (A, T ) (Λ1, ..., Xk;X,Y ) = −T ((X ∧A Y ) Λ1, ..., Xk)

−...− T (Λ1, ..., Xk−1, (X ∧A Y )Xk) ,

(14)

where
(X ∧A Y )Z = A (Y,Z)X −A (X,Z)Y,

k ≥ 1,Λ1,Λ2, ..., Xk, X, Y ∈ Γ (TΨ)

3. Invariant Pseudoparalel submanifolds of Lorentz-Sasakian space forms

Let Ψ be the immersed submanifold of a (2m+ 1)−dimensional LSS−form Ψ̃ (c) . If ϕ (Tx1Ψ) ⊂ Tx1Ψ in
every x1 point, the Ψ manifold is called invariant submanifold. From this section of the article, we will assume
that the manifold Ψ is the invariant submanifold of the LSS−form Ψ̃ (c). So it is clear from (3) and (9) that

h (Λ1, ξ) = 0, h (ϕΛ1,Λ2) = h (Λ1, ϕΛ2) = ϕh (Λ1,Λ2) (15)

for all Λ1,Λ2 ∈ Γ (TΨ) .
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Lemma 3.1. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). The second
fundamental form h of the submanifold Ψ is parallel if and only if Ψ is the total geodesic submanifold.

Proof. The proof of the theorem is easily obtained if we choose Λ3 = ξ in (12) and make the necessary
adjustments. ■

Definition 3.2. Let Ψ be the invariant submanifold of the (2m+ 1)−dimensional LSS−form Ψ̃ (c). If R̃.h and
Q (g, h) are linearly dependent, M is called P-submanifold.

Equivalent to this definition, it can be said that there is a function L1 on the set
M1 = {Λ1 ∈ Ψ|h (Λ1) ̸= g (Λ1)} such that

R̃.h = L1Q (g, h) .

If L1 = 0 specifically, Ψ is called a semiparallel submanifold.

Theorem 3.3. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). If Ψ is
P-submanifold, then Ψ is either a total geodesic or L1 = −1.

Proof. Let’s assume that Ψ is a P-submanifold. So, we can write(
R̃ (Λ1,Λ2)h

)
(Λ4,Λ5) = L1Q (g, h) (Λ4,Λ5; Λ1,Λ2) ,

that is
R̃⊥ (Λ1,Λ2)h (Λ4,Λ5)− h (R (Λ1,Λ2) Λ4,Λ5)

−h (Λ4, R (Λ1,Λ2) Λ5) = −λ1 {h ((Λ1 ∧g Λ2) Λ4,Λ5)

+h (Λ4, (Λ1 ∧g Λ2) Λ5)} ,

(16)

for all Λ1,Λ2,Λ4,Λ5 ∈ Γ (TΨ) . If we choose Λ5 = ξ in (16) and make use of (7) , (15), we get

(1 + L1) {η (Λ2)h (Λ4,Λ1)− η (Λ1)h (Λ4,Λ2)} = 0. (17)

IIf we choose Λ2 = ξ in (17) , we obtain

(1 + L1)h (Λ4,Λ1) = 0.

This completes the proof. ■

Corollary 3.4. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). Ψ is
semiparallel if and only if Ψ is total geodesic submanifold.

Definition 3.5. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). If R̃.▽̃h

and Q
(
g, ▽̃h

)
are linearly dependent, M is called 2-P submanifold.

Equivalent to this definition, it can be said that there is a function L2 on the set
M2 =

{
Λ1 ∈ Ψ| ▽̃h (Λ1) ̸= g (Λ1)

}
such that

R̃.▽̃h = L2Q
(
g, ▽̃h

)
.

If L2 = 0 specifically, Ψ is called a 2-semiparallel submanifold.

Theorem 3.6. Let Ψ be the invariant submanifold of the (2m+ 1)−dimensional LSS−form Ψ̃ (c). If Ψ is 2-P
submanifold, then Ψ is a total geodesic submanifold.
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Proof. Let’s assume that Ψ is a 2-P submanifold. So, we can write(
R̃ (Λ1,Λ2) ▽̃h

)
(Λ4,Λ5,Λ3) = L2Q

(
g, ▽̃h

)
(Λ4,Λ5,Λ3; Λ1,Λ2) , (18)

for all Λ1,Λ2,Λ4,Λ5,Λ3 ∈ Γ (TΨ) . If we choose Λ1 = Λ3 = ξ in (18) , we can write

R⊥ (ξ,Λ2)
(
▽̃Λ4

h
)
(Λ5, ξ)−

(
▽̃R(ξ,Λ2)Λ4

h
)
(Λ5, ξ)

−
(
▽̃Λ4

h
)
(R (ξ,Λ2) Λ5, ξ)−

(
▽̃Λ4

h
)
(Λ5, R (ξ,Λ2) ξ)

= −L2

{(
▽̃(ξ∧gΛ2)Λ4

h
)
(Λ5, ξ) +

(
▽̃Λ4

h
)
((ξ ∧g Λ2) Λ5, ξ)

+
(
▽̃Λ4

h
)
(Λ5, (ξ ∧g Λ2) ξ)

}
.

(19)

Let’s calculate all the expressions in (19). So, we can write

R⊥ (ξ,Λ2)
(
▽̃Λ4

h
)
(Λ5, ξ) = R⊥ (ξ,Λ2)

{
▽⊥

Λ4
h (Λ5, ξ)

−h (▽Λ4
Λ5, ξ)− h (Λ5,▽Λ4

ξ)}

= R⊥ (ξ,Λ2)ϕh (Λ5,Λ4) ,

(20)

(
▽̃R(ξ,Λ2)Λ4

h
)
(Λ5, ξ) = ▽⊥

R(ξ,Λ2)Λ4
h (Λ5, ξ)− h

(
▽R(ξ,Λ2)Λ4

Λ5, ξ
)

−h
(
Λ5,▽R(ξ,Λ2)Λ4

ξ
)
= −ϕη (Λ4)h (Λ5,Λ2) ,

(21)

(
▽̃Λ4

h
)
(R (ξ,Λ2) Λ5, ξ) = ▽⊥

Λ4
h (R (ξ,Λ2) Λ5, ξ)− h (▽Λ4R (ξ,Λ2) Λ5, ξ)

−h (R (ξ,Λ2) Λ5,▽Λ4ξ) = −ϕη (Λ5)h (Λ2,Λ4) ,

(22)

(
▽̃Λ4

h
)
(Λ5, R (ξ,Λ2) ξ) =

(
▽̃Λ4

h
)
(Λ5, η (Λ2) ξ − Λ2)

=
(
▽̃Λ4

h
)
(Λ5, η (Λ2) ξ)−

(
▽̃Λ4

h
)
(Λ5,Λ2)

= −h (Λ5,Λ4η (Λ2) ξ + η (Λ2)▽Λ4 ξ)−
(
▽̃Λ4

h
)
(Λ5,Λ2)

= η (Λ2)ϕh (Λ5,Λ4)−
(
▽̃Λ4

h
)
(Λ5,Λ2) ,

(23)

(
▽̃(ξ∧gΛ2)Λ4

h
)
(Λ5, ξ) = ▽⊥

(ξ∧gΛ2)Λ4
h (Λ5, ξ)− h

(
▽(ξ∧gΛ2)Λ4

Λ5, ξ
)

−h
(
Λ5,▽(ξ∧gΛ2)Λ4

ξ
)
= ϕη (Λ4)h (Λ5,Λ2) ,

(24)
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(
▽̃Λ4

h
)
((ξ ∧g Λ2) Λ5, ξ) = ▽⊥

Λ4
h ((ξ ∧g Λ2) Λ5, ξ)− h (▽Λ4 (ξ ∧g Λ2) Λ5, ξ)

−h ((ξ ∧g Λ2) Λ5,▽Λ4
ξ) = ϕη (Λ5)h (Λ2,Λ4) ,

(25)

(
▽̃Λ4

h
)
(Λ5, (ξ ∧g Λ2) ξ) =

(
▽̃Λ4

h
)
(Λ5,−η (Λ2) ξ + Λ2)

=
(
▽̃Λ4

h
)
(Λ5,−η (Λ2) ξ)−

(
▽̃Λ4

h
)
(Λ5,Λ2)

= −ϕη (Λ2)h (Λ5,Λ4)−
(
▽̃Λ4

h
)
(Λ5,Λ2) .

(26)

If we substitute (20) , (21) , (22) , (23) , (24) , (25) , (26) for (19) , we obtain

R⊥ (ξ,Λ2)ϕh (Λ5,Λ4) + ϕη (Λ4)h (Λ5,Λ2) + ϕη (Λ5)h (Λ2,Λ4)

−η (Λ2)ϕh (Λ5,Λ4) +
(
▽̃Λ4

h
)
(Λ5,Λ2) = −L2 {ϕη (Λ4)h (Λ5,Λ2)

+ϕη (Λ5)h (Λ2,Λ4)− ϕη (Λ2)h (Λ5,Λ4)−
(
▽̃Λ4

h
)
(Λ5,Λ2)

} (27)

If we choose Λ5 = ξ and use (15) , we get

ϕh (Λ2,Λ4) +
(
▽̃Λ4

h
)
(ξ,Λ2) = −L2 {ϕh (Λ2,Λ4)

−
(
▽̃Λ4

h
)
(ξ,Λ2)

}
.

(28)

On the other hand, it is clear that (
▽̃Λ4

h
)
(ξ,Λ2) = ϕh (Λ2,Λ4) . (29)

If (29) is written instead of (28) , we obtain

h (Λ2,Λ4) = 0.

This completes the proof. ■

Corollary 3.7. The total geodesic of the invariant 2-pseudoparalell submanifold of the (2m + 1)−dimensional
LSS−form is independent of the choice of L2.

Definition 3.8. Let Ψ be the invariant submanifold of the (2m+ 1)−dimensional LSS−form Ψ̃ (c). If R̃.h and
Q (S, h) are linearly dependent, M is called RGP-submanifold.

Equivalent to this definition, it can be said that there is a function L3 on the set
M3 = {Λ1 ∈ Ψ|h (Λ1) ̸= S (Λ1)} such that

R̃.h = L3Q (S, h) .

Theorem 3.9. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). If Ψ is

RGP-submanifold, then Ψ is either a total geodesic or L3 =
−2

(c+ 1)− 4m
provided 4m ̸= (c+ 1) .
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Proof. Let’s assume that Ψ is a RGP-submanifold. So, we can write(
R̃ (Λ1,Λ2)h

)
(Λ4,Λ5) = L3Q (S, h) (Λ4,Λ5; Λ1,Λ2) ,

that is
R̃⊥ (Λ1,Λ2)h (Λ4,Λ5)− h (R (Λ1,Λ2) Λ4,Λ5)

−h (Λ4, R (Λ1,Λ2) Λ5) = −λ3 {h ((Λ1 ∧g Λ2) Λ4,Λ5)

+h (Λ4, (Λ1 ∧g Λ2) Λ5)} ,

(30)

for all Λ1,Λ2,Λ4,Λ5 ∈ Γ (TΨ) . If we choose Λ1 = Λ5 = ξ in (30) and make use of (8) , (15), we get[
1 +

(c+ 1)− 4m

2
L3

]
h (Λ4,Λ2) = 0.

It is clear from the last equation that either
h (Λ4,Λ2) = 0,

or

L3 =
−2

(c+ 1)− 4m
.

This completes the proof. ■

Definition 3.10. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). If R̃.▽̃h

and Q
(
S, ▽̃h

)
are linearly dependent, M is called 2-RGP-submanifold.

Equivalent to this definition, it can be said that there is a function L4 on the set
M4 =

{
Λ1 ∈ Ψ| ▽̃h (Λ1) ̸= S (Λ1)

}
such that

R̃.▽̃h = L4Q
(
S, ▽̃h

)
.

Theorem 3.11. Let Ψ be the invariant submanifold of the (2m + 1)−dimensional LSS−form Ψ̃ (c). If Ψ is

2-RGP-submanifold, then Ψ is either a total geodesic or L4 =
2

4m− (c+ 1)
provided 4m ̸= (c+ 1) .

Proof. Let’s assume that Ψ is a 2-RGP-submanifold. So, we can write(
R̃ (Λ1,Λ2) ▽̃h

)
(Λ4,Λ5,Λ3) = L4Q

(
S, ▽̃h

)
(Λ4,Λ5,Λ3; Λ1,Λ2) , (31)

for all Λ1,Λ2,Λ4,Λ5,Λ3 ∈ Γ (TΨ) . If we choose Λ1 = Λ5 = ξ in (31) , we can write

R⊥ (ξ,Λ2)
(
▽̃Λ4

h
)
(ξ,Λ3)−

(
▽̃R(ξ,Λ2)Λ4

h
)
(ξ,Λ3)

−
(
▽̃Λ4

h
)
(R (ξ,Λ2) ξ,Λ3)−

(
▽̃Λ4

h
)
(ξ,R (ξ,Λ2) Λ3)

= −L4

{(
▽̃(ξ∧SΛ2)Λ4

h
)
(ξ,Λ3) +

(
▽̃Λ4

h
)
((ξ ∧S Λ2) ξ,Λ3)

+
(
▽̃Λ4

h
)
(ξ, (ξ ∧S Λ2) Λ3)

}
.

(32)
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Let’s calculate all the expressions in (32). So, we can write

R⊥ (ξ,Λ2)
(
▽̃Λ4

h
)
(ξ,Λ3) = R⊥ (ξ,Λ2)

{
▽⊥

Λ4
h (ξ,Λ3)

−h (▽Λ4
Λ3, ξ)− h (Λ3,▽Λ4

ξ)}

= R⊥ (ξ,Λ2)ϕh (Λ3,Λ4) ,

(33)

(
▽̃R(ξ,Λ2)Λ4

h
)
(ξ,Λ3) = ▽⊥

R(ξ,Λ2)Λ4
h (ξ,Λ3)− h

(
▽R(ξ,Λ2)Λ4

ξ,Λ3

)
−h

(
ξ,▽R(ξ,Λ2)Λ4

Λ3

)
= −ϕη (Λ4)h (Λ2,Λ3) ,

(34)

(
▽̃Λ4

h
)
(R (ξ,Λ2) ξ,Λ3) =

(
▽̃Λ4

h
)
(η (Λ2) ξ − Λ2,Λ3)

−
(
▽̃Λ4

h
)
(Λ2,Λ3) = ▽⊥

Λ4
h (η (Λ2) ξ,Λ3)− h (▽Λ4η (Λ2) ξ,Λ3)

−h (η (Λ2) ξ,▽Λ4Λ3)−
(
▽̃Λ4

h
)
(Λ2,Λ3)

= ϕη (Λ2)h (Λ4,Λ3)−
(
▽̃Λ4

h
)
(Λ2,Λ3) ,

(35)

(
▽̃Λ4

h
)
(ξ,R (ξ,Λ2) Λ3) = ▽⊥

Λ4
h (ξ,R (ξ,Λ2) Λ3)− h (▽Λ4

ξ,R (ξ,Λ2) Λ3)

−h (ξ,▽Λ4R (ξ,Λ2) Λ3) = −ϕη (Λ3)h (Λ4,Λ2)

(36)

(
▽̃(ξ∧SΛ2)Λ4

h
)
(ξ,Λ3) = ▽⊥

(ξ∧SΛ2)Λ4
h (ξ,Λ3)− h

(
▽(ξ∧SΛ2)Λ4

ξ,Λ3

)
−h

(
ξ,▽(ξ∧SΛ2)Λ4

Λ3

)
= (c+1)−4m

2 ϕη (Λ4)h (Λ2,Λ3) ,

(37)

(
▽̃Λ4

h
)
((ξ ∧S Λ2) ξ,Λ3) =

(
▽̃Λ4

h
)
(S (Λ2, ξ) ξ − S (ξ, ξ) Λ2,Λ3)

= (c+1)−4m
2

{(
▽̃Λ4

h
)
(−η (Λ2) ξ + Λ2,Λ3)

}
= (c+1)−4m

2

{
−▽⊥

Λ4
h (η (Λ2) ξ,Λ3) + h (▽Λ4

η (Λ2) ξ,Λ3)

h (η (Λ2) ξ,▽Λ4
Λ3) +

(
▽̃Λ4

h
)
(Λ2,Λ3)

}
= (c+1)−4m

2

{(
▽̃Λ4

h
)
(Λ2,Λ3)− ϕη (Λ2)h (Λ4,Λ3)

}
,

(38)
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(
▽̃Λ4

h
)
(ξ, (ξ ∧S Λ2) Λ3) =

(
▽̃Λ4

h
)
(ξ, S (Λ2,Λ3) ξ − S (ξ,Λ3) Λ2)

=
(
▽̃Λ4

h
)
(ξ, S (Λ2,Λ3) ξ) +

(c+1)−4m
2

(
▽̃Λ4

h
)
(ξ, η (Λ3) ,Λ2)

= (c+1)−4m
2 ϕη (Λ3)h (Λ4,Λ2) .

(39)

If we substitute (33) , (34) , (35) , (36) , (37) , (38) , (39) for (32) , we obtain

R⊥ (ξ,Λ2)ϕh (Λ3,Λ4) + ϕη (Λ4)h (Λ2,Λ3)− ϕη (Λ2)h (Λ4,Λ3)

+η (Λ3)ϕh (Λ4,Λ2) +
(
▽̃Λ4

h
)
(Λ2,Λ3) = −L4

{
(c+1)−4m

2 ϕη (Λ4)h (Λ2,Λ3)

− (c+1)−4m
2 ϕη (Λ2)h (Λ4,Λ3) +

(c+1)−4m
2 ϕη (Λ3)h (Λ4,Λ2) +

(c+1)−4m
2

(
▽̃Λ4

h
)
(Λ2,Λ3)

} (40)

If we choose Λ3 = ξ in (40) and use (15) , we get(
▽̃Λ4

h
)
(Λ2, ξ) + ϕh (Λ4,Λ2) = − (c+1)−4m

2 L4

{(
▽̃Λ4

h
)
(Λ2, ξ)

+ϕh (Λ4,Λ2)} .
(41)

On the other hand, it is clear that (
▽̃Λ4

h
)
(ξ,Λ2) = ϕh (Λ2,Λ4) . (42)

If (42) is written instead of (41) , we obtain

2ϕh (Λ2,Λ4) = [4m− (c+ 1)]L4ϕh (Λ2,Λ4) .

It is clear from the last equality

h (Λ2,Λ4) = 0 or L4 =
2

4m− (c+ 1)
.

This completes the proof. ■

4. Total geodesic submanifolds on concircular and projective curvature tensor

In this section, the invariant submanifold Ψ of the (2m+1)−dimensional LSS−form Ψ̃ (c) will be considered
with the concircular and projective curvature tensor. The concircular curvature tensor is defined as

Z̃ (Λ1,Λ2) Λ3 = R (Λ1,Λ2) Λ3 −
r

2m (2m+ 1)
[g (Λ2,Λ3) Λ1 − g (Λ1,Λ3) Λ2] , (43)

for all Λ1,Λ2,Λ3 ∈ χ
(
Ψ̃
)
. If we choose Λ1 = Λ3 = ξ in (43) and use (6) , we get

Z̃ (ξ,Λ2) ξ = −
[
1 +

r

2m (2m+ 1)

]
[−η (Λ2) ξ + Λ2] . (44)

Theorem 4.1. Let Ψ be the invariant submanifold of the (2m+1)−dimensional LSS−form Ψ̃ (c). If Ψ satisfies

the condition Z̃ (Λ1,Λ2)h = L5Q (g, h) ,then Ψ is either total geodesic or L5 = −
(
1 + r

2m(2m+1)

)
.
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Proof. Let’s assume that Ψ satisfies the condition(
Z̃ (Λ1,Λ2)h

)
(Λ4,Λ5) = L5Q (g, h) (Λ4,Λ5; Λ1,Λ2) , (45)

for all Λ1,Λ2,Λ4,Λ5 ∈ Γ (TΨ) . If we choose Λ1 = Λ5 = ξ in (45) and use (15) , we get

−h
(
Λ4, Z̃ (ξ,Λ2) ξ

)
= −L5h (Λ4,Λ2) . (46)

If we use (44) out of (46) , we obtain[(
1 +

r

2m (2m+ 1)

)
+ L5

]
h (Λ4,Λ2) = 0.

This completes the proof. ■

Theorem 4.2. Let Ψ be the invariant submanifold of the (2m+1)−dimensional LSS−form Ψ̃ (c). If Ψ satisfies
the condition Z̃ (Λ1,Λ2)h = L6Q (S, h) , then Ψ is total geodesic or L6 = 2[r+2m(2m+1)]

2m(2m+1)[(c+1)−4m] and (c+ 1) ̸=
4m.

Proof. Let’s assume that Ψ satisfies the condition(
Z̃ (Λ1,Λ2)h

)
(Λ4,Λ5) = L6Q (S, h) (Λ4,Λ5; Λ1,Λ2) , (47)

for all Λ1,Λ2,Λ4,Λ5 ∈ Γ (TΨ) . If we choose Λ1 = Λ5 = ξ in (47) and use (15) , we get

−h
(
Λ4, Z̃ (ξ,Λ2) ξ

)
= L6S (ξ, ξ)h (Λ4,Λ2) . (48)

If we use (44) and (8) out of (48) , we obtain[(
1 +

r

2m (2m+ 1)

)
+

(
(c+ 1)− 4m

2

)
L6

]
h (Λ4,Λ2) = 0.

This completes the proof. ■

The projective curvature tensor is defined as

P (Λ1,Λ2) Λ3 = R (Λ1,Λ2) Λ3 −
1

2m
[S (Λ2,Λ3) Λ1 − S (Λ1,Λ3) Λ2] , (49)

for all Λ1,Λ2,Λ3 ∈ χ
(
Ψ̃
)
. If we choose Λ1 = Λ3 = ξ in (49) and use (6) , (8) , we get

P (ξ,Λ2) ξ =
c+ 1

4m
[η (Λ2) ξ − Λ2] . (50)

Theorem 4.3. Let Ψ be the invariant submanifold of the (2m+1)−dimensional LSS−form Ψ̃ (c). If Ψ satisfies
the condition P (Λ1,Λ2)h = L7Q (g, h) , then Ψ is either total geodesic or L7 = − c+1

4m .

Proof. Let’s assume that Ψ satisfies the condition

(P (Λ1,Λ2)h) (Λ4,Λ5) = L7Q (g, h) (Λ4,Λ5; Λ1,Λ2) , (51)

for all Λ1,Λ2,Λ4,Λ5 ∈ Γ (TΨ) . If we choose Λ1 = Λ5 = ξ in (51) and use (15) , we get

−h (Λ4, P (ξ,Λ2) ξ) = −L7h (Λ4,Λ2) . (52)

If we use (50) out of (52) , we obtain [
c+ 1

4m
+ L7

]
h (Λ4,Λ2) = 0.

This completes the proof. ■
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Theorem 4.4. Let Ψ be the invariant submanifold of the (2m+1)−dimensional LSS−form Ψ̃ (c). If Ψ satisfies
the condition P (Λ1,Λ2)h = L8Q (S, h) , then Ψ is either total geodesic or L8 = 2(c+1)

4m[4m−(c+1)] and (c+ 1) ̸=
4m.

Proof. Let’s assume that Ψ satisfies the condition

(P (Λ1,Λ2)h) (Λ4,Λ5) = L8Q (S, h) (Λ4,Λ5; Λ1,Λ2) , (53)

for all Λ1,Λ2,Λ4,Λ5 ∈ Γ (TΨ) . If we choose Λ1 = Λ5 = ξ in (53) and use (15) , we get

−h (Λ4, P (ξ,Λ2) ξ) = L8S (ξ, ξ)h (Λ4,Λ2) . (54)

If we use (50) and (8) out of (54) , we obtain[
c+ 1

4m
+

[(c+ 1)− 4m]

2
L8

]
h (Λ4,Λ2) = 0.

This completes the proof. ■
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