The sequence of the hyperbolic k-Padovan quaternions

RENATA VIEIRA¹, FRANCISCO REGIS ALVES² AND PAULA CATARINO³

¹ Post-Graduate Program in Education of the Nordeste Education Network – Polo RENOEN-UFC, Federal University of Ceará, Brazil.
² Federal Institute of Science and Technology Education of the State of Ceará, Brazil.
³ University of Trás-os-Montes and Alto Douro, Portugal.

Received 01 August 2022; Accepted 16 June 2023

Abstract. This work introduces the hyperbolic k-Padovan quaternion sequence, performing the process of complexification of linear and recurrent sequences, more specifically of the generalized Padovan sequence. In this sense, there is the study of some properties around this sequence, deepening the investigative mathematical study of these numbers.

AMS Subject Classifications: 11B37, 11B39.

Keywords: hyperbolic numbers, quaternions, k-Padovan sequence.

Contents

1 Introduction and Background 324
2 The hyperbolic k-Padovan quaternions 325
3 Some properties 326
4 Conclusion 328
5 Acknowledgement 328

1. Introduction and Background

Studies of recursive linear sequences have been noticed in the mathematical literature. Based on this, there is the concern to carry out an investigative study on the process of complexification of certain sequences. So soon, in this work, the hyperbolic quaternion k-Padovan sequence is introduced, presenting algebraic properties around these numbers.

The Padovan sequence is a linear and recurrent third-order sequence, named after the Italian architect Richard Padovan. Thus, its recurrence is given by: \(P_n = P_{n-2} + P_{n-3}, \, n \geq 3 \) and being \(P_0 = P_1 = P_2 = 1 \) your initial conditions [13–16].

The quaternions were developed by Willian Rowan Hamilton (1805–1865), arose from the attempt to generalize complex numbers in the form \(z = a + bi \) in three dimensions [10]. Thus are presented as formal sums of scalars with usual vectors of three-dimensional space, existing four dimensions. Second Halici (2012) [8], a quaternion is a hyper-complex number and is described by:

\[
q = a + bi + cj + dk
\]
where a, b, c are real numbers or scalar and i, j, k the orthogonal part at the base \mathbb{R}^3. The quaternionic product being $i^2 = j^2 = k^2 = ijk = -1$, $ij = k = -ji$, $jk = i = -kj$ and $ki = j = -ik$.

Being $q_1 = a_1 + b_1i + c_1j + d_1k$ and $q_2 = a_2 + b_2i + c_2j + d_2k$ two distinct quaternions. The addition, equality and multiplication scalar operations between them are:

$$q_1 + q_2 = (a_1 + a_2) + (b_1 + b_2)i + (c_1 + c_2)j + (d_1 + d_2)k.$$

$q_1 = q_2$ only if $a_1 = a_2, b_1 = b_2, c_1 = c_2, d_1 = d_2$. And for $\alpha \in \mathbb{R}$, we have $\alpha q_1 = \alpha a_1 + \alpha b_1i + \alpha c_1j + \alpha d_1k$. The conjugate of the quaternion is denoted by $\overline{q} = a - bi - cj - dk$.

There are also other works, such as [3, 6, 7, 9] that address the quaternions in the scope of numerical sequences, which are also used as a basis for this research.

As for hyperbolic numbers, the set of these numbers \mathbb{H} can be described as:

$$\mathbb{H} = \{z = x + hy | h \notin \mathbb{R}, h^2 = 1, x, y \in \mathbb{R}\}.$$

The addition and multiplication of two of these hyperbolic numbers n_1 e n_2 are given by [12]:

$$n_1 \pm n_2 = (x_1 + hy_1) \pm (x_2 + hy_2) = (x_1 \pm x_2) + h(y_1 \pm y_2)$$

$$n_1n_2 = (x_1 + hy_1)(x_2 + hy_2) = (x_1x_2) + h(y_1x_2 + x_1y_2) + h^2y_1y_2.$$

In this sense, there are works on hyperbolic numbers and the quaternion sequence, used as a basis for this investigative process [1, 2, 4, 5, 11].

2. The hyperbolic k-Padovan quaternions

The sequence of k-Padovan is defined by $P_{k,n} = P_{k,n-2} + kP_{k,n-3}, n \geq 3, k \geq 1$ with initial values $P_{k,0} = P_{k,1} = P_{k,2} = 1$. In turn, we have the characteristic polynomial of this sequence as being $x^3 - x - k = 0$.

Definition 2.1. The hyperbolic k-Padovan quaternions are given by:

$$\mathbb{H}P_{k,n} = P_{k,n} + iP_{k,n+1} + jP_{k,n+2} + kP_{k,n+3},$$

where $i^2 = j^2 = k^2 = -1, ij = k = -ji, jk = i = -kj, ki = j = -ik$.

According to the definitions presented, a study is carried out on the operations of addition, subtraction, and multiplication of hyperbolic k-Padovan quaternions.

$$\mathbb{H}P_{k,n} \pm \mathbb{H}P_{k,m} = (P_{k,n} \pm P_{k,m}) + i(P_{k,n+1} \pm P_{k,m+1}) + j(P_{k,n+2} \pm P_{k,m+2}) + k(P_{k,n+3} \pm P_{k,m+3}),$$

$$\mathbb{H}P_{k,n} \mathbb{H}P_{k,m} = (P_{k,n}P_{k,m} + P_{k,n+1}P_{k,m+1} + P_{k,n+2}P_{k,m+2} + P_{k,n+3}P_{k,m+3}) + i(P_{k,n}P_{k,m+1} + P_{k,n+1}P_{k,m} + P_{k,n+2}P_{k,m+3} - P_{k,n+3}P_{k,m+2}) + j(P_{k,n}P_{k,m+2} + P_{k,n+2}P_{k,m} - P_{k,n+1}P_{k,m+3} + P_{k,n+3}P_{k,m+1}) + k(P_{k,n}P_{k,m+3} + P_{k,n+3}P_{k,m} + P_{k,n+1}P_{k,m+2} - P_{k,n+2}P_{k,m+1}) \neq \mathbb{H}P_{k,m} \mathbb{H}P_{k,n}.$$

The conjugate of the hyperbolic k-Padovan quaternary numbers is represented by:

$$\overline{\mathbb{H}P_{k,n}} = P_{k,n} - iP_{k,n+1} - jP_{k,n+2} - kP_{k,n+3}.$$
Theorem 2.2. Let $P_{k,n}$ be the nth term of the k-Padovan sequence and $\mathbb{H}P_{k,n}$ the nth term of the quaternionic k-Padovan sequence hyperbolic, for $n \geq 1$ the following relations are given:

(i) $\mathbb{H}P_{k,n+3} = \mathbb{H}P_{k,n+1} + k\mathbb{H}P_{k,n}$;
(ii) $\mathbb{H}P_{k,n} - i\mathbb{H}P_{k,n+1} + j\mathbb{H}P_{k,n+2} - k\mathbb{H}P_{k,n+3} = P_{k,n} + P_{k,n+2} + P_{k,n+4} + P_{k,n+6}$.

Proof. (i) Based on Definition 2.1, we have:

$$\mathbb{H}P_{k,n+1} + k\mathbb{H}P_{k,n} = P_{k,n+1} + iP_{k,n+2} + jP_{k,n+3} + kP_{k,n+4}$$
$$+ k(P_{k,n} + iP_{k,n+1} + jP_{k,n+2} + kP_{k,n+3})$$
$$= (P_{k,n+1} + kP_{k,n}) + i(P_{k,n+2} + kP_{k,n+1}) + j(P_{k,n+3} + kP_{k,n+2})$$
$$+ k(P_{k,n+4} + kP_{k,n+3})$$
$$= P_{k,n+3} + iP_{k,n+4} + jP_{k,n+5} + kP_{k,n+6}$$
$$= \mathbb{H}P_{k,n+3}$$

For (ii), we have:

$$\mathbb{H}P_{k,n} - i\mathbb{H}P_{k,n+1} + j\mathbb{H}P_{k,n+2} - k\mathbb{H}P_{k,n+3} = P_{k,n} + iP_{k,n+1} + jP_{k,n+2} + kP_{k,n+3}$$
$$- i(P_{k,n+1} + iP_{k,n+2} + jP_{k,n+3} + kP_{k,n+4})$$
$$- j(P_{k,n+2} + iP_{k,n+3} + jP_{k,n+4} + kP_{k,n+5})$$
$$- k(P_{k,n+3} + iP_{k,n+4} + jP_{k,n+5} + kP_{k,n+6})$$
$$= P_{k,n} + P_{k,n+2} - kP_{k,n+3} + jP_{k,n+4} + kP_{k,n+3}$$
$$+ P_{k,n+4} - iP_{k,n+5} - jP_{k,n+4} + iP_{k,n+5} + P_{k,n+6}$$
$$= P_{k,n} + P_{k,n+2} + P_{k,n+4} + P_{k,n+6}$$

Theorem 2.3. Let $\overline{P}_{k,n}$ be the quaternionic conjugate of hyperbolic k-Padovan, then:

$$\mathbb{H}P_{k,n} + \overline{P}_{k,n} = 2P_{k,n}$$

Proof. According to Definition 2.1, we have:

$$\mathbb{H}P_{k,n} + \overline{P}_{k,n} = P_{k,n} + iP_{k,n+1} + jP_{k,n+2} + kP_{k,n+3}$$
$$+ P_{k,n} - iP_{k,n+1} - jP_{k,n+2} - kP_{k,n+3}$$
$$= 2P_{k,n}$$

3. Some properties

Hereinafter, some properties of the hyperbolic quaternion k-Padovan sequence are studied, based on the definitions discussed in the previous section.

Theorem 3.1. The generating function of the hyperbolic k-Padovan quaternions is given by:

$$g(\mathbb{H}P_{k,n}, x) = \frac{\mathbb{H}P_{k,0} + \mathbb{H}P_{k,1}x + (\mathbb{H}P_{k,2} - \mathbb{H}P_{k,0})x^2}{1 - x^2 - kx^3}.$$
\[I \text{-invariant arithmetic convergence} \]

Proof. Performing the multiplication of the function by \(x^2, kx^3\) in the equations below, we have:

\[g(HP_{k,n}, x) = \sum_{n=0}^{\infty} HP_{k,n}x^n = HP_{k,0} + HP_{k,1}x + HP_{k,2}x^2 + \ldots + HP_{k,n}x^n + \ldots \quad (3.1) \]

\[x^2g(HP_{k,n}, x) = HP_{k,0}x^2 + HP_{k,1}x^3 + HP_{k,2}x^4 + \ldots + HP_{k,n-2}x^n + \ldots \quad (3.2) \]

\[kx^3g(HP_{k,n}, x) = HP_{k,0}kx^3 + HP_{k,1}kx^4 + HP_{k,2}kx^5 + \ldots + HP_{k,n-3}kx^n + \ldots \quad (3.3) \]

Based on the Equation (3.1-3.2+3.3), we have:

\[(1 - x^2 - kx^3)g(HP_{k,n}, x) = HP_{k,0}x + HP_{k,1}x + (HP_{k,2} - HP_{k,0})x^2 + (HP_{k,3} - HP_{k,1} - HP_{k,0})x^3 + \ldots + (HP_{k,n} - HP_{k,n-2} - HP_{k,n-3})x^n + \ldots \]

Thus:

\[g(HP_{k,n}, x) = \frac{HP_{k,0}x + HP_{k,1}x + (HP_{k,2} - HP_{k,0})x^2}{1 - x^2 - kx^3} \]

\[\square \]

Theorem 3.2. For \(n \in \mathbb{N} \), the Binet formula of the hyperbolic \(k \)-Padovan quaternions is expressed by:

\[Q_{k,n}^{(n)} = C_1r_1^n + C_2r_2^n + C_3r_3^n, \]

where \(C_1, C_2, C_3 \) are the coefficients of the Binet formula of the sequence and \(r_1, r_2, r_3 \) the roots of the characteristic polynomial \((x^3 - x - k = 0)\).

Proof. Based on the \(k \)-Padovan sequence recurrence formula, its respective defined initial values and its characteristic polynomial whose roots are \(r_1, r_2, r_3 \), it is possible to obtain, by solving the linear system of equations, the values of coefficients \(C_1, C_2, C_3 \).

The discriminant \(\Delta = \frac{-(k)^2}{4} - \frac{1}{27} \), referring to the 3rd degree polynomial, determines how the roots of the polynomial will be. Thus, when \(\Delta \neq 0 \) all roots will be distinct, concluding that \(k^2 \neq \frac{64}{27} \). Note also that \(r_1r_2r_3 = k, r_1 + r_2 + r_3 = 0 \) and that when \(k \neq 0 \), there will be at least one root equal to zero, there being no Binet formula for this case.

Theorem 3.3. For \(n \) geqslant2 and \(n \) in mathbb{N}, the matrix form of the hyperbolic \(k \)-Padovan quaternions is given by:

\[\begin{bmatrix} 0 & 1 & k \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^n = \begin{bmatrix} Q_{k,2} & Q_{k,1} & Q_{k,0} \\ Q_{k,1} & Q_{k,0} & Q_{k,-1} \\ Q_{k,0} & Q_{k,-1} & Q_{k,-2} \end{bmatrix} = \begin{bmatrix} H_{k,n+2} & H_{k,n+1} & H_{k,n} \\ H_{k,n+1} & H_{k,n} & H_{k,n-1} \\ H_{k,n} & H_{k,n-1} & H_{k,n-2} \end{bmatrix}. \]

Proof. Through the finite induction principle, for \(n = 2 \), we have:

\[\begin{bmatrix} 0 & 1 & k \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^2 = \begin{bmatrix} H_{k,2} & H_{k,1} & H_{k,0} \\ H_{k,1} & H_{k,0} & H_{k,-1} \\ H_{k,0} & H_{k,-1} & H_{k,-2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} H_{k,2} & H_{k,1} & H_{k,0} \\ H_{k,1} & H_{k,0} & H_{k,-1} \\ H_{k,0} & H_{k,-1} & H_{k,-2} \end{bmatrix} \]

\[= H_{k,2}k + kH_{k,1} \quad H_{k,1} + kH_{k,0} \quad H_{k,0} + kH_{k,-1} \]

\[= H_{k,4} \quad H_{k,3} \quad H_{k,2} \]

\[= H_{k,4} \quad H_{k,3} \quad H_{k,2} \quad H_{k,1} \]

\[= 327 \]
Checking the validity for any \(n = z, z \in \mathbb{N} \), one has:
\[
\begin{bmatrix}
0 & 1 & k \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
H_{k,2} & H_{k,1} & H_{k,0} \\
H_{k,1} & H_{k,0} & H_{k,-1} \\
H_{k,0} & H_{k,-1} & H_{k,-2}
\end{bmatrix}
^{z}
=
\begin{bmatrix}
H_{k,z+2} & H_{k,z+1} & H_{k,z} \\
H_{k,z+1} & H_{k,z} & H_{k,z-1} \\
H_{k,z} & H_{k,z-1} & H_{k,z-2}
\end{bmatrix}.
\]

Therefore, it turns out to be valid for \(n = z + 1 = 1 + z \):
\[
\begin{bmatrix}
0 & 1 & k \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
H_{k,2} & H_{k,1} & H_{k,0} \\
H_{k,1} & H_{k,0} & H_{k,-1} \\
H_{k,0} & H_{k,-1} & H_{k,-2}
\end{bmatrix}
^{1+ z}
=
\begin{bmatrix}
0 & 1 & k \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
H_{k,2} & H_{k,1} & H_{k,0} \\
H_{k,1} & H_{k,0} & H_{k,-1} \\
H_{k,0} & H_{k,-1} & H_{k,-2}
\end{bmatrix}
^{z}
\begin{bmatrix}
H_{k,2} & H_{k,1} & H_{k,0} \\
H_{k,1} & H_{k,0} & H_{k,-1} \\
H_{k,0} & H_{k,-1} & H_{k,-2}
\end{bmatrix}
=
\begin{bmatrix}
H_{k,z+2} & H_{k,z+1} & H_{k,z} \\
H_{k,z+1} & H_{k,z} & H_{k,z-1} \\
H_{k,z} & H_{k,z-1} & H_{k,z-2}
\end{bmatrix}.
\]

4. Conclusion

The study allowed for a mathematical analysis of the k-Padovan sequence and its complex form. Thus, the hyperbolic k-Padovan quaternion sequence was introduced, addressing some mathematical properties and theorems. It is noteworthy that for the particular case of \(k = 1 \), it is possible to notice that we have the hyperbolic quaternionic Padovan sequence.

5. Acknowledgement

The part of research development in Brazil had the financial support of the National Council for Scientific and Technological Development - CNPq and the Ceará Foundation for Support to Scientific and Technological Development (Funcap).

The research development aspect in Portugal is financed by National Funds through FCT - Fundação para a Ciência e Tecnologia. I.P, within the scope of the UID / CED / 00194/2020 project.

References

\(\mathcal{I} \)-invariant arithmetic convergence

I-invariant arithmetic convergence

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.