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Abstract. This work studies an explicit and a constructive solution for the difference equation

xn+1 =
xn · (axn−k + axn−k+1)

bxn−k+1 + cxn−k
, n = 0, 1, . . . ,

where a ≥ 0, a > 0, b > 0, c > 0 and k ≥ 1 is an integer, with initial conditions x−k, x−k+1, . . . , x−1, x0. We also will
determine the global behavior of this solution. For the case when a = 0, the method presented here gives us the particular
solution obtained by Gümüş and Abo-Zeid that establishes an inductive type of proof.
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1. Introduction

The study of rational difference equations currently represents a fruitful area of study that attracts many
mathematical researchers. Many difference equations have been successfully used for modeling real
phenomena [3, 5, 7].

In 2019 Abo-Zeid [1] published a study on the global behavior of the difference equation

xn+1 =
axnxn−1

±bxn−1 + cxn−2
, n = 0, 1, . . . ,

where a, b, c are positive real numbers, and obtained its general solution. Similarly, Abo-Zeid [2] also studied the
solutions to

xn+1 =
xnxn−2

axn−2 + bxn−3
, n = 0, 1 . . . ,
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for a, b positive constants. Motivated by these results, in 2020 Gümüş and Abo-Zeid [4] found an explicit solution
and studied the global behavior of the equation

xn+1 =
axnxn−k+1

bxn−k+1 + cxn−k
, n = 0, 1 . . . ,

where a, b, c are positive constants and k ≥ 1 is an integer.
In this work we will generalize the result found by Gümüş and Abo-Zeid by explicitly solving

xn+1 =
xn · (axn−k + axn−k+1)

(bxn−k+1 + cxn−k)
, n = 0, 1, . . . , (1.1)

where a ≥ 0, a > 0, b > 0, c > 0 and k ≥ 1 is an integer, with the initial conditions x−k, x−k+1, . . . , x−1, x0.

2. Preliminaries

The Riccati difference equation is defined by

RnRn−1 +A(n)Rn +B(n)Rn−1 = C(n). (2.1)

Following the ideas found in the book by Mickens [6, Chapter 6 ], we make the change of variable

Rn =
Qn −B(n)Qn+1

Qn+1
,

which transforms (2.1) into a linear second order equation of the form

(A(n)B(n) + C(n))Qn+1 + (B(n− 1)−A(n))Qn −Qn−1 = 0.

In order to solve (1.1), the first step is to transform it into a Riccati equation. Indeed, (1.1) is equivalent to

bxn+1xn−k+1 + cxn+1xn−k = axnxn−k + axnxn−k+1,

or

b
xn+1

xn
· xn−k+1

xn−k
+ c

xn+1

xn
= a+ a

xn−k+1

xn−k
.

Upon applying the change of variable
yn =

xn+1

xn
, (2.2)

we have
ynyn−k +

c

b
yn − a

b
yn−k =

a

b
. (2.3)

We can see here that the solution for yn depends exclusively on what happens to yn−k (that is, k steps before).
Therefore, we can solve the Riccati equation

zmzm−1 +
c

b
zm − a

b
zm−1 =

a

b
, (2.4)

with initial condition z−1 := y−k+i, where y−k+i =
x−k+i+1

x−k+i
for some i = 0, 1, . . . , k − 1 fixed (z−1 depends

on i). It is evident that the solutions to (2.3) and (2.4) are related by

zm = ymk+i. (2.5)
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By making the change of variable

zm =
wm + (a/b)wm+1

wm+1
,

equation (2.4) transforms into the homogeneous linear second order equation with constant coefficients

(ab− ac)wm+1 − (a+ c)bwm − b2wm−1 = 0.

The roots of the characteristic polynomial associated to this last equation are given by

r2,1 :=
(a+ c)b± b

√
(a− c)2 + 4ab

2(ab− ac)
. (2.6)

Hence, the general solution of (2.4) is given by

zm =
(C1r

m
1 + C2r

m
2 ) + (a/b)(C1r

m+1
1 + C2r

m+1
2 )

C1r
m+1
1 + C2r

m+1
2

.

Making the change of variable Ci := C2/C1, this becomes

zm =
(1 + a

b r1)(
r1
r2
)m + Ci(1 +

a
b r2)

r1(
r1
r2
)m + Cir2

. (2.7)

With the initial condition z−1, we obtain

Ci = −r2
r1

· (b+ ar1 − br1z−1)

(b+ ar2 − br2z−1)
. (2.8)

Therefore, by means of recursive backward application of the changes of variable previously done, we obtain the
explicit solution to (1.1), as shown in Theorem 3.1 below.

Remark 2.1. In the particular case when a = 0, we get r1 = − b
c and r2 = − b

a , and thus we have

zm =
1

b
a−c + C · ( ca )m

,

with C = c
a

(
a−c−bz−1

(a−c)z−1

)
. By recursive backward application of the changes of variables previously done, we get

ymk+i =
a− c(

a−c−bz−1

z−1

)
( ca )

m+1 + b
,

which implies that

xmk+i+1 = xmk+i ·

(
a− c

a−c−by−k+i

y−k+i
( ca )

m+1 + b

)
,

from which we can deduce the Gümüş and Abo-Zeid result in [4].

3. Solution to equation (1.1)

Since the case a = 0 was already solved by Gümüs and Abo-Zeid [4], we can focus on the case a ̸= 0 and
normalize this coefficient to obtain

xn+1 =
xn · (xn−k + axn−k+1)

bxn−k+1 + cxn−k
, n = 0, 1, . . . (3.1)
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We also can assume that b ̸= ac. Indeed, if b = ac, then (3.1) reduces to

xn+1 =
xn

c
,

which represents a simple case.
Observe that under these conditions, the roots r1, r2 in (2.6) are equal to

r2,1 =
(a+ c)b± b

√
(a− c)2 + 4b

2(b− ac)
. (3.2)

Moreover, since
∣∣(a+ c)−

√
(a− c)2 + 4b

∣∣ < ∣∣(a+ c) +
√
(a− c)2 + 4b

∣∣, these roots satisfy∣∣∣∣r1r2
∣∣∣∣ < 1.

We also note that r1 ̸= 0, r2 ̸= 0.
In order for the solution of (3.1) to be well defined, it is necessary to assume that the initial conditions

x−k, x−k+1, . . . , x−1, x0 satisfy the following conditions:

(H) :



1) x−k, . . . , x−1 are non-zero.

2) b+ ar2 ̸= br2

(
x−k+i+1

x−k+i

)
, for every i = 0, 1, . . . , k − 1, where r2

is defined as in (3.2), and b ̸= ac.

3)
(

r1
r2

)j+1

̸= −Ci for every integer j ≥ 0 and for every i = 0, 1, . . . , k − 1,

where Ci is defined as in (2.8), and z−1 = x−k+i+1

x−k+i
.

Theorem 3.1. Consider the difference equation

xn+1 =
xn · (xn−k + axn−k+1)

bxn−k+1 + cxn−k
,

with a, b, c > 0 such that b ̸= ac, and initial conditions x−k, x−k+1, . . . , x−1, x0 satisfying (H). Let r1 and r2 be
defined as in (3.2). Let us define the functions

βi(j) =
(1 + a

b r1)(
r1
r2
)j + Ci(1 +

a
b r2)

r1(
r1
r2
)j + Cir2

, (3.3)

with Ci as in (2.8). Then the solution to this equation is given by

xmk = x0

m−1∏
j=0

k−1∏
i=0

βi(j)

xmk+1 = β0(m) · xmk

xmk+2 = β0(m)β1(m) · xmk

...

xmk+(k−1) = β0(m) · · ·βk−2(m) · xmk.

for m = 0, 1, 2, 3, . . .

Proof. From (2.5) and (2.7), we obtain

ymk+i =
(1 + a

b r1)(
r1
r2
)m + Ci(1 +

a
b r2)

r1(
r1
r2
)m + Cir2

.
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Since we defined yn = xn+1

xn
in (2.2), then

xmk+i+1 = xmk+i ·

(
(1 + a

b r1)(
r1
r2
)m + Ci(1 +

a
b r2)

r1(
r1
r2
)m + Cir2

)
.

By applying this equality recursively for all non-negative integers m and k, and for i = 0, 1, 2, 3, . . . , k − 1, we
immediately obtain the Theorem’s result. ■

4. Asymptotic behavior of the solution to equation (3.1)

For the analysis of the global behavior of (3.1), let us consider the following additional conditions:

(H1) :

{
b+ ar1 ̸= br1

(
x−k+i+1

x−k+i

)
for every i = 0, 1, . . . , k − 1, where r1

is defined as in (3.2), and b ̸= ac.

(H2) :

{
Ci ̸=

(1+ a
b r1)

(1+ a
b r2)

(
r1
r2

)j
for all i and for all j ≥ 0.

We can see that r2, as given in (3.2) with b ̸= ac, satisfies

1

r2
+

a

b
=

2(b− ac)

b((a+ c) +
√

(a− c)2 + 4b)
+

a

b

=

√
(a− c)2 + 4b− (a+ c)

2b
+

a

b
=

√
(a− c)2 + 4b+ (a− c)

2b
.

We also see that 1
r2

+ a
b > 0. Moreover,

1

r2
+

a

b
< 1 ⇔

√
(a− c)2 + 4b < 2b− (a− c) ⇔ 2b− (a− c) > 0 and

(2b− (a− c))2 > (a− c)2 + 4b ⇔ 2b− (a− c) > 0 and b− (a− c) > 1

⇔ b− (a− c) > 0.

From this, and in the same manner for the remaining cases, we have

a) 1
r2

+ a
b < 1 ⇐⇒ b− (a− c) > 1.

b) 1
r2

+ a
b > 1 ⇐⇒ b− (a− c) < 1.

c) 1
r2

+ a
b = 1 ⇐⇒ b− (a− c) = 1.

Theorem 4.1. Let {xn}∞n=−k be the solution to (3.1) such that the initial conditions x−k, . . . , x0 satisfy (H) and
(H1). Then,

1. If b− (a− c) > 1, then {xn}∞n=−k converges to 0.

2. If b− (a− c) < 1 and the initial conditions satisfy (H2) as well, then {xn}∞n=−k is unbounded.

3. If b− (a− c) = 1, then {xn}∞n=−k converges to a finite limit.

Proof. From conditions, we have Ci ̸= 0 for all i. On the other hand, since |r1/r2| < 1, it follows for all i that
βi(j) → 1

r2
+ a

b if j → ∞, where βi(j) is as defined in (3.3).
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1. If b− (a− c) > 1, then 1
r2

+ a
b < 1. Hence, there exist 0 < ε < 1 and j0 ∈ N such that |βi(j)| < ε for all

j ≥ j0 and for all i. Then, for large enough values of m, we have

|xmk| = |x0|

∣∣∣∣∣
j0−1∏
j=0

k−1∏
i=0

βi(j)

∣∣∣∣∣
∣∣∣∣∣
m−1∏
j=j0

k−1∏
i=0

βi(j)

∣∣∣∣∣
< |x0|

∣∣∣∣∣
j0−1∏
j=0

k−1∏
i=0

βi(j)

∣∣∣∣∣ · εk(m−j0).

We conclude that as m tends to infinity, then xkm converges to 0. Moreover, for i ∈ {1, 2, . . . , k − 1}, we
have

xmk+i = xmk ·

∣∣∣∣∣
i−1∏
l=0

βl(m)

∣∣∣∣∣.
Therefore, {xn}∞n=−k tends to 0.

2. If b − (a − c) < 1, then 1
r2

+ a
b > 1. Hence, there exist 1 < ε1 < 1

r2
+ a

b and j1 ∈ N such that
βi(j) > ε1 > 1 for all j ≥ j1 and for all i. Moreover, by condition (H2), we have βi(j) ̸= 0 for all i and
for all j. Then, for large enough values of m, we have

|xmk| = |x0|

∣∣∣∣∣
j1−1∏
j=0

k−1∏
i=0

βi(j)

∣∣∣∣∣
∣∣∣∣∣
m−1∏
j=j1

k−1∏
i=0

βi(j)

∣∣∣∣∣
> |x0|

∣∣∣ j1−1∏
j=0

k−1∏
i=0

βi(j)
∣∣∣ · εk(m−j1)

1 .

We conclude that |xkm| → ∞ when m → ∞. Moreover, for i ∈ {1, 2, . . . , k − 1}, we have

xmk+i = xmk ·
i−1∏
l=0

βl(m).

Therefore, the solution set {xn}∞n=−k is unbounded.

3. If b− (a− c) = 1, then 1
r2

+ a
b = 1. Hence, there exists j2 ∈ N such that βi(j) > 0 for j ≥ j2 and for all

i. Then, we have

xkm = x0

(
j2−1∏
j=0

k−1∏
i=0

βi(j)

)(
m−1∏
j=j2

k−1∏
i=0

βi(j)

)

= x0

(
j2−1∏
j=0

k−1∏
i=0

βi(j)

)
exp

(
m−1∑
j=j2

k−1∑
i=0

ln(βi(j))

)
.
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Let us define

aj :=

k−1∑
i=0

ln(βi(j)) =

k−1∑
i=0

ln

1 + 1
Cir2

(
1 + a

b r1
) (

r1
r2

)j
1 + r1

Cir2

(
r1
r2

)j


=

k−1∑
i=0

(
ln

(
1 +

1

Cir2
(1 +

a

b
r1)(

r1
r2

)j
)
− ln

(
1 +

r1

Cir2
(
r1
r2

)j
))

=

k−1∑
i=0

((
1

Cir2

(
1 +

a

b
r1

)(r1
r2

)j

+O
(
(r1/r2)

2j
))

−

(
r1

Cir2

(
r1
r2

)j

+O
(
(r1/r2)

2j
)))

=
k−1∑
i=0

(
1

Cir2

(
1 +

a− b

b
r1

)(
r1
r2

)j

+O((r1/r2)
2j)

)

=
1

r2

(
1 +

a− b

b
r1

)(k−1∑
i=0

1

Ci

)
·
(
r1
r2

)j

+O
(
(r1/r2)

2j
)
.

Then, we have

lim
j→∞

∣∣∣aj+1

aj

∣∣∣ = ∣∣∣r1
r2

∣∣∣ < 1.

By D’Alembert’s ratio test, the series
∑∞

j=j2

∑k−1
i=0 ln(βi(j)) converges. Hence, there exists v ∈ R such

that
lim

m→∞
xkm = v.

In the same way, for i ∈ {1, . . . , k − 1}, we have

xmk+i = xmk ·
i−1∏
l=0

βl(m) → v when m → ∞.

Therefore, the solution set {xn}∞n=−k converges to a finite limit.

■

5. Numerical Results

Numerical simulations performed with MATLAB for the three cases stated in Theorem 4.1 are shown in the
following examples.

Example 1. Consider the equation

xn+1 =
xn(xn−4 + 7.3xn−3)

3.5xn−3 + 5.8xn−4
.

In this case we have a = 7.3, b = 3.5, c = 5.8 and k = 4. Also, we can see that b − a + c > 1. Table 1
shows convergence to zero.
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Table 1: Numerical results for Example 1.

n xn n xn

−4 2.1 10 −0.083543908285124

−3 1 20 0.012701017754877

−2 8.5 50 0.003594428250519

−1 −3.3 100 2.862071648505816× 10−8

0 −1.7 200 1.691446180919758× 10−18

1 −1.019132653061225 500 3.491237927069944× 10−49

2 −1.807491245443325 999 3.185169006739856× 10−100

Example 2 Consider the equation

xn+1 =
xn(xn−3 + 0.8xn−2)

0.2xn−2 + 0.1xn−3
.

In this case, we have a = 0.8, b = 0.2, c = 0.1, k = 3. Also, we can see that b− a+ c < 1. Table 2 shows
the solution set is unbounded.

Table 2: Numerical results for Example 2.

n xn n xn

−3 2.8 5 3.976943951329059× 103

−2 7.5 10 7.870828852071307× 106

−1 1.3 20 3.259245595490367× 1013

0 0.7 50 2.322461318837964× 1033

1 3.460674157303371 100 2.844463544208173× 1066

2 29.261541884525528 150 3.483792297723871× 1099

3 2.015795107600647× 102 200 4.266818183833936× 10132

Example 3 Consider the equation

xn+1 =
xn(xn−5 + 1.5xn−4)

1.7xn−4 + 0.8xn−5
.

In this case we have a = 1.5, b = 1.7, c = 0.8, k = 5. Also, we can see that b− a+ c = 1. Table 3 shows
convergence to a finite limit approximately equal to 2.804367096028192.

Table 3: Numerical results for Example 3.

n xn n xn

−5 3.1 2 2.824563238832514

−4 2.1 20 2.804362901181129

−3 1.8 50 2.804367096027094

−2 6.5 100 2.804367096028192

−1 3.3 200 2.804367096028192

0 2.7 500 2.804367096028192

1 2.789256198347107 999 2.804367096028192
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6. Conclusion

In Theorem 3.1 we found an explicit solution for equation (1.1) when a ≥ 0, a > 0, b > 0, c > 0, and
k ≥ 1 is an integer. The idea behind the construction of such a solution was to transform the given equation
into a Riccati difference equation, which can be easily transformed into a linear difference equation with constant
coefficients.

Similarly, in Theorem 4.1 we obtained results concerning the asymptotic behaviour of the solutions to (1.1).
We determined that solutions can be convergent or divergent, depending on whether the value of b − a + c is
greater than, less than or equal to 1, when a = 1. We also performed some numerical experiments in order to
verify such behaviours for different values of a, b, c and k.

The author considers that similar techniques can be used to obtain explicit solutions, or at least results about
the global behavious of such solutions, for the case when a, a, b and/or c are negatives, or when these coefficients
are linear on n. The author conjectures that the first case could give rise to periodical solutions, while the second
case can be dealt with by converting the resulting Riccati equation into a Cauchy-Euler equation.
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