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Abstract. This work studies an explicit and a constructive solution for the difference equation

Tng1 = Tn * (al'n7k + axn7k+1) n=0.1
bTpn_pt1 + CTnok T

where @ > 0,a > 0,b > 0,c > 0 and k > 1 is an integer, with initial conditions *_x, T_g+1,...,T—1,Zo. We also will
determine the global behavior of this solution. For the case when @ = 0, the method presented here gives us the particular
solution obtained by Giimiis and Abo-Zeid that establishes an inductive type of proof.
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1. Introduction

The study of rational difference equations currently represents a fruitful area of study that attracts many
mathematical researchers. Many difference equations have been successfully used for modeling real
phenomena [3, 5, 7].

In 2019 Abo-Zeid [1] published a study on the global behavior of the difference equation

ATnTn—1

Tyl = n=0,1,...,

+bxy_1 + CTp_s’
where a, b, ¢ are positive real numbers, and obtained its general solution. Similarly, Abo-Zeid [2] also studied the
solutions to

LnTn—2

Tyl = n=0,1...,

aTp—2 + bl‘n—?;7
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for a, b positive constants. Motivated by these results, in 2020 Giimiis and Abo-Zeid [4] found an explicit solution
and studied the global behavior of the equation

AT Ty —k+1
b
bxn—k’-&-l + CTn—k

Tn+1 = ’I’L:O71...7
where a, b, c are positive constants and £ > 1 is an integer.
In this work we will generalize the result found by Giimiis and Abo-Zeid by explicitly solving
T - (@Tn—k + aTp—k+1)

Tyl = , n=0,1,..., 1.1
i (br—g41 + CTn—r) (1)

where @ > 0,a > 0,0 > 0,c > 0 and k£ > 1 is an integer, with the initial conditions x _, T _x+1,...,Z_1,Zo-

2. Preliminaries
The Riccati difference equation is defined by
R.R,—1+ A(n)R, + B(n)R,—1 = C(n). 2.1
Following the ideas found in the book by Mickens [6, Chapter 6 ], we make the change of variable

Qn - B(”)Qn-H
Qn+1 ’

which transforms (2.1) into a linear second order equation of the form

R, =

(A(n)B(n) + C(n))@ns1 + (B(n —1) = A(n))Qn — Qn-1 = 0.
In order to solve (1.1), the first step is to transform it into a Riccati equation. Indeed, (1.1) is equivalent to
Ty 11 Tn—k41 + CTpt1Tn—k = GLpTn—k + ATpTy—k+1,
or
b$n+1 . Tn—k+1 Tn+1 M.

+c =a+ta
T Tn—k Tp Tn—k

Upon applying the change of variable

Y = L 2.2)
Tn
we have B
c a a
YnYn—k + Byn - gyn—k = g (23)

We can see here that the solution for y,, depends exclusively on what happens to y,,_j (that is, &k steps before).
Therefore, we can solve the Riccati equation

c a a
mAm— TAm T 7Am—1 = 7 2.4
ZmZm—1+ = pim1= g 24)
with initial condition z_; := y_j4;, where y_j4; = % for some ¢ = 0,1,...,k — 1 fixed (z_; depends
on 7). It is evident that the solutions to (2.3) and (2.4) are related by

3
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By making the change of variable
W+ (a/b) Wi

m )

w7rL+ 1

equation (2.4) transforms into the homogeneous linear second order equation with constant coefficients
(@b — ac)wpm i1 — (a4 c)bwy, — b*wy, 1 = 0.
The roots of the characteristic polynomial associated to this last equation are given by

(a+ )b+ by/(a—c)? + 4ab
2,1 = .

’ 2(ab — ac)

Hence, the general solution of (2.4) is given by

(Cyr* + Cor) + (a/b)(Cyr{"™ + Cory )
017”11%4_1 + CQT;n+1 '

Zm
Making the change of variable C,;:=0Cy /C, this becomes

Zm =

(1+ %T1)(ﬂ)m +Ci(1+ %TQ)

With the initial condition z_1, we obtain

— ro (b+ar; —briz_q)
Ci=—-——="- )
r1 (b+ary —braz_q)

(2.6)

2.7

(2.8)

Therefore, by means of recursive backward application of the changes of variable previously done, we obtain the

explicit solution to (1.1), as shown in Theorem 3.1 below.

Remark 2.1. In the particular case when @ = 0, we get 11 = —% and ry = —g, and thus we have

Zm = b

with C = < (Lbz’l) By recursive backward application of the changes of variables previously done, we get

(a—c)z_1
a—c

a—c—bz_ c\m ’
= (O LA

Z—1

ymk+i — (

which implies that

a—cC
Tmk+i+l = Tmk+i * ( a—c—by_p4; (E)m+1 + b) )
Y—k+i a

from which we can deduce the Giimiis and Abo-Zeid result in [4].

3. Solution to equation (1.1)

Since the case @ = 0 was already solved by Giimiis and Abo-Zeid [4], we can focus on the case @ # 0 and

normalize this coefficient to obtain

Ty (Tp—k + 0Ty —f+1
Tpy1 = — (@ - +), n=20,1,...
bTp—_p41 + CTp_k
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We also can assume that b # ac. Indeed, if b = ac, then (3.1) reduces to
T,

Tp4+1 = 7,

which represents a simple case.
Observe that under these conditions, the roots r1, 7 in (2.6) are equal to

(a+c)b+by/(a—c)?+4b (32)

21 = 2(b—ac)
Moreover, since |(a + ¢) — \/(a — €)% + 4b| < |(a + ¢) + /(a — ¢)? + 4b|, these roots satisfy
olan
T2

We also note that r; % 0,75 # 0.
In order for the solution of (3.1) to be well defined, it is necessary to assume that the initial conditions

T ks T—k+1,---,T_1,To satisfy the following conditions:

1) z_g,...,x_1 are non-zero.
2) b+are # brg(x”“““), forevery: =0,1,...,k — 1, where ro

T kti
(H) : ¢ is defined as in (3.2), and b # ac.
j+1 _
3) (%) # —(,; for every integer j > O and forevery ¢ =0,1,...,k — 1,

where C; is defined as in (2.8), and z_; = ””;’_“72:1

Theorem 3.1. Consider the difference equation

Ln - (l'n—k + ax?L—k+1)
bTp_k41 + CTp_k

Tpt+1 =

with a,b, c > 0 such that b # ac, and initial conditions x_j,x _g+1, .. .,%T—_1, T satisfying (H). Let r1 and r2 be
defined as in (3.2). Let us define the functions

1 J+ O
Bi(d) = i, ; (3.3)

with C; as in (2.8). Then the solution to this equation is given by

m—1k—1

zmk =0 || ] 8:05)

j=0 i=0
Tmk41 = Bo(m) - T
Tmkt2 = Bo(m)Bi(m) - Tk

Tkt (k—1) = Bo(m) -+ Br—2(m) - Ty
form=0,1,2,3,...
Proof. From (2.5) and (2.7), we obtain

o T
Ymk+i — Tl(L)m

e
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Since we defined y,, = “2+ in (2.2), then

(L4 gr) ()™ + Ci(1+ §r2)
k+i+1 k+ Tl(%)m + Ci?”z

By applying this equality recursively for all non-negative integers m and k, and for¢ = 0,1,2,3,...,k — 1, we
immediately obtain the Theorem’s result. |

4. Asymptotic behavior of the solution to equation (3.1)

For the analysis of the global behavior of (3.1), let us consider the following additional conditions:

b+ ary # bry (M) forevery: =0,1,...,k — 1, where r;
(Hi) : Tk
is defined as in (3.2), and b # ac.

(I+¢r2) To

(Ho) : {Ci 2 Otin) (“)] for all 4 and for all j > 0.

We can see that o, as given in (3.2) with b # ac, satisfies

1 a 2(b— ac)

B b (et e oFrab) b

_ V(@—c)2+4b—(a+c) L9 (a—c)2+4b+(a—c)

2b b 2b
We also see that % +% > (. Moreover,
1
7+%<1@ (a—e)?+4b<2b—(a—c)=2b—(a—c)>0 and
T2

(20— (a—¢c)*>(a—c)* +4b=20—(a—c) >0 and b—(a—c)>1
<b—(a—c)>0.
From this, and in the same manner for the remaining cases, we have
a) %+%<1 <~ b—(a—c)>1.
b) +¢>1 = b—(a—c)<1
) éJr%:l — b—(a—c)=1.

Theorem 4.1. Let {x,,}>° . be the solution to (3.1) such that the initial conditions x_y, . . ., xq satisfy (H) and
(H1). Then,

1 Ifb—(a—c)>1, then{z, }32 . convergesto 0.
2. Ifb— (a — ¢) < 1 and the initial conditions satisfy (Hz) as well, then {x,}°° _, is unbounded.
3. Ifb—(a—c) =1, then {x,}>2 _, converges to a finite limit.

Proof. From conditions, we have C; # 0 for all 7. On the other hand, since |r1 /72| < 1, it follows for all 7 that
Bi(j) = 7 + §if j = oo, where 3;(j) is as defined in (3.3).
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1. Ifb— (a—c) > 1, then i + % < 1. Hence, there exist 0 < ¢ < 1 and jo € N such that |3;(j)| < e for all
J > jo and for all 4. Then, for large enough values of m, we have

jo—1k—1 m—1k—1
@il = ool | TT TT8:)| | TT T 8:0)
j=0 i=0 Jj=jo =0
jo—1k—1
<lzol | [T TI B:(3)| - "m0
=0 i=0
We conclude that as m tends to infinity, then x,,, converges to 0. Moreover, for i € {1,2,...,k — 1}, we
have
i—1
Tmkti = Tmk - Hﬁl(m)‘
1=0

Therefore, {z,,}5° _, tends to 0.

2.Ifb— (a — ¢) < 1, then i + % > 1. Hence, there exist 1 < 1 < % + 7 and j; € N such that
Bi(4) > e1 > 1forall j > j; and for all i. Moreover, by condition (Hs), we have 3;(j) # 0 for all ¢ and
for all j. Then, for large enough values of m, we have

m—1k—1

II I 50

i=i1i=0

J1—1k—1

I I3

j=0 i=0
ji—1k—1

> feol| TT TT 8:3)] -1,

=0 i=0

|Tmi| = [

We conclude that |xg,,| — oo when m — oo. Moreover, for i € {1,2,...,k — 1}, we have
i—1
Tmkti = Tk - | [ Bi(m).

=0

Therefore, the solution set {x,, }5° _, is unbounded.

3. Ifb— (a—¢) =1, then % + % = 1. Hence, there exists j> € N such that 3;(j) > 0 for j > j, and for all
1. Then, we have

jo—1k—1 m—1k—1
Thm = To ( 11 Hﬁi(j)) < 1111 5i(j)>

7=0 i=0 j=jz =0
a—1k—1 m—1k—1

= g ( IT 11 5i(j)> exp( > Zln(ﬁz‘(j)))
=0 i=0 i=j2 i=0

3
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Let us define

k—1 k—1 141 (1 + 91"1) T1
. Ciro b r9
aj =Y (Bi(j)) = > In ( )
g (3)
> (! (14 g 5oy ) —m (14 2 (2
= n = —r1)(— —In = —
‘ Cirg b ! T2 Cirg 12

Il
TS
|
/N
N
Q
3 —_
()
/N
—
+
SRS
3
—_
N———
7N
*E‘ﬁ
[
~_
<
+
Q
—
—
3
—_
\
3
V)
<
[\v]
o
S—
~_—

Then, we have
. @541 1
lim L‘ = ’— < 1.
j—=oo | aj T9

By D’Alembert’s ratio test, the series 3 7~ . Zf;ol In(B;(j)) converges. Hence, there exists v € R such

that
lim zg, =v.
m—r 00
In the same way, for i € {1,...,k — 1}, we have

i—1
Tmk+i = Tmk * Hﬁl(m) — v when m — oco.
1=0

Therefore, the solution set {xn},‘,’f:_ «, converges to a finite limit.

5. Numerical Results

Numerical simulations performed with MATLAB for the three cases stated in Theorem 4.1 are shown in the
following examples.

Example 1. Consider the equation

Ty (Tp—a + 7.32,_3)
3.52, 3+ 581, 4

Tp+1 =

In this case we have a = 7.3, b = 3.5, ¢ = 5.8 and k = 4. Also, we can see thatb — a + ¢ > 1. Table 1
shows convergence to zero.

164



Ty (AL +0Tp — 1)
bxy _ky1+CcTn_k

On the rational difference equation 41 =

Table 1: Numerical results for Example 1.

n T n Ty
—4 211 10 —0.083543908285124
-3 1] 20 0.012701017754877
-2 85 | 50 0.003594428250519
-1 —3.3 100  2.862071648505816 x 10~8

0 —1.7 | 200 1.691446180919758 x 10~ 18

—1.019132653061225 | 500  3.491237927069944 x 10~*°

2 —1.807491245443325 | 999  3.185169006739856 x 10100

Example 2 Consider the equation

Ty (Tn—3 + 0.82,_2)
0.22,_9 +0.12,_3

Tp+1 =

In this case, we have a = 0.8,b = 0.2,¢c = 0.1, kK = 3. Also, we can see that b — a + ¢ < 1. Table 2 shows
the solution set is unbounded.

Table 2: Numerical results for Example 2.

n Tn n Tn
-3 2.8 5  3.976943951329059 x 103
-2 75| 10  7.870828852071307 x 10°
-1 1.3 | 20  3.259245595490367 x 10'3

0 0.7 | 50 2.322461318837964 x 1033

1 3.460674157303371 | 100  2.844463544208173 x 1056

2 20.261541884525528 | 150  3.483792297723871 x 109

3 2.015795107600647 x 10% | 200 4.266818183833936 x 10132

Example 3 Consider the equation

$n($n,5 + 1-5557174)
17204 + 087, 5

Tn+1 =

In this case we have a = 1.5, b = 1.7, ¢ = 0.8, K = 5. Also, we can see that b — a + ¢ = 1. Table 3 shows
convergence to a finite limit approximately equal to 2.804367096028192.

Table 3: Numerical results for Example 3.

n Tn n Tn
) 3.1 2 2.824563238832514
—4 2.1 20 2.804362901181129
-3 1.8 50  2.804367096027094
-2 6.5 | 100 2.804367096028192
-1 3.3 | 200 2.804367096028192

2.7 | 500 2.804367096028192

1 2.789256198347107 | 999 2.804367096028192

3
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6. Conclusion

In Theorem 3.1 we found an explicit solution for equation (1.1) whena > 0,a > 0,b > 0, ¢ > 0, and
k > 1is an integer. The idea behind the construction of such a solution was to transform the given equation
into a Riccati difference equation, which can be easily transformed into a linear difference equation with constant
coefficients.

Similarly, in Theorem 4.1 we obtained results concerning the asymptotic behaviour of the solutions to (1.1).
We determined that solutions can be convergent or divergent, depending on whether the value of b — a + ¢ is
greater than, less than or equal to 1, when @ = 1. We also performed some numerical experiments in order to
verify such behaviours for different values of a, b, c and k.

The author considers that similar techniques can be used to obtain explicit solutions, or at least results about
the global behavious of such solutions, for the case when @, a, b and/or c are negatives, or when these coefficients
are linear on n. The author conjectures that the first case could give rise to periodical solutions, while the second
case can be dealt with by converting the resulting Riccati equation into a Cauchy-Euler equation.
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