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On dual π-endo Baer modules

YELIZ KARA1∗

1 Department of Mathematics, Bursa Uludağ University, 16059, Bursa, Turkey.
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Abstract. We introduce the concept of dual π-endo Baer modules. We evolve several structural properties such as direct
summands and direct sums. Moreover, we prove that the endomorphism ring of a dual π-endo Baer module is a π-Baer ring.
The examples are presented to exhibit the results.
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1. Introduction

All rings are associate with unity and modules are unital right R-modules. R and M stand by such a ring
and such a module, respectively. Throughout the paper, H denotes the endomorphism ring of M . A ring R is
called Baer (quasi-Baer) [10], [8], if the right annihilator of each nonempty subset (ideal) of R is generated by
an idempotent element of R. A kind of generalization of this condition is introduced in [4]. R is π-Baer [4], if
the right annihilator of each projection invariant left ideal is generated by an idempotent of R. Observe that R is
Baer implies that R is π-Baer implies that R is quasi-Baer.

A module M is e.Baer (quasi-e.Baer) [14], if for each AR ≤ MR (AR � MR), lH(A) = Hh for some
h = h2 ∈ H. Recently, the authors in [5] have defined a module M is π-endo Baer, if for each for each
AR �p MR, lH(A) = Hp for some p = p2 ∈ H. In [12] and [2], the authors dualized the concept of e.Baer
and quasi-e.Baer modules. M is called dual Baer (quasi-dual Baer), if for each (AR � MR) AR ≤ MR,
DH(A) = pH for some p = p2 ∈ H, where DH(A) = {ψ ∈ H |ψ(M) ⊆ A}. Following the ideas in [12]
and [2], we explore the dual concept of π-e.Baer modules. We call a module M is dual π-e.Baer, if for each
AR�pMR, DH(A) = hH for some h = h2 ∈ H. We indicate the fundamental results and connections between
related notions in Section 2. Moreover, we study on the direct summands and direct sums properties for the
former class of modules. In general, this class is neither closed under direct summands nor direct sums (see,
Example 2.13 and Example 3.8). However, Proposition 2.11 and Corollary 2.12 explain some conditions when
the dual π-e.Baer module property is inherited by direct summands. Further, we give a complete characterization
for the direct sums of dual π-e.Baer modules in Theorem 2.14.

∗Corresponding author. Email address: yelizkara@uludag.edu.tr (Yeliz Kara)

https://www.malayajournal.org/index.php/mjm/index c©2021 by the authors.



Yeliz Kara

In Section 3, we obtain the results related to the endomorphism rings. We prove that H is π-Baer if M is
dual π-e.Baer in Proposition 3.1. Theorem 3.3 and Corollaries 3.4-3.5 provide some conditions which ensure
the reverse of Proposition 3.1 fulfills. Finally, we represent the relations between e.Baer and dual-Baer modules
when the module has a countable regular endomorphism ring in Proposition 3.7.

The notations LR ≤ MR (LR ≤ RR), LR �pMR (LR �p RR), LR �MR (L� R) and LR ≤⊕ MR mean
that L is a right R-submodule of M (L is a right ideal of R), L is a projection invariant right R-submodule of M
(L is a projection invariant right ideal ofR), L is a fully invariant submodule ofM (L is an ideal ofR), and L is a
direct summand of M , respectively. rM (−) (lH(−)), I and Matn(R) show the right (left) annihilator in M (H),
the subring of H generated by the idempotent elements of H and the n-by-n matrix ring over R, respectively.
Recall that a right submodule A of M is called projection (fully) invariant in M , if p(A) ⊆ A for all p = p2 ∈ H
(p ∈ H). A ring R is Abelian if every idempotent of R is central. An idempotent e ∈ R is called left (right)
semicentral if re = ere (er = ere) for each r ∈ R. Sl(R) (Sr(R)) denotes the set of left (right) semicentral
idempotents of R. A module M has FI-SSSP, if the sum of any number of fully invariant direct summands is a
direct summand. For undefined notation or terminology, see [3, 6, 13].

2. Structural Properties

We evolve principal results and relations between the dual π-e.Baer modules and connected notions. Recall that
DH(A) = {ψ ∈ H |ψ(M) ⊆ A} for some AR ≤MR and EM (Y) =

∑
ψ∈Y

ψ(M) for some YH ≤ HH.

Lemma 2.1. Assume I is a right ideal ofH and A is a right submodule of M . Then
(i) EM (DH(EM (I))) = EM (I).
(ii) DH(EM (DH(A))) = DH(A).
(iii) DH(hM) = hH for some h = h2 ∈ H.
(iv) EM (hH) = hM for some h = h2 ∈ H.

Proof. (i) and (ii) These parts follow from [2, Lemma 1.3].
(iii) Let g ∈ hH. Then g = hg and g(M) = hg(M) ⊆ h(M). Thus g ∈ DH(hM), so hH ⊆ DH(hM).

Conversely, assume f ∈ DH(hM). Then f(M) ⊆ hM , so (1−h)f = 0 and hence f = hf +(1−h)f = hf ∈
hH. Therefore DH(hM) ⊆ hH. It follows that DH(hM) = hH.

(iv) Observe that hM ⊆ EM (hH). Let m ∈ EM (hH). Then m = α1(m1) + α2(m2) + · · · + αn(mn),
where αi ∈ hH and mi ∈M . Note that hαi = αi, so m ∈ hM . Thus EM (hH) ⊆ hM . �

Lemma 2.2. (i) DH(A) is a projection invariant right ideal ofH, for each AR �pMR.
(ii) EM (Y)R is a projection invariant submodule of MR, for each YH �p HH.

Proof. (i) Let AR �p MR. Then DH(A) is a right ideal of H. Consider e = e2 ∈ H and α ∈ DH(A). Then
eα(M) = e(α(M)) ⊆ e(A) ⊆ A, as AR �pMR. It follows that DH(A)H �p HH.

(ii) Note that EM (Y) is a submodule of M . Assume f = f2 ∈ H. Since YH �p HH, f(EM (Y)) =

f(
∑
ψ∈Y

ψ(M)) =
∑
ψ∈Y

(fψ)M ⊆
∑
β∈Y

β(M) for some β ∈ Y . Thence f(EM (Y)) ⊆ EM (Y), so EM (Y)R �p

MR. �

Definition 2.3. We call a moduleM dual endo π-Baer (denoted, dual π-e.Baer), provided that for allAR�pMR,
there exists h = h2 ∈ H such that DH(A) = hH.

Proposition 2.4. M is dual π-e.Baer if and only if there exists h = h2 ∈ H such that EM (Y) = hM for each
YH �p HH.

Proof. SupposeM is dual π-e.Baer and YH�pHH. ThenEM (Y)�pMR by Lemma 2.2. ThusDH(EM (Y)) =
hH for some h = h2 ∈ H. It follows from Lemma 2.1 that EM (Y) = EM (DH(EM (Y))) = EM (fH) = hM .

40



On dual π-endo Baer modules

Conversely, let AR �p MR. Observe that DH(A) �p HH by Lemma 2.2. Then there exists p = p2 ∈ H such
that EM (DH(A)) = pM . Therefore DH(A) = DH(pM) = pH by Lemma 2.1. Hence M is dual π-e.Baer. �

Since DH(A)�p HH and EM (Y)�pMR, h, p ∈ Sl(H) in Proposition 2.4 by [7, Proposition 4.12].

Lemma 2.5. Suppose M is a dual π-e.Baer module.
(i) If ψ(M)R �pMR for some ψ ∈ H, then ψ(M)R ≤⊕ MR.
(ii) If NR ∼= DR ≤⊕ MR for each NR �pMR, then NR ≤⊕ MR.

Proof. (i) Assume ψ(M)R �pMR for some ψ ∈ H. Then I(ψ(M)) = ψ(M), and IψH = ψH. It follows that
(IψH)H�pHH and ψ(M) = EM (IψH). Thus there exists h = h2 ∈ H such that ψ(M) = hM by Proposition
2.4.

(ii) Let NR �pMR and N ∼= hM for some h = h2 ∈ H. Then there exists an isomorphism α : hM → N .
Consider the map ψ = ιαπ, where π : M → hM is projection, and ι : N → M is inclusion. Observe that
ψ ∈ H and ψ(M) = ιαπ(M) = α(hM) = N . Since NR �pMR, part (i) yields that NR ≤⊕ MR. �

Theorem 2.6. M is dual Baer implies that M is dual π-e.Baer implies that M is quasi-dual Baer.

Proof. Suppose M is dual Baer and AR�pMR. Then there exists h = h2 ∈ H such that DH(A) = hH. Hence
M is dual π-e.Baer. Observe that fully invariant submodules are projection invariant. Therefore the second part
follows the similar arguments in the above. �

At the end of the paper, we provide examples which shows that the implications in Theorem 2.6 are
irreversible (see, Example 3.8).

Proposition 2.7. Assume that ψ(M)R �MR for each ψ ∈ H. Then M is dual π-e.Baer if and only if M has
FI-SSSP and ψ(M)R ≤⊕ MR for all ψ ∈ H.

Proof. Suppose that ψ(M)R �MR for all ψ ∈ H, and M is dual π-e.Baer. Then Lemma 2.5, Theorem 2.6,
and [2, Lemma 2.2] complete the result. Conversely, assume M has the stated property. Let YH �p HH and
EM (Y) =

∑
ψ∈Y

ψ(M). By hypothesis, ψ(M) �M and ψ(M) ≤⊕ M for all ψ ∈ H. Then EM (Y) ≤⊕ M by

the FI-SSSP condition. Therefore the proof is done. �

Proposition 2.8. (i) If ψ(M)R �MR for all ψ ∈ H, then M is dual Baer ⇔ M is dual π-e.Baer ⇔ M is
quasi-dual Baer.

(ii) If M is indecomposable, then M is dual Baer⇔M is dual π-e.Baer.
(iii) AssumeH is an Abelian ring. Then M is dual Baer⇔M is dual π-e.Baer.
(iv) AssumeH = I. Then M is dual π-e.Baer⇔M is quasi-dual Baer.

Proof. (i) [2, Theorem 2.3] and Theorem 2.6 complete the proof.
(ii) Observe that every submodule of an indecomposable module is projection invariant. Therefore Theorem

2.6 yields the result.
(iii) Suppose M is dual π-e.Baer and YH ≤ HH. Then YH�pHH by [4, Lemma 2.3]. Thus EM (Y) = hM

for some h = h2 ∈ H by Proposition 2.4. It follows from [12, Theorem 2.1] that M is dual Baer. Theorem 2.6
yields the converse.

(iv) SupposeH = I andM is quasi-dual Baer. LetAR�pMR. SinceH = I,AR�MR. ThusDH(A) = hH
for some h = h2 ∈ H, so M is dual π-e.Baer. Converse is clear from Theorem 2.6. �

Corollary 2.9. The free R-module F with a finite rank is dual π-e.Baer if and only if it is quasi-dual Baer.

Proof. Suppose FR =
n⊕
t=1

Rt where n > 1 and Rt ∼= R. Then H ∼= Matn(R) and I(Matn(R)) = Matn(R).

Therefore Proposition 2.8(iv) ensures the result. �
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Now, we study on the direct summands and directs sums properties for the former class of modules. A module
M is retractable, if HomR(M,A) 6= 0 for all 0 6= A ≤M .

Lemma 2.10. Assume M is a dual π-e.Baer and retractable module. Then every 0 6= AR �p MR includes a
nonzero direct summand of M .

Proof. Suppose M satisfies the stated property. Let 0 6= AR�pMR. Then DH(A) = hH for some h = h2 ∈ H
by Proposition 2.4. Note that h ∈ Sl(H). Since M is retractable, ψM ⊆ A for some 0 6= ψ ∈ H. Thus
ψ ∈ DH(A), so ψ = hψ. Observe that (ψh)2 = ψ(hψh) = ψh ∈ H, as h ∈ Sl(H). Moreover 0 6= ψhM ⊆
ψM ⊆ A, so ψhM ≤⊕ M . �

We mention in Example 3.8 that a direct summand of a dual π-e.Baer module need not to be dual π-e.Baer.
To this end, we investigate when the direct summands fulfill the property.

Proposition 2.11. Assume M is dual π-e.Baer and (hM)R � MR for all h = h2 ∈ H. Then (hM)R and
((1− h)M)R are dual π-e.Baer.

Proof. Let M be dual π-e.Baer, (hM)R � MR and AR �p (hM)R. Then AR �p MR by [5, Lemma 3.1].
Hence DH(A) = pH for some p ∈ Sl(H). Notice that HhM ∼= hHh and h ∈ Sl(H). Moreover,
(hph)2 = hph ∈ hHh and (hph)M ⊆ hp(M) ⊆ h(A) ⊆ A. Hence hph ∈ DhHh(A). Thus
(hph)(hHh) ⊆ DhHh(A). Let ψ ∈ DhHh(A). Then ψ(M) ⊆ A and ψ ∈ hHh. It follows that
ψ ∈ DH(A) = fH, so ψ = fψ. Since ψ ∈ hHh and h ∈ Sl(H), we obtain that
ψ = fhψ = (hfh)ψ ∈ (hfh)(hHh). Therefore DhHh(A) ⊆ (hfh)(hHh). It follows that
DhHh(A) = (hfh)(hHh), where (hfh)2 = hfh ∈ hHh. Consequently, (hM)R is dual π-e.Baer.

Now, letB�p ((1−h)M)R. Then (hM⊕B)R�pMR by [7, Lemma 4.13]. Then J = DH(hM⊕B) = gH
for some g ∈ Sl(H). Note that H(1−h)M ∼= (1 − h)H(1 − h) and (1 − h)J(1 − h) = J ∩ (1 − h)H(1 − h).
Since 1 − h ∈ Sr(H), (1 − h)J(1 − h) = (1 − h)gH(1 − h) = (1 − h)g(1 − h)H(1 − h) = (1 − h)g(1 −
h)((1 − h)H(1 − h)). Further, (1 − h)g(1 − h) = ((1 − h)g(1 − h))2 ∈ (1 − h)H(1 − h). Our claim
is (1 − h)J(1 − h) = D(1−h)H(1−h)(B). Let α ∈ J . Then (1 − h)α(1 − h)(M) ⊆ (1 − h)α(M) ⊆
(1−h)(hM ⊕B) = (1−h)B ⊆ B, asBR�p (1−h)MR. It follows that (1−h)J(1−h) ⊆ D(1−h)H(1−h)(B).
Assume that (1−h)β(1−h) ∈ (1−h)H(1−h) such that (1−h)β(1−h)(M) ⊆ B. Hence (1−h)β(1−h) ∈ J .
But (1 − h)β(1 − h) ∈ (1 − h)H(1 − h), so (1 − h)β(1 − h) ∈ J ∩ (1 − h)H(1 − h) = (1 − h)J(1 − h). It
follows that D(1−h)H(1−h)(B) ⊆ (1− h)J(1− h), so ((1− h)M)R is dual π-e.Baer. �

Corollary 2.12. Suppose M is dual π-e.Baer and H is Abelian. Then (hM)R and ((1 − h)M)R are dual
π-e.Baer for all h = h2 ∈ H.

Proof. SinceH is Abelian, (hM)R�MR for all h = h2 ∈ H. Hence Proposition 2.11 completes the proof. �

The following example illustrates the direct sums of dual π-e.Baer modules.

Example 2.13. For any prime p, consider MZ = Z(p∞)⊕ Zp. Then Z(p∞) and Zp are dual π-e.Baer modules.
On the other hand, MZ is not dual π-e.Baer by [2, Example 2.3] and Theorem 2.6.

Theorem 2.14. Suppose M =
⊕
κ∈K

Mκ such that (Mκ)R �MR for all κ ∈ K. Then M is dual π-e.Baer if and

only if Mκ is dual π-e.Baer for all κ ∈ K.

Proof. Assume that for each κ ∈ K, Mκ is dual π-e.Baer. Since (Mκ)R �MR, HomR(Mκ,Mχ) = 0 for all
κ 6= χ ∈ K. Observe thatH =

∏
κ∈K
Hκ, whereHκ = HMκ . Let YH�pHH. Then Y =

∏
κ∈K

(Y∩Hκ) =
∏
κ∈K
Yκ,

where Yκ = Y ∩Hκ for κ ∈ K. Notice that (Yκ)Hκ�p (Hκ)Hκ . SinceMκ is dual π-e.Baer, EMκ(Yκ) = hκMκ

for some hκ = h2κ ∈ Hκ. Note thatEM (Y) =
∑
ψ∈Y

ψ(M) =
∑
κ∈K

EMκ(Yκ) =
⊕
κ=1

hκMκ, as hκMκ∩hχMχ = 0

for all κ 6= χ ∈ K. It gives thatEM (Y) ≤⊕ M , soM is dual π-e.Baer. Converse is a consequence of Proposition
2.11. �
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3. Endomorphism Rings of Dual π-e.Baer Modules

Our goal is to analyze the properties of the endomorphism ring of a dual π-endo Baer module.

Proposition 3.1. The endomorphism ring of a dual π-e.Baer module is a π-Baer ring.

Proof. Suppose M is dual π-e.Baer and YH �p HH. Then EM (Y) =
∑
ψ∈Y

ψ(M) = hM for some h = h2 ∈ H

by Proposition 2.4. Observe that ψ(M) ⊆ hM , so (1 − h)ψ(M) = 0. Thus (1 − h)ψ = 0 which gives that
1 − h ∈ lH(Y). Hence H(1 − h) ⊆ lH(Y). Let α ∈ lH(Y). Then αY = 0, so αψ(M) = 0 for all ψ ∈ Y .
Thence α(EM (Y)) = 0, hence (αh)M = 0, so αh = 0. Therefore α = αh+α(1−h) = α(1−h) ∈ H(1−h),
so lH(Y) ⊆ H(1− h). ThusH is π-Baer. �

The next example validates the reverse of Proposition 3.1 may not be true, in general.

Example 3.2. (i) Assume MZ = ZZ. ThenH ∼= Z is a π-Baer ring, but MZ is not dual π-e.Baer.

(ii) Let R =
∞∏
ι=1
Fι, where F is a field and Fι = F for ι = 1, 2, · · · . Then MR = RR is not dual Baer

by [12, Corollary 2.9]. Since R is a commutative ring, MR is not dual π-e.Baer. However, H ∼= R and R is a
π-Baer ring by [4, Proposition 2.10].

A module MR is called coretractable (quasi-coretractable) [1], [11], provided that HomR(M/A,M) 6= 0

(HomR(M/
∑
ψ∈I

ψ(M),M) 6= 0) for all proper A ≤ M (IH ≤ HH with
∑
ψ∈I

ψ(M) 6= M ). Notice that

every coretractable module is quasi-coretractable. In the following result, we characterize a dual π-e.Baer (resp.,
quasi-dual Baer) module and its endomorphism ring being π-Baer (resp., quasi-Baer).

Theorem 3.3. Assume M is quasi-coretractable. Then M is dual π-e.Baer (resp., quasi-dual Baer) if and only
ifH is π-Baer (resp., quasi-Baer).

Proof. Assume M is dual π-e.Baer. By Proposition 3.1, H is π-Baer. Let H is π-Baer and YH �p HH. We
claim that EM (Y) =

∑
ψ∈Y

ψ(M) ≤⊕ MR. Since H is π-Baer, there is h = h2 ∈ H such that lH(Y) = Hh.

Observe Y ⊆ rH(lH(Y)) = (1 − h)H. Consider the right ideal A = Y + hH. Notice that lH(A) = lH(Y) ∩
lH(hH) = Hh ∩ H(1 − h) = 0. Thus, lH(A) = 0. By [11, Lemma 3.3],

∑
ψ∈A

ψ(M) = M . Furthermore,

M =
∑
ψ∈A

ψ(M) =
∑
ψ∈I

ψ(M)⊕
∑

ψ∈hH
ψ(M) which gives that M = EM (Y)⊕

∑
ψ∈hH

ψ(M). Hence M is dual

π-e.Baer. The quasi-dual Baer case follows from the similar arguments and [2, Proposition 3.1]. �

Corollary 3.4. M is dual π-e.Baer if and only if EM (Y) = rM (lH(Y)) is a direct summand of MR for all
YH �p HH andH is π-Baer.

Proof. Suppose M is dual π-e.Baer. By Proposition 3.1, H is π-Baer. Let YH �p HH. Then EM (Y) = pM

for some p ∈ Sl(H). Thus (1 − p)ψ(M) = 0 for all ψ ∈ Y by Proposition 2.4. Then 1 − p ∈ lH(Y), so
H(1−p) ⊆ lH(Y). It follows that rM (lH(Y)) ⊆ rM (H(1−p)) = pM = EM (Y). We claim that lH(Y)pM = 0.
Observe that gY = 0 for all g ∈ lH(Y). Then 0 = g(

∑
ψ∈Y

ψ(M)) = g(EM (Y)) = g(pM). Therefore

lH(Y)pM = 0, so pM ⊆ rM (lH(Y)). It follows that EM (Y) = rM (lH(Y) = pM . Conversely, let EM (Y) =
rM (lH(Y)) ≤⊕ MR for all YH �p HH and H be π-Baer. Thus lH(Y) = Hq for some q ∈ Sr(H) by [4,
Proposition 2.1] Hence qν = 0 for all ν ∈ Y . Thus ν = qν+(1−q)ν = (1−q)ν and ν(M) ⊆ (1−q)M . Thence
EM (Y) ⊆ (1− q)M . However, (1− q)M = rM (Hq) = rM (lH(Y)). By hypothesis, (1− q)M = EM (Y), so
M is dual π-e.Baer. �
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A ring R is called right Kasch [13], if every simple right R-module can be embedded in RR.

Corollary 3.5. (i) SupposeH is right Kasch. Then M is dual π-e.Baer if and only ifH is π-Baer.
(ii) If M is an indecomposable dual π-e.Baer module with finite uniform dimension, thenH is semilocal.

Proof. (i) Since H is a right Kasch ring, HH is coretractable by [1, Theorem 2.14]. Then HH is quasi-
coretractable. Therefore Theorem 3.3 yields the result.

(ii) Proposition 2.8(ii) and [12, Proposition 2.17] complete the proof. �

Proposition 3.6. The followings are equivalent.
(i)M is an indecomposable dual π-e.Baer module.
(ii)M is a quasi-coretractable module andH is a domain.
(iii) Every 0 6= τ ∈ H is an epimorphism.
(iv) EM (Y) =M for all 0 6= YH ≤ HH.
(v) DH(A) = H for all 0 6= AR ≤MR.

Proof. (i)⇔ (ii)⇔ (iii) Proposition 2.8(ii), [11, Corollary 2.7] and [12, Corollary 2.2] yield the implications.
(i) ⇒ (iv) Let 0 6= YH ≤ HH. Since M is indecomposable, YH �p HH. Hence EM (Y) = pM for

some p = p2 ∈ H. Thence EM (Y) = 0 or EM (Y) = M . If EM (Y) = 0, then Y ⊆ DH(EM (Y)) = 0, a
contradiction. Therefore EM (Y) =M .

(iv)⇒ (i) SupposeXH�pHH. IfX = 0, then we are done. Let 0 6= X . By part (iv),EM (X ) =M soMR is
dual π-e.Baer. Moreover, EM (hH) =M for some 0 6= h = h2 ∈ H by part (iv). HenceM = EM (hH) = hM ,
so h = 1. Therefore M is indecomposable.

(i)⇔ (v) This part follows from the similar steps in part (i)⇒ (iv) and part (iv)⇒ (i). �

Assume T is the Z2-subalgebra of
∞∏
$=1

F$ generated by
∞⊕
$=1

F$ and 1, where F$ = Z2. Then T is a

countable von Neumann regular ring [6]. In the following result, we make connections between the related
notions when the module has a countable regular endomorphism ring.

Proposition 3.7. AssumeH is countable regular. Then the following statements are equivalent.
(i)H is a Baer ring.
(ii)MR is a dual Baer module.
(iii)HH is a dual Baer module.
(iv)MR is an e.Baer module.

Proof. (i) ⇒ (2) H is a semisimple Artinian ring by [6, Corollary 3.1.13]. Then DH(X) ≤⊕ HH for any
∅ 6= X ⊆M , so M is dual Baer.

(ii) ⇒ (iii) By [11, Theorem 3.6], H is Baer. Thence HH is a dual Baer module by [6, Corollary 3.1.13]
and [12, Corollary 2.9].

(iii) ⇒ (iv) Observe that HH is semisimple by [12, Corollary 2.9]. Hence H(lH(B)) ≤⊕ HH for all
∅ 6= B ⊆M . Thus M is e.Baer.

(iv)⇒ (i) This part follows from [14, Theorem 4.1]. �

The following example explains dual Baer, dual π-e.Baer and quasi-dual Baer modules are strictly different
from each other. Furthermore, it gives an answer to the question: is the dual π-e.Baer module property inherited
by direct summands?

Example 3.8. Assume that R be a simple Noetherian ring with {0, 1} as its only idempotents and not Morita
equivalent to a domain [9]. Observe from [4, Theorem 2.1], R is quasi-Baer but not π-Baer. Then consider the
following examples:

(1) Let MR = RR. Observe that R is a quasi-Baer ring, and RR is coretractable. Hence RR is quasi-dual
Baer by Theorem 3.3. Since R is not a π-Baer ring by [4, Theorem 2.1], RR is not dual π-e.Baer.

44



On dual π-endo Baer modules

(2) Let TR =
n⊕
κ=1

Rκ where Rκ ∼= R. Hence TR is dual π-e.Baer, but not dual Baer. To see this, observe that

TR is a coretractable module by [1, Proposition 2.6]. Notice that TR is quasi-e.Baer by [14, Proposition 3.19],
and hence H ∼= Matn(R) is also a quasi-Baer ring by [14, Theorem 4.1]. It follows from Theorem 3.3 that TR
is quasi-dual Baer. Moreover, TR is dual π-e.Baer by Corollary 2.9(i). However, TR is not dual Baer. Because
H ∼=Matn(R) is not a Baer ring by [10, Exercise 3].

(3) Note that TR =
n⊕
κ=1

Rκ in part (2) includes a direct summand, RR, which is not dual π-e.Baer.
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