On dual π-endo Baer modules

Yeliz Kara ${ }^{1 *}$
${ }^{1}$ Department of Mathematics, Bursa Uludağ University, 16059, Bursa, Turkey.

Received 12 January 2021; Accepted 25 March 2021

Abstract

We introduce the concept of dual π-endo Baer modules. We evolve several structural properties such as direct summands and direct sums. Moreover, we prove that the endomorphism ring of a dual π-endo Baer module is a π-Baer ring. The examples are presented to exhibit the results.

AMS Subject Classifications: 16D10, 16D80.
Keywords: Baer ring; π-Baer ring; dual-Baer module; projection invariant submodule; endomorphism ring.

Contents

1 Introduction 39
2 Structural Properties 40
3 Endomorphism Rings of Dual π-e.Baer Modules 43

1. Introduction

All rings are associate with unity and modules are unital right R-modules. R and M stand by such a ring and such a module, respectively. Throughout the paper, \mathcal{H} denotes the endomorphism ring of M. A ring R is called Baer (quasi-Baer) [10], [8], if the right annihilator of each nonempty subset (ideal) of R is generated by an idempotent element of R. A kind of generalization of this condition is introduced in [4]. R is π-Baer [4], if the right annihilator of each projection invariant left ideal is generated by an idempotent of R. Observe that R is Baer implies that R is π-Baer implies that R is quasi-Baer.

A module M is e.Baer (quasi-e.Baer) [14], if for each $A_{R} \leq M_{R}\left(A_{R} \unlhd M_{R}\right), l_{\mathcal{H}}(A)=\mathcal{H} h$ for some $h=h^{2} \in \mathcal{H}$. Recently, the authors in [5] have defined a module M is π-endo Baer, if for each for each $A_{R} \unlhd_{p} M_{R}, l_{\mathcal{H}}(A)=\mathcal{H} p$ for some $p=p^{2} \in \mathcal{H}$. In [12] and [2], the authors dualized the concept of e.Baer and quasi-e.Baer modules. M is called dual Baer (quasi-dual Baer), if for each ($A_{R} \unlhd M_{R}$) $A_{R} \leq M_{R}$, $D_{\mathcal{H}}(A)=p \mathcal{H}$ for some $p=p^{2} \in \mathcal{H}$, where $D_{\mathcal{H}}(A)=\{\psi \in \mathcal{H} \mid \psi(M) \subseteq A\}$. Following the ideas in [12] and [2], we explore the dual concept of π-e.Baer modules. We call a module M is dual π-e.Baer, if for each $A_{R} \unlhd_{p} M_{R}, D_{\mathcal{H}}(A)=h \mathcal{H}$ for some $h=h^{2} \in \mathcal{H}$. We indicate the fundamental results and connections between related notions in Section 2. Moreover, we study on the direct summands and direct sums properties for the former class of modules. In general, this class is neither closed under direct summands nor direct sums (see, Example 2.13 and Example 3.8). However, Proposition 2.11 and Corollary 2.12 explain some conditions when the dual π-e.Baer module property is inherited by direct summands. Further, we give a complete characterization for the direct sums of dual π-e.Baer modules in Theorem 2.14.

[^0]In Section 3, we obtain the results related to the endomorphism rings. We prove that \mathcal{H} is π-Baer if M is dual π-e.Baer in Proposition 3.1. Theorem 3.3 and Corollaries 3.4-3.5 provide some conditions which ensure the reverse of Proposition 3.1 fulfills. Finally, we represent the relations between e.Baer and dual-Baer modules when the module has a countable regular endomorphism ring in Proposition 3.7.

The notations $L_{R} \leq M_{R}\left(L_{R} \leq R_{R}\right), L_{R} \unlhd_{p} M_{R}\left(L_{R} \unlhd_{p} R_{R}\right), L_{R} \unlhd M_{R}(L \unlhd R)$ and $L_{R} \leq{ }^{\oplus} M_{R}$ mean that L is a right R-submodule of M (L is a right ideal of R), L is a projection invariant right R-submodule of M (L is a projection invariant right ideal of R), L is a fully invariant submodule of M (L is an ideal of R), and L is a direct summand of M, respectively. $r_{M}(-)\left(l_{\mathcal{H}}(-)\right)$, I and $M a t_{n}(R)$ show the right (left) annihilator in $M(\mathcal{H})$, the subring of \mathcal{H} generated by the idempotent elements of \mathcal{H} and the n-by- n matrix ring over R, respectively. Recall that a right submodule A of M is called projection (fully) invariant in M, if $p(A) \subseteq A$ for all $p=p^{2} \in \mathcal{H}$ $(p \in \mathcal{H})$. A ring R is Abelian if every idempotent of R is central. An idempotent $e \in R$ is called left (right) semicentral if $r e=$ ere $(e r=e r e)$ for each $r \in R . S_{l}(R)\left(S_{r}(R)\right)$ denotes the set of left (right) semicentral idempotents of R. A module M has $F I-S S S P$, if the sum of any number of fully invariant direct summands is a direct summand. For undefined notation or terminology, see [3, 6, 13].

2. Structural Properties

We evolve principal results and relations between the dual π-e.Baer modules and connected notions. Recall that $D_{\mathcal{H}}(A)=\{\psi \in \mathcal{H} \mid \psi(M) \subseteq A\}$ for some $A_{R} \leq M_{R}$ and $E_{M}(\mathcal{Y})=\sum_{\psi \in \mathcal{Y}} \psi(M)$ for some $\mathcal{Y}_{\mathcal{H}} \leq \mathcal{H}_{\mathcal{H}}$.

Lemma 2.1. Assume \mathcal{I} is a right ideal of \mathcal{H} and A is a right submodule of M. Then
(i) $E_{M}\left(D_{\mathcal{H}}\left(E_{M}(\mathcal{I})\right)\right)=E_{M}(\mathcal{I})$.
(ii) $D_{\mathcal{H}}\left(E_{M}\left(D_{\mathcal{H}}(A)\right)\right)=D_{\mathcal{H}}(A)$.
(iii) $D_{\mathcal{H}}(h M)=h \mathcal{H}$ for some $h=h^{2} \in \mathcal{H}$.
(iv) $E_{M}(h \mathcal{H})=h M$ for some $h=h^{2} \in \mathcal{H}$.

Proof. (i) and (ii) These parts follow from [2, Lemma 1.3].
(iii) Let $g \in h \mathcal{H}$. Then $g=h g$ and $g(M)=h g(M) \subseteq h(M)$. Thus $g \in D_{\mathcal{H}}(h M)$, so $h \mathcal{H} \subseteq D_{\mathcal{H}}(h M)$. Conversely, assume $f \in D_{\mathcal{H}}(h M)$. Then $f(M) \subseteq h M$, so $(1-h) f=0$ and hence $f=h f+(1-h) f=h f \in$ $h \mathcal{H}$. Therefore $D_{\mathcal{H}}(h M) \subseteq h \mathcal{H}$. It follows that $D_{\mathcal{H}}(h M)=h \mathcal{H}$.
(iv) Observe that $h M \subseteq E_{M}(h \mathcal{H})$. Let $m \in E_{M}(h \mathcal{H})$. Then $m=\alpha_{1}\left(m_{1}\right)+\alpha_{2}\left(m_{2}\right)+\cdots+\alpha_{n}\left(m_{n}\right)$, where $\alpha_{i} \in h \mathcal{H}$ and $m_{i} \in M$. Note that $h \alpha_{i}=\alpha_{i}$, so $m \in h M$. Thus $E_{M}(h \mathcal{H}) \subseteq h M$.

Lemma 2.2. (i) $D_{\mathcal{H}}(A)$ is a projection invariant right ideal of \mathcal{H}, for each $A_{R} \unlhd_{p} M_{R}$.
(ii) $E_{M}(\mathcal{Y})_{R}$ is a projection invariant submodule of M_{R}, for each $\mathcal{Y}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$.

Proof. (i) Let $A_{R} \unlhd_{p} M_{R}$. Then $D_{\mathcal{H}}(A)$ is a right ideal of \mathcal{H}. Consider $e=e^{2} \in \mathcal{H}$ and $\alpha \in D_{\mathcal{H}}(A)$. Then $e \alpha(M)=e(\alpha(M)) \subseteq e(A) \subseteq A$, as $A_{R} \unlhd_{p} M_{R}$. It follows that $D_{\mathcal{H}}(A)_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$.
(ii) Note that $E_{M}(\mathcal{Y})$ is a submodule of M. Assume $f=f^{2} \in \mathcal{H}$. Since $\mathcal{Y}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}, f\left(E_{M}(\mathcal{Y})\right)=$ $f\left(\sum_{\psi \in Y} \psi(M)\right)=\sum_{\psi \in Y}(f \psi) M \subseteq \sum_{\beta \in \mathcal{Y}} \beta(M)$ for some $\beta \in \mathcal{Y}$. Thence $f\left(E_{M}(\mathcal{Y})\right) \subseteq E_{M}(\mathcal{Y})$, so $E_{M}(\mathcal{Y})_{R} \unlhd_{p}$ M_{R}.

Definition 2.3. We call a module M dual endo π-Baer (denoted, dual π-e.Baer), provided that for all $A_{R} \unlhd_{p} M_{R}$, there exists $h=h^{2} \in \mathcal{H}$ such that $D_{\mathcal{H}}(A)=h \mathcal{H}$.

Proposition 2.4. M is dual π-e.Baer if and only if there exists $h=h^{2} \in \mathcal{H}$ such that $E_{M}(\mathcal{Y})=h M$ for each $\mathcal{Y}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$.

Proof. Suppose M is dual π-e.Baer and $\mathcal{Y}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$. Then $E_{M}(\mathcal{Y}) \unlhd_{p} M_{R}$ by Lemma 2.2. Thus $D_{\mathcal{H}}\left(E_{M}(\mathcal{Y})\right)=$ $h \mathcal{H}$ for some $h=h^{2} \in \mathcal{H}$. It follows from Lemma 2.1 that $E_{M}(\mathcal{Y})=E_{M}\left(D_{\mathcal{H}}\left(E_{M}(\mathcal{Y})\right)\right)=E_{M}(f \mathcal{H})=h M$.

Conversely, let $A_{R} \unlhd_{p} M_{R}$. Observe that $D_{\mathcal{H}}(A) \unlhd_{p} \mathcal{H}_{\mathcal{H}}$ by Lemma 2.2. Then there exists $p=p^{2} \in \mathcal{H}$ such that $E_{M}\left(D_{\mathcal{H}}(A)\right)=p M$. Therefore $D_{\mathcal{H}}(A)=D_{\mathcal{H}}(p M)=p \mathcal{H}$ by Lemma 2.1. Hence M is dual π-e.Baer.

Since $D_{\mathcal{H}}(A) \unlhd_{p} \mathcal{H}_{\mathcal{H}}$ and $E_{M}(\mathcal{Y}) \unlhd_{p} M_{R}, h, p \in S_{l}(\mathcal{H})$ in Proposition 2.4 by [7, Proposition 4.12].
Lemma 2.5. Suppose M is a dual $\pi-e . B a e r ~ m o d u l e . ~$
(i) If $\psi(M)_{R} \unlhd_{p} M_{R}$ for some $\psi \in \mathcal{H}$, then $\psi(M)_{R} \leq^{\oplus} M_{R}$.
(ii) If $N_{R} \cong D_{R} \leq{ }^{\oplus} M_{R}$ for each $N_{R} \unlhd_{p} M_{R}$, then $N_{R} \leq{ }^{\oplus} M_{R}$.

Proof. (i) Assume $\psi(M)_{R} \unlhd_{p} M_{R}$ for some $\psi \in \mathcal{H}$. Then $\mathbf{I}(\psi(M))=\psi(M)$, and $\mathbf{I} \psi \mathcal{H}=\psi \mathcal{H}$. It follows that $(\mathbf{I} \psi \mathcal{H})_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$ and $\psi(M)=E_{M}(\mathbf{I} \psi \mathcal{H})$. Thus there exists $h=h^{2} \in \mathcal{H}$ such that $\psi(M)=h M$ by Proposition 2.4.
(ii) Let $N_{R} \unlhd_{p} M_{R}$ and $N \cong h M$ for some $h=h^{2} \in \mathcal{H}$. Then there exists an isomorphism $\alpha: h M \rightarrow N$. Consider the map $\psi=\iota \alpha \pi$, where $\pi: M \rightarrow h M$ is projection, and $\iota: N \rightarrow M$ is inclusion. Observe that $\psi \in \mathcal{H}$ and $\psi(M)=\iota \alpha \pi(M)=\alpha(h M)=N$. Since $N_{R} \unlhd_{p} M_{R}$, part (i) yields that $N_{R} \leq{ }^{\oplus} M_{R}$.

Theorem 2.6. M is dual Baer implies that M is dual π-e.Baer implies that M is quasi-dual Baer.
Proof. Suppose M is dual Baer and $A_{R} \unlhd_{p} M_{R}$. Then there exists $h=h^{2} \in \mathcal{H}$ such that $D_{\mathcal{H}}(A)=h \mathcal{H}$. Hence M is dual π-e.Baer. Observe that fully invariant submodules are projection invariant. Therefore the second part follows the similar arguments in the above.

At the end of the paper, we provide examples which shows that the implications in Theorem 2.6 are irreversible (see, Example 3.8).

Proposition 2.7. Assume that $\psi(M)_{R} \unlhd M_{R}$ for each $\psi \in \mathcal{H}$. Then M is dual π-e.Baer if and only if M has FI-SSSP and $\psi(M)_{R} \leq{ }^{\oplus} M_{R}$ for all $\psi \in \mathcal{H}$.

Proof. Suppose that $\psi(M)_{R} \unlhd M_{R}$ for all $\psi \in \mathcal{H}$, and M is dual π-e.Baer. Then Lemma 2.5, Theorem 2.6, and [2, Lemma 2.2] complete the result. Conversely, assume M has the stated property. Let $\mathcal{Y}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$ and $E_{M}(\mathcal{Y})=\sum_{\psi \in \mathcal{Y}} \psi(M)$. By hypothesis, $\psi(M) \unlhd M$ and $\psi(M) \leq \oplus M$ for all $\psi \in \mathcal{H}$. Then $E_{M}(\mathcal{Y}) \leq{ }^{\oplus} M$ by the FI-SSSP condition. Therefore the proof is done.
Proposition 2.8. (i) If $\psi(M)_{R} \unlhd M_{R}$ for all $\psi \in \mathcal{H}$, then M is dual Baer $\Leftrightarrow M$ is dual π-e.Baer $\Leftrightarrow M$ is quasi-dual Baer.
(ii) If M is indecomposable, then M is dual Baer $\Leftrightarrow M$ is dual π-e.Baer.
(iii) Assume \mathcal{H} is an Abelian ring. Then M is dual Baer $\Leftrightarrow M$ is dual π-e.Baer.
(iv) Assume $\mathcal{H}=\mathbf{I}$. Then M is dual π-e.Baer $\Leftrightarrow M$ is quasi-dual Baer.

Proof. (i) [2, Theorem 2.3] and Theorem 2.6 complete the proof.
(ii) Observe that every submodule of an indecomposable module is projection invariant. Therefore Theorem 2.6 yields the result.
(iii) Suppose M is dual π-e.Baer and $\mathcal{Y}_{\mathcal{H}} \leq \mathcal{H}_{\mathcal{H}}$. Then $\mathcal{Y}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$ by [4, Lemma 2.3]. Thus $E_{M}(\mathcal{Y})=h M$ for some $h=h^{2} \in \mathcal{H}$ by Proposition 2.4. It follows from [12, Theorem 2.1] that M is dual Baer. Theorem 2.6 yields the converse.
(iv) Suppose $\mathcal{H}=\mathbf{I}$ and M is quasi-dual Baer. Let $A_{R} \unlhd_{p} M_{R}$. Since $\mathcal{H}=\mathbf{I}, A_{R} \unlhd M_{R}$. Thus $D_{\mathcal{H}}(A)=h \mathcal{H}$ for some $h=h^{2} \in \mathcal{H}$, so M is dual π-e.Baer. Converse is clear from Theorem 2.6.

Corollary 2.9. The free R-module F with a finite rank is dual $\pi-e$-Baer if and only if it is quasi-dual Baer.
Proof. Suppose $F_{R}=\bigoplus_{t=1}^{n} R_{t}$ where $n>1$ and $R_{t} \cong R$. Then $\mathcal{H} \cong \operatorname{Mat}_{n}(R)$ and $\mathbf{I}\left(M a t_{n}(R)\right)=M a t_{n}(R)$. Therefore Proposition 2.8(iv) ensures the result.

Now, we study on the direct summands and directs sums properties for the former class of modules. A module M is retractable, if $\operatorname{Hom}_{R}(M, A) \neq 0$ for all $0 \neq A \leq M$.

Lemma 2.10. Assume M is a dual π-e.Baer and retractable module. Then every $0 \neq A_{R} \unlhd_{p} M_{R}$ includes a nonzero direct summand of M.

Proof. Suppose M satisfies the stated property. Let $0 \neq A_{R} \unlhd_{p} M_{R}$. Then $D_{\mathcal{H}}(A)=h \mathcal{H}$ for some $h=h^{2} \in \mathcal{H}$ by Proposition 2.4. Note that $h \in S_{l}(\mathcal{H})$. Since M is retractable, $\psi M \subseteq A$ for some $0 \neq \psi \in \mathcal{H}$. Thus $\psi \in D_{\mathcal{H}}(A)$, so $\psi=h \psi$. Observe that $(\psi h)^{2}=\psi(h \psi h)=\psi h \in \mathcal{H}$, as $h \in S_{l}(\mathcal{H})$. Moreover $0 \neq \psi h M \subseteq$ $\psi M \subseteq A$, so $\psi h M \leq{ }^{\oplus} M$.

We mention in Example 3.8 that a direct summand of a dual π-e.Baer module need not to be dual π-e.Baer. To this end, we investigate when the direct summands fulfill the property.

Proposition 2.11. Assume M is dual π-e.Baer and $(h M)_{R} \unlhd M_{R}$ for all $h=h^{2} \in \mathcal{H}$. Then $(h M)_{R}$ and $((1-h) M)_{R}$ are dual π-e.Baer.

Proof. Let M be dual π-e.Baer, $(h M)_{R} \unlhd M_{R}$ and $A_{R} \unlhd_{p}(h M)_{R}$. Then $A_{R} \unlhd_{p} M_{R}$ by [5, Lemma 3.1]. Hence $D_{\mathcal{H}}(A)=p \mathcal{H}$ for some $p \in S_{l}(\mathcal{H})$. Notice that $\mathcal{H}_{h M} \cong h \mathcal{H} h$ and $h \in S_{l}(\mathcal{H})$. Moreover, $(h p h)^{2}=h p h \in h \mathcal{H} h$ and $(h p h) M \subseteq h p(M) \subseteq h(A) \subseteq A$. Hence $h p h \in D_{h \mathcal{H} h}(A)$. Thus $(h p h)(h \mathcal{H} h) \subseteq D_{h \mathcal{H} h}(A)$. Let $\psi \in D_{h \mathcal{H} h}(A)$. Then $\psi(M) \subseteq A$ and $\psi \in h \mathcal{H} h$. It follows that $\psi \in D_{\mathcal{H}}(A)=f \mathcal{H}$, so $\psi=f \psi$. Since $\psi \in h \mathcal{H} h$ and $h \in S_{l}(\mathcal{H})$, we obtain that $\psi=f h \psi=(h f h) \psi \in(h f h)(h \mathcal{H} h)$. Therefore $D_{h \mathcal{H} h}(A) \subseteq(h f h)(h \mathcal{H} h)$. It follows that $D_{h \mathcal{H} h}(A)=(h f h)(h \mathcal{H} h)$, where $(h f h)^{2}=h f h \in h \mathcal{H} h$. Consequently, $(h M)_{R}$ is dual π-e.Baer.

Now, let $B \unlhd_{p}((1-h) M)_{R}$. Then $(h M \oplus B)_{R} \unlhd_{p} M_{R}$ by [7, Lemma 4.13]. Then $J=D_{\mathcal{H}}(h M \oplus B)=g \mathcal{H}$ for some $g \in S_{l}(\mathcal{H})$. Note that $\mathcal{H}_{(1-h) M} \cong(1-h) \mathcal{H}(1-h)$ and $(1-h) J(1-h)=J \cap(1-h) \mathcal{H}(1-h)$. Since $1-h \in S_{r}(\mathcal{H}),(1-h) J(1-h)=(1-h) g \mathcal{H}(1-h)=(1-h) g(1-h) \mathcal{H}(1-h)=(1-h) g(1-$ $h)((1-h) \mathcal{H}(1-h))$. Further, $(1-h) g(1-h)=((1-h) g(1-h))^{2} \in(1-h) \mathcal{H}(1-h)$. Our claim is $(1-h) J(1-h)=D_{(1-h) \mathcal{H}(1-h)}(B)$. Let $\alpha \in J$. Then $(1-h) \alpha(1-h)(M) \subseteq(1-h) \alpha(M) \subseteq$ $(1-h)(h M \oplus B)=(1-h) B \subseteq B$, as $B_{R} \unlhd_{p}(1-h) M_{R}$. It follows that $(1-h) J(1-h) \subseteq D_{(1-h) \mathcal{H}(1-h)}(B)$. Assume that $(1-h) \beta(1-h) \in(1-h) \mathcal{H}(1-h)$ such that $(1-h) \beta(1-h)(M) \subseteq B$. Hence $(1-h) \beta(1-h) \in J$. But $(1-h) \beta(1-h) \in(1-h) \mathcal{H}(1-h)$, so $(1-h) \beta(1-h) \in J \cap(1-h) \mathcal{H}(1-h)=(1-h) J(1-h)$. It follows that $D_{(1-h) \mathcal{H}(1-h)}(B) \subseteq(1-h) J(1-h)$, so $((1-h) M)_{R}$ is dual π-e.Baer.

Corollary 2.12. Suppose M is dual π-e.Baer and \mathcal{H} is Abelian. Then $(h M)_{R}$ and $((1-h) M)_{R}$ are dual π-e.Baer for all $h=h^{2} \in \mathcal{H}$.

Proof. Since \mathcal{H} is Abelian, $(h M)_{R} \unlhd M_{R}$ for all $h=h^{2} \in \mathcal{H}$. Hence Proposition 2.11 completes the proof.
The following example illustrates the direct sums of dual π-e.Baer modules.
Example 2.13. For any prime p, consider $M_{\mathbb{Z}}=\mathbb{Z}\left(p^{\infty}\right) \oplus \mathbb{Z}_{p}$. Then $\mathbb{Z}\left(p^{\infty}\right)$ and \mathbb{Z}_{p} are dual π-e.Baer modules. On the other hand, $M_{\mathbb{Z}}$ is not dual π-e.Baer by [2, Example 2.3] and Theorem 2.6.

Theorem 2.14. Suppose $M=\bigoplus_{\kappa \in \mathcal{K}} M_{\kappa}$ such that $\left(M_{\kappa}\right)_{R} \unlhd M_{R}$ for all $\kappa \in \mathcal{K}$. Then M is dual $\pi-e . B a e r$ if and only if M_{κ} is dual π-e.Baer for all $\kappa \in \mathcal{K}$.

Proof. Assume that for each $\kappa \in \mathcal{K}, M_{\kappa}$ is dual π-e.Baer. Since $\left(M_{\kappa}\right)_{R} \unlhd M_{R}, \operatorname{Hom}_{R}\left(M_{\kappa}, M_{\chi}\right)=0$ for all $\kappa \neq \chi \in \mathcal{K}$. Observe that $\mathcal{H}=\prod_{\kappa \in \mathcal{K}} \mathcal{H}_{\kappa}$, where $\mathcal{H}_{\kappa}=\mathcal{H}_{M_{\kappa}}$. Let $\mathcal{Y}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$. Then $\mathcal{Y}=\prod_{\kappa \in \mathcal{K}}\left(\mathcal{Y} \cap \mathcal{H}_{\kappa}\right)=\prod_{\kappa \in \mathcal{K}} \mathcal{Y}_{\kappa}$, where $\mathcal{Y}_{\kappa}=\mathcal{Y} \cap \mathcal{H}_{\kappa}$ for $\kappa \in \mathcal{K}$. Notice that $\left(\mathcal{Y}_{\kappa}\right)_{\mathcal{H}_{\kappa}} \unlhd_{p}\left(\mathcal{H}_{\kappa}\right)_{\mathcal{H}_{\kappa}}$. Since M_{κ} is dual π-e.Baer, $E_{M_{\kappa}}\left(\mathcal{Y}_{\kappa}\right)=h_{\kappa} M_{\kappa}$ for some $h_{\kappa}=h_{\kappa}^{2} \in \mathcal{H}_{\kappa}$. Note that $E_{M}(\mathcal{Y})=\sum_{\psi \in \mathcal{Y}} \psi(M)=\sum_{\kappa \in \mathcal{K}} E_{M_{\kappa}}\left(\mathcal{Y}_{\kappa}\right)=\bigoplus_{\kappa=1} h_{\kappa} M_{\kappa}$, as $h_{\kappa} M_{\kappa} \cap h_{\chi} M_{\chi}=0$ for all $\kappa \neq \chi \in \mathcal{K}$. It gives that $E_{M}(\mathcal{Y}) \leq \oplus M$, so M is dual π-e.Baer. Converse is a consequence of Proposition 2.11.

3. Endomorphism Rings of Dual π-e.Baer Modules

Our goal is to analyze the properties of the endomorphism ring of a dual π-endo Baer module.
Proposition 3.1. The endomorphism ring of a dual π-e.Baer module is a π-Baer ring.
Proof. Suppose M is dual π-e.Baer and $\mathcal{Y}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$. Then $E_{M}(\mathcal{Y})=\sum_{\psi \in \mathcal{Y}} \psi(M)=h M$ for some $h=h^{2} \in \mathcal{H}$ by Proposition 2.4. Observe that $\psi(M) \subseteq h M$, so $(1-h) \psi(M)=0$. Thus $(1-h) \psi=0$ which gives that $1-h \in l_{\mathcal{H}}(\mathcal{Y})$. Hence $\mathcal{H}(1-h) \subseteq l_{\mathcal{H}}(\mathcal{Y})$. Let $\alpha \in l_{\mathcal{H}}(\mathcal{Y})$. Then $\alpha \mathcal{Y}=0$, so $\alpha \psi(M)=0$ for all $\psi \in \mathcal{Y}$. Thence $\alpha\left(E_{M}(\mathcal{Y})\right)=0$, hence $(\alpha h) M=0$, so $\alpha h=0$. Therefore $\alpha=\alpha h+\alpha(1-h)=\alpha(1-h) \in \mathcal{H}(1-h)$, so $l_{\mathcal{H}}(\mathcal{Y}) \subseteq \mathcal{H}(1-h)$. Thus \mathcal{H} is π-Baer.

The next example validates the reverse of Proposition 3.1 may not be true, in general.
Example 3.2. (i) Assume $M_{\mathbb{Z}}=\mathbb{Z}_{\mathbb{Z}}$. Then $\mathcal{H} \cong \mathbb{Z}$ is a π-Baer ring, but $M_{\mathbb{Z}}$ is not dual π-e.Baer.
(ii) Let $R=\prod_{\iota=1}^{\infty} \mathcal{F}_{\iota}$, where \mathcal{F} is a field and $\mathcal{F}_{\iota}=\mathcal{F}$ for $\iota=1,2, \cdots$. Then $M_{R}=R_{R}$ is not dual Baer by [12, Corollary 2.9]. Since R is a commutative ring, M_{R} is not dual π-e.Baer. However, $\mathcal{H} \cong R$ and R is a π-Baer ring by [4, Proposition 2.10].

A module M_{R} is called coretractable (quasi-coretractable) [1], [11], provided that $H_{R}(M / A, M) \neq 0$ $\left(\operatorname{Hom}_{R}\left(M / \sum_{\psi \in I} \psi(M), M\right) \neq 0\right)$ for all proper $A \leq M\left(I_{\mathcal{H}} \leq \mathcal{H}_{\mathcal{H}}\right.$ with $\left.\sum_{\psi \in I} \psi(M) \neq M\right)$. Notice that every coretractable module is quasi-coretractable. In the following result, we characterize a dual π-e.Baer (resp., quasi-dual Baer) module and its endomorphism ring being π-Baer (resp., quasi-Baer).

Theorem 3.3. Assume M is quasi-coretractable. Then M is dual π-e.Baer (resp., quasi-dual Baer) if and only if \mathcal{H} is π-Baer (resp., quasi-Baer).

Proof. Assume M is dual π-e.Baer. By Proposition 3.1, \mathcal{H} is π-Baer. Let \mathcal{H} is π-Baer and $\mathcal{Y}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$. We claim that $E_{M}(\mathcal{Y})=\sum_{\psi \in \mathcal{Y}} \psi(M) \leq{ }^{\oplus} M_{R}$. Since \mathcal{H} is π-Baer, there is $h=h^{2} \in \mathcal{H}$ such that $l_{\mathcal{H}}(\mathcal{Y})=\mathcal{H} h$. Observe $\mathcal{Y} \subseteq r_{\mathcal{H}}\left(l_{\mathcal{H}}(\mathcal{Y})\right)=(1-h) \mathcal{H}$. Consider the right ideal $\mathcal{A}=\mathcal{Y}+h \mathcal{H}$. Notice that $l_{\mathcal{H}}(\mathcal{A})=l_{\mathcal{H}}(\mathcal{Y}) \cap$ $l_{\mathcal{H}}(h \mathcal{H})=\mathcal{H} h \cap \mathcal{H}(1-h)=0$. Thus, $l_{\mathcal{H}}(\mathcal{A})=0$. By [11, Lemma 3.3], $\sum_{\psi \in \mathcal{A}} \psi(M)=M$. Furthermore, $M=\sum_{\psi \in \mathcal{A}} \psi(M)=\sum_{\psi \in I} \psi(M) \oplus \sum_{\psi \in h \mathcal{H}} \psi(M)$ which gives that $M=E_{M}(\mathcal{Y}) \oplus \sum_{\psi \in h \mathcal{H}} \psi(M)$. Hence M is dual π-e.Baer. The quasi-dual Baer case follows from the similar arguments and [2, Proposition 3.1].

Corollary 3.4. M is dual π-e.Baer if and only if $E_{M}(\mathcal{Y})=r_{M}\left(l_{\mathcal{H}}(\mathcal{Y})\right)$ is a direct summand of M_{R} for all $\mathcal{Y}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$ and \mathcal{H} is π-Baer.

Proof. Suppose M is dual π-e.Baer. By Proposition 3.1, \mathcal{H} is π-Baer. Let $\mathcal{Y}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$. Then $E_{M}(\mathcal{Y})=p M$ for some $p \in S_{l}(\mathcal{H})$. Thus $(1-p) \psi(M)=0$ for all $\psi \in \mathcal{Y}$ by Proposition 2.4. Then $1-p \in l_{\mathcal{H}}(\mathcal{Y})$, so $\mathcal{H}(1-p) \subseteq l_{\mathcal{H}}(\mathcal{Y})$. It follows that $r_{M}\left(l_{\mathcal{H}}(\mathcal{Y})\right) \subseteq r_{M}(\mathcal{H}(1-p))=p M=E_{M}(\mathcal{Y})$. We claim that $l_{\mathcal{H}}(\mathcal{Y}) p M=0$. Observe that $g \mathcal{Y}=0$ for all $g \in l_{\mathcal{H}}(\mathcal{Y})$. Then $0=g\left(\sum_{\psi \in \mathcal{Y}} \psi(M)\right)=g\left(E_{M}(\mathcal{Y})\right)=g(p M)$. Therefore $l_{\mathcal{H}}(\mathcal{Y}) p M=0$, so $p M \subseteq r_{M}\left(l_{\mathcal{H}}(\mathcal{Y})\right)$. It follows that $E_{M}(\mathcal{Y})=r_{M}\left(l_{\mathcal{H}}(\mathcal{Y})=p M\right.$. Conversely, let $E_{M}(\mathcal{Y})=$ $r_{M}\left(l_{\mathcal{H}}(\mathcal{Y})\right) \leq{ }^{\oplus} M_{R}$ for all $\mathcal{Y}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$ and \mathcal{H} be π-Baer. Thus $l_{\mathcal{H}}(\mathcal{Y})=\mathcal{H} q$ for some $q \in S_{r}(\mathcal{H})$ by [4, Proposition 2.1] Hence $q \nu=0$ for all $\nu \in \mathcal{Y}$. Thus $\nu=q \nu+(1-q) \nu=(1-q) \nu$ and $\nu(M) \subseteq(1-q) M$. Thence $E_{M}(\mathcal{Y}) \subseteq(1-q) M$. However, $(1-q) M=r_{M}(\mathcal{H} q)=r_{M}\left(l_{\mathcal{H}}(\mathcal{Y})\right)$. By hypothesis, $(1-q) M=E_{M}(\mathcal{Y})$, so M is dual π-e.Baer.

A ring R is called right Kasch [13], if every simple right R-module can be embedded in R_{R}.
Corollary 3.5. (i) Suppose \mathcal{H} is right Kasch. Then M is dual π-e.Baer if and only if \mathcal{H} is π-Baer.
(ii) If M is an indecomposable dual π-e.Baer module with finite uniform dimension, then \mathcal{H} is semilocal.

Proof. (i) Since \mathcal{H} is a right Kasch ring, $\mathcal{H}_{\mathcal{H}}$ is coretractable by [1, Theorem 2.14]. Then $\mathcal{H}_{\mathcal{H}}$ is quasicoretractable. Therefore Theorem 3.3 yields the result.
(ii) Proposition 2.8(ii) and [12, Proposition 2.17] complete the proof.

Proposition 3.6. The followings are equivalent.
(i) M is an indecomposable dual π-e.Baer module.
(ii) M is a quasi-coretractable module and \mathcal{H} is a domain.
(iii) Every $0 \neq \tau \in \mathcal{H}$ is an epimorphism.
(iv) $E_{M}(\mathcal{Y})=M$ for all $0 \neq \mathcal{Y}_{\mathcal{H}} \leq \mathcal{H}_{\mathcal{H}}$.
(v) $D_{\mathcal{H}}(A)=\mathcal{H}$ for all $0 \neq A_{R} \leq M_{R}$.

Proof. $(i) \Leftrightarrow(i i) \Leftrightarrow(i i i)$ Proposition 2.8(ii), [11, Corollary 2.7] and [12, Corollary 2.2] yield the implications.
$(i) \Rightarrow(i v)$ Let $0 \neq \mathcal{Y}_{\mathcal{H}} \leq \mathcal{H}_{\mathcal{H}}$. Since M is indecomposable, $\mathcal{Y}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$. Hence $E_{M}(\mathcal{Y})=p M$ for some $p=p^{2} \in \mathcal{H}$. Thence $E_{M}(\mathcal{Y})=0$ or $E_{M}(\mathcal{Y})=M$. If $E_{M}(\mathcal{Y})=0$, then $\mathcal{Y} \subseteq D_{\mathcal{H}}\left(E_{M}(\mathcal{Y})\right)=0$, a contradiction. Therefore $E_{M}(\mathcal{Y})=M$.
$(i v) \Rightarrow(i)$ Suppose $\mathcal{X}_{\mathcal{H}} \unlhd_{p} \mathcal{H}_{\mathcal{H}}$. If $\mathcal{X}=0$, then we are done. Let $0 \neq \mathcal{X}$. By part $(i v), E_{M}(\mathcal{X})=M$ so M_{R} is dual π-e.Baer. Moreover, $E_{M}(h \mathcal{H})=M$ for some $0 \neq h=h^{2} \in \mathcal{H}$ by part $(i v)$. Hence $M=E_{M}(h \mathcal{H})=h M$, so $h=1$. Therefore M is indecomposable.
$(i) \Leftrightarrow(v)$ This part follows from the similar steps in part $(i) \Rightarrow(i v)$ and part $(i v) \Rightarrow(i)$.
Assume T is the \mathbb{Z}_{2}-subalgebra of $\prod_{\varpi=1}^{\infty} F_{\varpi}$ generated by $\bigoplus_{\varpi=1}^{\infty} F_{\varpi}$ and 1 , where $F_{\varpi}=\mathbb{Z}_{2}$. Then T is a countable von Neumann regular ring [6]. In the following result, we make connections between the related notions when the module has a countable regular endomorphism ring.

Proposition 3.7. Assume \mathcal{H} is countable regular. Then the following statements are equivalent.
(i) \mathcal{H} is a Baer ring.
(ii) M_{R} is a dual Baer module.
(iii) $\mathcal{H}_{\mathcal{H}}$ is a dual Baer module.
(iv) M_{R} is an e.Baer module.

Proof. $(i) \Rightarrow(2) \mathcal{H}$ is a semisimple Artinian ring by [6, Corollary 3.1.13]. Then $D_{\mathcal{H}}(X) \leq{ }^{\oplus} \mathcal{H}_{\mathcal{H}}$ for any $\emptyset \neq X \subseteq M$, so M is dual Baer.
$(i i) \Rightarrow(i i i)$ By [11, Theorem 3.6], \mathcal{H} is Baer. Thence $\mathcal{H}_{\mathcal{H}}$ is a dual Baer module by [6, Corollary 3.1.13] and [12, Corollary 2.9].
$($ iii $) \Rightarrow(i v)$ Observe that $\mathcal{H} \mathcal{H}$ is semisimple by [12, Corollary 2.9]. Hence $\left.\mathcal{H}^{(} l_{\mathcal{H}}(B)\right) \leq{ }^{\oplus} \mathcal{H}_{\mathcal{H}}$ for all $\emptyset \neq B \subseteq M$. Thus M is e.Baer.
$(i v) \Rightarrow(i)$ This part follows from [14, Theorem 4.1].
The following example explains dual Baer, dual π-e.Baer and quasi-dual Baer modules are strictly different from each other. Furthermore, it gives an answer to the question: is the dual π-e.Baer module property inherited by direct summands?

Example 3.8. Assume that R be a simple Noetherian ring with $\{0,1\}$ as its only idempotents and not Morita equivalent to a domain [9]. Observe from [4, Theorem 2.1], R is quasi-Baer but not π-Baer. Then consider the following examples:
(1) Let $M_{R}=R_{R}$. Observe that R is a quasi-Baer ring, and R_{R} is coretractable. Hence R_{R} is quasi-dual Baer by Theorem 3.3. Since R is not a π-Baer ring by [4, Theorem 2.1], R_{R} is not dual π-e.Baer.

On dual π-endo Baer modules
(2) Let $T_{R}=\bigoplus_{\kappa=1}^{n} R_{\kappa}$ where $R_{\kappa} \cong R$. Hence T_{R} is dual π-e.Baer, but not dual Baer. To see this, observe that T_{R} is a coretractable module by [1, Proposition 2.6]. Notice that T_{R} is quasi-e.Baer by [14, Proposition 3.19], and hence $\mathcal{H} \cong \operatorname{Mat}_{n}(R)$ is also a quasi-Baer ring by [14, Theorem 4.1]. It follows from Theorem 3.3 that T_{R} is quasi-dual Baer. Moreover, T_{R} is dual π-e.Baer by Corollary 2.9(i). However, T_{R} is not dual Baer. Because $\mathcal{H} \cong \operatorname{Mat}_{n}(R)$ is not a Baer ring by [10, Exercise 3].
(3) Note that $T_{R}=\bigoplus_{\kappa=1}^{n} R_{\kappa}$ in part (2) includes a direct summand, R_{R}, which is not dual π-e.Baer.

References

[1] B. Amini, M. Ershad, H. Sharif, Coretractable modules, J. Aust. Math. Soc., 86(2009), 289-304.
[2] T. Amouzegar, Y. Talebi, On quasi-dual Baer modules, TWMS J. Pure Appl. Math., 4(1)(2013), 78-86.
[3] F. W. Anderson, K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, (1992).
[4] G.F. Birkenmeier, Y. Kara, A. Tercan, π-Baer rings, J. Algebra Appl. 17(2)(2018), 185002919 pages.
[5] G.F. Birkenmeier, Y. Kara, A. Tercan, π-Endo Baer modules, Commun. Algebra, 48(3)(2020), 11321149.
[6] G.F. Birkenmeier, J.K. Park, S.T. Rizvi, Extensions of Rings and Modules, Birkhäuser, New York, (2013).
[7] G.F. Birkenmeier, A. Tercan, C.C. Yücel, The extending condition relative to sets of submodules, Commun. Algebra, 42(2014), 764-778.
[8] W.E. Clark, Twisted matrix units semigroup algebras. Duke Math. J. 34(1967), 417-423.
[9] K.R. Goodearl, Simple Noetherian rings the Zalesskii-Neroslavskii examples, Ring Theory Waterloo 1978 Proceedings, Lecture notes in Mathematics., 734(1979), 118-130.
[10] I. Kaplansky, Rings of Operators, New York, Benjamin, (1968).
[11] D. Keskin Tütüncü, P.F. Smith, S.E. Toksoy, On dual Baer modules, Contemporary Math. 609(2014), 173-184.
[12] D. Keskin Tütüncü, R. Tribak, On dual Baer modules, Glasgow Math. J., 52(2010), 261-269.
[13] T.Y. Lam, Lectures on Modules and Rings, Springer, Berlin (1999).
[14] S.T. Rizvi, C.S. Roman, Baer and Quasi-Baer modules, Commun. Algebra 32(2004), 103-123.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^0]: * Corresponding author. Email address: yelizkara@uludag.edu.tr (Yeliz Kara)

