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On rectifying curves in Minkowski 3-space
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Abstract. In this study, we investigate a rectifying curve by using a dilation of a unit speed curve on pseudo-sphere or
pseudo-hyperbolic space and its centrode. Firstly, considering a causal character of any curve, we study the connection
between Serret-Frenet apparatus of the curve on pseudo-sphere or pseudo-hyperbolic space and its dilation. Then, we extend
necessary conditions when the centrode is a rectifying curve. Also, we examine some properties of centrode which is a
rectifying curve.
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1. Introduction

Characterization of a curve allows to classify curves according to some properties. Thus, instead of doing
analysis for each curve, working on these classes is appeared as a more convenient way. One example for the
characterized curves is a rectifying curve. The curve was put forward by B. Y. Chen in [1]. In three dimensional
Euclidean space E3, if & : I C R — E? be a unit speed regular curve with Frenet frame {7, N, B} where T is
a tangent vector field, N is a normal vector field and B is a binormal vector field, then an osculating plane is a
plane spanned by the vector fields {7, N'}, a rectifying plane is a plane spanned by the vector fields {T', B} and
a normal plane is a plane spanned by the vector fields { N, B}. The rectifying curve is a curve whose position
vector field is located on the rectifying plane. Thus, Chen showed that a rectifying curve « is denoted by the
equation

a(s) =n(s)T(s) + () B(s)

where the functions 7 and ¢ are differentiable. Also, it is known that the rectifying curve is characterized as
the curve whose ratio of torsion and curvature is a linear fuction of arc parameter in E? [1]. By analyzing the
characterization of rectifying curve, it is interpreted kinematically because the position vector field of the curve
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states the axis of instantaneous rotation at each point. In addition to that, the connection between rectifying curves
and their centrodes is used to study in general mechanics. Firstly, Chen [2] established the connection between
rectifying curves and their centrodes in Euclidean 3-space. Since these curves are important, many studies have
been conducted on this subject. In this section, we just mention some of them. One of them was made by larslan
et. al [5]. According to that, they gave some characterizations of timelike, spacelike, null rectifying curves.
Moreover, these curves in dual space were examined in [9]. So, they were explored by taking advantage of the
relationship between the curve on a unit dual sphere and the surface theory. Additionally, the modified Darboux
vector of curve was described and it was shown that this vector is a rectifying curve [8]. Deshmukh et.al [3]
developed the necessary circumstances for the centrode of a curve to be a rectifying curve in Euclidean 3-space
and also, they presented the results about the dilation for rectifying curves and centrodes. This study has been the
main motivation of our study.

In this study, we research on the rectifying curves in the Minkowski 3-space. First of all, we use that the
dilation of u (t) is written as « (t) = f (t) u (t) where u (t) is a curve on the unit sphere S? centered at the origin
and the fuction f (t) is positive differentiable. If the curve « (¢) is the rectifying curve, then the dilation factor
f(t) is given by f (t) = asec (t +to). Here, a > 0 and ¢, are constants [1]. However, this dilation factor in
Minkowski 3-space is defined as different ways for the curves « (¢) and w (¢) [5]. Considering this difference,
Frenet-Serret apparatus of « are given in terms of the curve w (¢). It was also shown in [4] that the centrode of « (¢)
is rectifying curve in Minkowski 3-space when it has non-zero constant curvature and non-constant torsion. Here,
we generalize this result. For this, we show that the centrode of any helix is not a rectifying curve in Minkowski
3-space. Then, using this feature and considering the causal characters of Frenet-Serret vectors, we obtain that
the centrode of non-helix curve is the rectifying curve if and only if it satisfies the condition ax — br = ¢ where
a, b, c are constants. Finally, there are many cases from the choices of plane and curve, so we consider all the
cases and give some notations for the centrode of « (¢). We find the relations between Frenet-Serret apparatus of
the centrode, which is a rectifying curve, and the Frenet-Serret apparatus of a.

2. Preliminaries

Let [E$ be a space with the metric g denoted by
g = —dz? + da3 + dx? 2.1

where = (x1,2,23) is a rectangular coordinate system of E3 and also, it is called the three-dimensional
Minkowski space. Pseudo-sphere of radius 1 centered at origin is a hyperquadric in E$ and is given by

St (1) ={veE}|g(v,v) =1} (22)
and pseudo-hyperbolic space of radius 1 centered at origin is defined by
H§ (1) ={veE}|g(v,v) =—1}. (2.3)

Let «(s) be a curve with an arc-length parameter s. It is the non-null curve that satisfies the property
g(a'(s),a’ (s)) = =1 where / is the derivation of « [7]. For the Frenet frame {T, N, B} of a unit speed
non-null curve « (s) in E3, the Frenet formulas are given in [6] by

T' (s) =e1k(s) N (s),
N’ (s) = —eok (8) T (s) + €27 (s) B(s),
B’ (s) = —e17(s) N (s) 24

forg(T,T) = &9 = £1, g(N,N) = 1 = £1 and g (B, B) = —g¢e1 = 2 where T, N, B are known as the
tangent vector field, the principal normal vector field, the binormal vector field, respectively. Assume that for
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Frenet frame of «, there exists the vector product as
B=TxN,—;T=NxB,—¢ggN =B xT. (2.5)
The centrode of « : I — E$ is defined by
d = —¢eoe17T — gge1kB 2.6)

which is the angular velocity vector of the motion of a mass particle along the curve « and it obeys the laws of
motion [4]
T'=dxT,N =dx N,B =dx B. 2.7)

In addition, the rectifying curves are formed by expanding a unit speed curve on a unit sphere with a special factor
f. To characterize such rectifying curves in E?, Tlarslan et.al [5] gave a theorem. According to this theorem, a
unit speed non-null curve o = « () is written as the dilation of the curve w (¢) to be rectifying curve. So, it is a
rectifying curve with a spacelike rectifying plane if and only if it satisfies the condition

alt)=u(t)— (2.3)

cost

where | € R} and u () is a unit speed spacelike curve on S7 (1). Also, it is a spacelike (or timelike) rectifying
curve with a spacelike (or timelike) position vector if and only if it satisfies the condition

l
sinh ¢

a(t) =u(t)

(2.9)
where u (t) is a unit speed timelike (or spacelike) curve on S? (1). Finally, it is a spacelike (or timelike) rectifying
curve with a spacelike (or timelike) position vector if and only if it satisfies the condition

l
cosht

a(t) =u(t) (2.10)

where u (t) is a unit speed spacelike (or timelike) curve on Hg (1) (or S (1)).

3. On the Rectifying Curves and the Dilation of Curves

In Minkowski 3-space, let u (t) be a unit speed spacelike or timelike curve lying on S (1) or H? (1) and « (t)
be a dilated rectifying curve of u (¢). Now, we give the connections between the Frenet-Serret apparatus of the
curves « (t) and w (¢) in Minkowski 3-space. For this, the different results are obtained by considering some
theorems in [5], because the dilation « (t) of u (¢) is defined according to the causal characters of the curves « (¢)
and u ().

We assume that « is a spacelike rectifying curve with spacelike position vector on timelike rectifying plane
and u (t) is a unit speed timelike curve on pseudo-sphere S7 (1). Then, there exists the dilation « () =

L (t). In this case, since the rectifying plane is timelike, clearly its normal vector N, is spacelike, so
S111
g (Ng, N,) = 1. If the curve « is spacelike, the tangent of « is also spacelike. Furthermore, its position vector is
spacelike, so we have g (o, ) > 0, g (v/,u') = —1and g (u,u) = 1.

We know that T}, = v’ and {u,u,u x u'} is an orthonormal frame of [E3. We easily write
W' =T =au+bT, + cu x T,.

When we use timelike curve u and (u/,u) = 0, we find a = 1. Similarly, b = 0 is found. Also, we assume
¢ = (u",u x u'y =r. Then, we get
' =u+ruxu.

e =
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From (3.1) and using Frenet equations for w (¢), there exists
[u”] = V14712 = Ky (3.2)

where k,, is a curvature of the unit speed timelike curve u (t) and we find

1
Tu:u’,Nu:—u—&—Luxu'. (3.3)

Ky Ky

Theorem 3.1. Let u(t) be a unit speed timelike curve on the unit sphere S? (1) in E3, a (t) be a spacelike

rectifying curve on a timelike rectifying plane and its position vector be a spacelike vector defined by o (t) =

_Lu (t), a € RY. Then, the relation between the Frenet-Serret apparatus of « (t) and u (t) is as
sinh (¢t + to)
follows:

T, = sinh (t + tg) u’ — cosh (¢ + to) u,
Ny =ux
B, = sinh (t + to) u — cosh (t + to) v/,

1

Ko = 7\//{%7—lsinh3 (t + tU) )

To = 7\//@12L7—1cosh (t + to) sinh? (t + to)
a

where Ty, Nu, Bo, Ko, To are the tangent vector, normal vector, binormal vector, curvature, torsion of o (t),

respectively, and k., is the curvature of u (t).

Proof. Let o is given by « (t) = mu (t) and {u,u’, u x u'} is an orthonormal frame of E$. Thus, we
a
et |l (¢)]| = ——-——— = v, and
get flo” (1) sinh® (t + to)
T, = sinh (t + to) u’ — cosh (t + tg) u. (3.4)

Then differentiating T;,, we obtain
T! = cosh (t + to) u' + sinh (t + to) v — sinh (¢ + to) u — cosh (t + to) v’
=rsinh (¢t +to)u x v
= 1VakaNg.

From (3.2) we write » = \/k2 — 1. Furthermore, for the left side of (3.2) we say that u x v’ is equal to N,

. . . rsinh (¢t +tg) .
because both of them are unit vectors. So, if we write M sinh? (t+to)| ux u' = aka Ny, then we
a

get N, = u X v’ and also

1
Ko = —\/K2 — 1sinh® (¢t + ) . (3.5)
a
We know that B, = T, x N,. Then
B, = sinh (t + to) u — cosh (t + to) u'. (3.6)

After differentiating (3.6), we find
B!, = cosh (t + to) u + sinh (¢ + to) v’ — sinh (t + to) v’ — cosh (t + to) u”
= —rcosh (t + to) u x u’

= *SlvaTaNa

e
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which gives [r cosh (t + tg)] u X ©' = v474 N, that is,

Ta = —\/K2 — 1cosh (t + to) sinh? (t + to) . (3.7)
a
Thus, we establish the desired relationships. |
Every curves, which is constituted by « (t) = v (t), do not have to be a rectifying curve. This
sinh (t + to)

result is valid for the curves which are not arc of the great circle. To show that, let u () be an arc of the great circle

inht¢ ht
on S% (1) given by u (t) = (sinht, 0, cosh t). We write o (t) = a <sin}?1(rjf il sinli(zi n t0)> . Hence, we

and T, = (sinhtg,0, — coshtg). Thus, k, = 0 and finally we say that « () is

have ||o/ (V)| = —5——
le” @ sinh? (¢ + o)
not a rectifying curve.

Theorem 3.2. Let u (t) be a unit speed spacelike curve on the unit sphere S? (1) in E3, « (t) be a rectifying

curve on a spacelike rectifying plane defined by « (t) = %u (t),a € RT. Then the relation between
COS 0

the Frenet-Serret apparatus of « (t) and u (t) is as follows:
T, = cos (t +to) u' + sin (t + to) u,
Ny=uxu,
By, = —cos (t + tg) u + sin (t + to) v,

1
Ko = —\/1 — K2 cos® (t + to),

a

To=—1- K2 sin (¢ + to) cos? (¢ + tg)
where Ty, No, Bo, Ko, To are the tangent vector, normal vector, binormal vector, curvature, torsion of o (t),

respectively, and k., is the curvature of u (t).

Theorem 3.3. Let u(t) be a unit speed spacelike curve on the unit sphere S? (1) in E3, « (t) be a timelike

rectifying curve on a timelike rectifying plane and its position vector be a timelike vector defined by « (t) =

S — (t), a € RT. Then the relation between the Frenet-Serret apparatus of o (t) and u (t) is as
sinh (¢ + o)
follows:

sinh (¢t +t9) cosh (¢ + tg)

Ty = U — U
V/cosh2 (t + o) \/cosh2 (t + to)
L, = —2sinh(t + to) (cosh(t + to)u’ + sinh(t + to)u)
f(t)\/cosh2(t + to)
1
— ——/ (1= k2)cosh2(t + to)u x v/,
V1I—kK2 2sinh (¢t + to)
B, =Y——"{sinh (t + tg) u + cosh (t +to) v’} + ————u x U,

inh® (¢t +¢
_ sn ( + O) {4sinh2 (t_|_to) — (1 — ’iu)2 COShQ(t+tO)}1/27

“ " acosh®?2 (t+to)

h2(t+t
. _¥/cosh2(t +to) (2 sinb( + 1) — /T~ 2 cosh(t + 1o) (1 + 2)

f2()
_QJ;/((I)) V1 = K2 sinh(t + to) (1 + M)]

3
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where T,,, Ny, By, Ko, Ta are the tangent vector, normal vector, binormal vector, curvature, torsion of « (t),
respectively, and ., is the curvature of u. Also, f(t) is the function such that f(t) = {(1 — cosh2(t + to))* —
(1 — &2) cosh2(t + to) sinh®(t + to)}.

Theorem 3.4. Let u (t) be a unit speed spacelike curve on the unit sphere HZ (1) in E3, o (t) be a spacelike

rectifying curve on a timelike rectifying plane and its position vector be a timelike vector defined by o (t) =
mu (t). Then the relation between the Frenet apparatus of o (t) and u (t) is as follows:
T, = cosh (t + tg) u' — sinh (t + to) u,
Ny =ux,
B, = —cosh (t + to) u + sinh (t + to) v/,

1
Ko = 7\/@00%3 (t+to),
a
1
Ta = ——/1 + K2 sinh (t + to) cosh? (t + to)
a

where Ty, No, B, Ko, To are the tangent vector, normal vector, binormal vector, curvature, torsion of « (t),
respectively, and k., is the curvature of u (t).

Theorem 3.5. Let u (t) be a unit speed timelike curve on the unit sphere S? (1) in E3, «(t) be a timelike
rectifying curve on a timelike rectifying plane and its position vector be a spacelike vector defined by o (t) =
L — (t). Then the relation between the Frenet-Serret apparatus of o (t) and u (t) is as follows:
cosh (t + to)

T, = cosh (t + to) u' — sinh (t + to) u,

Ny =uxu,

B, = cosh (t + tg) u — sinh (¢t + o) v/,

1
Ko = —\/K2 — 1cosh® (t + ),
a

1 .
To = —\/K2 — 1sinh (t + to) cosh? (t + to)
a
where Ty, No, Bo, ko, T are the tangent vector, normal vector, binormal vector, curvature, torsion of « (t),

respectively, and k,, is the curvature of u (t).

4. Centrodes as Rectifying Curves

In this section, considering the Frenet vectors of the curve « in ]Ef and their causal characters, we give a
proposition that if the curve « is the helix, then its centrode is a line segment. Then using this proposition,
we examine the features, which should be provided by the curves whose centrodes are the rectifying curves
except the helix. In the previous studies [1, 4], it was shown for the curves with the constant (or non-constant)
curvature x and the non-constant (or constant) torsion 7. Here, this result has been expanded.

Let o : I € R — E3 be a unit speed curve with Frenet frame {7, N, B } and also,

g(TOzaTa):8079(Na7N04):6179(BG7B04):€2' (41)

Morever, let d : I C R — E3$ be the centrode of o with its Frenet frame {T};, N4, B4}. Then we have T/, =
dxT,, N, =dx N, and B/, = d x B,,. For all the cases of the unit speed curve , the centrode d is written by

d= —¢€pe17aT s — €0€1KaBa. “4.2)

3
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Now, we find the Serret-Frenet apparatus of d. For this, we use d' = —epe17, T — €0€1kp, Bo. Using d’

we obtain ||d’||> = ()% o + €2 (x],)°, then the speed of centrode d is given by vy = \/50 (71)? + &2 ().
Additionally,
coe1m Ty  coc1K.B

Ty=— a2 _ o= 4.3)
Ud Vd

Differentiating (4.3) we find

I\’ AN
ENELT, E0ELT, EpE2R €0€2I€
= (-2 1, — a T’ _0=2ta ) B 2tapr
Ud Vd Vd Ud

The centrode d does not have to be unit speed, then we get

AN / /
ENELT, EQT, E0€1R EQKJ
E‘fndded = (—O‘) T, — X kalNg — <a B, + To Ny
Ud Ud Ud Ud
coe17.\’ 0T Ko — EQKLT, coc1kl
= (e ) g, - Vel alo @) B,. (4.4)
Ud Ud Ud

Using this equation we give the following proposition about helices.

Proposition 4.1. Letov : I — IE:{’ be a unit speed curve whose curvature k. and torsion T, satisfy ko > 0 and
eo (7} ) + &9 (k! )2 # 0. Then « is a helix if and only if its centrode d is a line segment.

Proof. We assume that the centrode of « is a line segment, then its curvature is zero, namely kg = 0. In (4.4),
the coefficients of T,,, N, B, are also zero since T, N, B, vectors are linearly independent. Then, we write
the following:
/
E0E1T,
(1) ( ) =0,
Ug

E0TL Ko — E0KhTa

(i) =0,
Ud
E0E1KD,
(i) ( == ) =o0.
(2
For (ii), from vg # 0 there is 07} K0 — €0k Ta = 0. We know that ey # 0. If we divide both sides of the
. . T, T
equation to g, then we find 7/ Kk, — K, 7o = 0. Thus, we write that 7(/’ = % and
« Ko

/ ! /
To _ TaKa — TaKy 0
Ko K2

(o3

Consequently, — is constant and « is a helix. Conversely, if « is a helix, then we write 7, = ckq, ¢ # 0. Using
Ko
(4.4),

Vd

AN I
E0€1CR, T _ E0CRyRa
“ Vg va

’ r N\’
— &gk ,CR E0E1LR
efkavaNa = — ( N, — ("‘) B,

—eokvg + okl V!
:( 0o 22 0Pa d) (ElcTa'i‘ElBa).
d

Now, we investigate the cases in Minkowski 3-space. Firstly, we obtain

rquag (Na, Ng) = (g0¢® + €2)

3
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e\ 2 K\ 2
Eg =&y ) e | =
Ud Vd

where 58 is the signature of T}, thatis g(Ty, T4) = 53. Here, differentiating both sides, we write
I AN / 7\
cK cK K K
260 & ( a> +2€27a <a> =0.
Vd Vd Vd Ud

/ AN
. K K
Hence, itis egc® + 693 =0, - =0Qor [ -2 ] =0.
UVd Vd

(1) For ggc? 4 €5 = 0, there exists Hivﬁg (N4, Ng) = 0. From g (N4, Ng4) # 0 and vfl # 0, then kg = 0.
!

and also

(2) For 2 = 0, clearly rq = 0.
Ud ) ,

(3) For { @) 0, clearly rq = 0.
Ud

Therefore, if « is a helix, then the centrode of « is a line segment. [ |

Theorem 4.2. Let « be a unit speed spacelike (timelike) curve in B} with a timelike(spacelike) binormal,
Ka,Ta 7 0 and (T(;)2 - (K;/a)2 # 0. If a is not a helix, then the centrode d of « is a rectifying curve if and
only if ko and T, satisfy the equation ak, — b1, = ¢ where a, b, c are constants and they provide the conditions
c#0,a2 —b%#0.

Proof. Let @ = o (£) be a unit speed curve in E3 and ko, 7o # 0, €0 (7.)° + €2 (5,)° # 0, namely o is not a
null curve. If « is not a helix, then we use (4.4) and (4.2). So, we get

7\’ AN
cfnavag (N (0) ) =som (2] eama (22 @5)
Ud (o
If the centrode d of « is a rectifying curve, the multiplication of the position vector field of d and Ny is zero.
Since « is not a helix, d is not a line segment and x4 # 0. From x4 > 0 and vy # 0, we write g(Ny,d) = 0.

Then we find
7\ K\
coTa | £ | +eakg | &) =0. (4.6)
Vd UVd

This equation shows that, if the centrode d of « is rectifying curve, then it satisfies (4.2). Now, we use (4.6) and
try to obtain better notation. Let a be a unit speed curve in E$ with a timelike binormal vector. We have

7\’ &\
Ud Vd

and from the hypotesis of the theorem, we take (77,)* — (x,,)* # 0. Then, it is (7,)* — (x,)> > 0 or (7,)* —
(k) < 0.

Case 1 : We assume that (T;)2

—(k/,)* > 0. In this situation, if 7/, is zero, thlen the condition (77,)* — (k) >
(o3

0 is not satisfied. So 7/, # 0. Then, let 61 (¢) be a function defined by sin~1 fa . Using the equations
6] !
T

[

/!
sin 6y (t) zn—f‘,cosﬁl t)y=+————,
Ta

tan b (t) =———==——=,5ec; () = ——=—o—,
2

3
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then we get

To (sec Oy (1)) — kg (tan by (1)) =0,
01 (t) sec Oy () [To tan by (t) — Ky secBy ()] = 0.

For 7, tan 0 (t) — kq sec Oy (t) = 0, we find easily that 7, tan 61 (t) = K, sec 6y (t). Then

To _ secli(t) 1 . _
Ko tanfyp(t)  sind (t) cse b () =

Qx\ ‘ L

/
T(l

(74)% = (K,)?

= 0 and this is contrast to the hypotesis, too. For 0] (t) = 0, then it is clear that 6, (t) = constant.
/

So, « is a helix. But, it is contrast to the hypotesis. For sec 6, (t) = 0, we write = 0, namely,

/
TO(

. K . b .
Furthermore sin 0; (t) = —* = c; and c; is a constant. If we choose — = ¢y, then there is ax;, — b7, = 0. From
T a
«
here, aky — b7y, = C.

Case 2 : We assume that (77,)° — (k1,)* < 0. In this situation, 5/, # 0 . Let 65(t) be a function defined by
!
T . )
sin (K,) Using the equations

(03

7 (k4)* = (74)°
sin 05 (t) ZE,COS 0 (t) = ) ,
7_/ K:/
tan by (t) = = ,secly (t) = o ,
(54)* = (74) (k)" = (1)

we get
05 (t) sec by (t) [—Ta sec by (t) + Ko tan by (¢)] = 0.

Thus, we obtain ak, — br, = c. Conversely, if x, and 7, provides the equation ax, — b7, = ¢, then we find

7\ K\ K\ 7\
Ta <a) — Ko (O‘) = 0 from <O‘> =0and (“) = 0. Also, the proof is done for timelike curve with
Vqd Vd Ud Vd

spacelike binormal vector, similarly. |

Theorem 4.3. Let o be a unit speed spacelike curve in 3 with a spacelike binormal vector, ko, T, # 0 and
(7] )2 + (H;)Q # 0. If o is not a helix, then the centrode d of « is a rectifying curve if and only if k and T satisfy

(03
the equation ak,, — bt, = c where a, b, c are constants and they provide the conditions ¢ # 0, a® + b> # 0.

Proof. We assume that g = 1 and €5 = 1. Then, there exists

7\ &\
Ta (a> +K]a (a) B O
UVd Ud

and ()% + (x,)? # 0. Thus, we get «, # 0 or 7/, # 0.
/
Case 1 : We assume that /, # 0. Let ; (¢) be a function given by v, (t) = tan™1 (T(l”> Then, using

(03

it (1 (1)) = ——T8cos(yy (1)) = ——t0
V(T + (k1) V(T + (k1)

189
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we get
Ta €08 (71 (1)) 71 (1) — Ko sin (71 (£)) 74 (£) = 0.
Thus, we write v (¢) = 0 and it is a constant. So, we obtain ax — br = ¢. Since ;—Z is non-constant, it is ¢ % 0
and a? + b2 # 0.
Case 2 : We assume that 7/, # 0. Let 42 (¢) is a function given by 72 (t) = tan™! (%‘) Then,

[e%
!/

tan (2 (t)) = H—f‘ and using
T,

[0

. K T
sin (72 (1)) = ——=——=——=,c08 (12 (1)) = ————,
(T4)* + (k%) (T4)" + (k)
we get
(Ko cos (72 (1)) — Tasin (72 (1)) 73 (1) = 0.
It is easy to show that ax, — b1, = c. [ |

Now, we find the relations between the Frenet-Serret apparatus of the centrode d, which is a rectifying curve,
and the Frenet-Serret apparatus of .

Theorem 4.4. Let o be a unit speed spacelike curve in E$ with a timelike binormal vector and its Serret-Frenet
apparatus be {Ty, No, Ba, Ko, T }- The centrode d(t) of a(t) is a rectifying curve.
(1) If d(t) is a spacelike curve, then the Serret-Frenet apparatus {Tq, Ng, Ba, ka4, T4} of centrode is given by

—0 ¢
Ta= =l @b
Ng = Ng,
—0 ¢
Ba= =zt =gl
_ CTq — Ka
_ Cha — Ta

b
where 0 is the signature of T, ¢ = — and a, b is defined as in Theorem 4.2.
a

(2) If d(t) is a timelike curve, then the Serret-Frenet apparatus {Tq, Ng, Bq, ka4, Ta} of centrode is given by

—dc é
Td = Ta - Baa
V1-7¢ V1-¢
Nd = Nom
—dc 6
B - Ba - TOU
¢ 1 -7 V1 —¢c?
Ta — CKq

- Ko — CTq
K, (1—2°)

where § is the signature of k., ¢ = % and a, b is defined as in Theorem 4.2.

e
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Proof. From ax!, — bt/ = 0, since d(t) is a spacelike rectifying curve and 7/, # 0, we write x/, = —7.,. For vg,
a

we write

va =\ (74)" = (k)7 | = |70 V1 - &

b . .
where ¢ = —. For the Frenet-Serret apparatus, we give the following:
a

/
50517' 6061:% T, CT,,
T, = xT, — B, &
Ud Ud | \\/1—02 | \\/1—c2

!

I\ ’ 1 4
T, ToRa — Ko Ta K
€ilf€dUde= —a ), et alan (o) B

Vd Vd Vd

Then we get

Finally, we see easily that

-5 B
Ba=daxNo=p=mbe = =’
- &
—14e¢vgNy = — (—e17aNa) — e1ka NN,
Cha — Ta
then we h = Lo Ta n
en we have 74 =@

Theorem 4.5. Let « be a unit speed timelike curve in E3 with a spacelike binormal vector. The centrode d(t) of

a(t) is a rectifying curve.
(1) If d(t) is a spacelike curve, then the Serret-Frenet apparatus {Ty, Ny, Ba, kq, T4} of centrode is given by

oc 1)
= at i
Nd :Naa
By p 4+ 9% 1
V1-—7¢2 V1-¢
CRo — Ta
S
CTo, — Ko

@)

where § is the signature of K., ¢ = % and a, b is defined as in Theorem 4.2.

e

191



Giilsah AYDIN SEKERCI Sibel SEVINC and Abdilkadir Ceylan COKEN

(2) If d(t) is a timelike curve, then the Serret-Frenet apparatus {Tq, Ng, Ba, k4, Ta} of centrode is given by

1) ¢
Ta==alt gt
Ng = Ng,

1) oc
B R e

_ Rq — (T
_ Ta — CKq
R =)

b
where § is the signature of 7, ¢ = — and a, b is defined as in Theorem 4.2.
a

Theorem 4.6. Let o be a unit speed spacelike curve in E3 with a spacelike binormal and the centrode d(t) of
a(t) be a rectifying curve.
(1) If 7, # O, then the Frenet-Serret apparatus of centrode is given by

0 o¢

T = T, + B,,
TVt & N
Nd:Non
1) oé
Bd = 7ABQ - 7CAT0¢7
V14+¢é2 V14 ¢2
Ko — CTq
K= ———————
Tty
To + Kol
Td =

IR

b
where § is the signature of 7, ¢ = — and a, b is defined as in Theorem 4.3.
a

(2) If k., # O, then the Frenet-Serret apparatus of centrode is given by

oc 1)
T mTa + mBa,
Ng = Ng,
oc 1)
b= st e
_ Chaq —Ta
KR (=
_ CTq + Ka
e+ @)

where § is the signature of T/, ¢ = % and a, b is defined as in Theorem 4.3.
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