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On rectifying curves in Minkowski 3-space
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Abstract. In this study, we investigate a rectifying curve by using a dilation of a unit speed curve on pseudo-sphere or
pseudo-hyperbolic space and its centrode. Firstly, considering a causal character of any curve, we study the connection
between Serret-Frenet apparatus of the curve on pseudo-sphere or pseudo-hyperbolic space and its dilation. Then, we extend
necessary conditions when the centrode is a rectifying curve. Also, we examine some properties of centrode which is a
rectifying curve.
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1. Introduction

Characterization of a curve allows to classify curves according to some properties. Thus, instead of doing
analysis for each curve, working on these classes is appeared as a more convenient way. One example for the
characterized curves is a rectifying curve. The curve was put forward by B. Y. Chen in [1]. In three dimensional
Euclidean space E3, if α : I ⊆ R → E3 be a unit speed regular curve with Frenet frame {T,N,B} where T is
a tangent vector field, N is a normal vector field and B is a binormal vector field, then an osculating plane is a
plane spanned by the vector fields {T,N}, a rectifying plane is a plane spanned by the vector fields {T,B} and
a normal plane is a plane spanned by the vector fields {N,B}. The rectifying curve is a curve whose position
vector field is located on the rectifying plane. Thus, Chen showed that a rectifying curve α is denoted by the
equation

α (s) = η (s)T (s) + ξ (s)B (s)

where the functions η and ξ are differentiable. Also, it is known that the rectifying curve is characterized as
the curve whose ratio of torsion and curvature is a linear fuction of arc parameter in E3 [1]. By analyzing the
characterization of rectifying curve, it is interpreted kinematically because the position vector field of the curve
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states the axis of instantaneous rotation at each point. In addition to that, the connection between rectifying curves
and their centrodes is used to study in general mechanics. Firstly, Chen [2] established the connection between
rectifying curves and their centrodes in Euclidean 3-space. Since these curves are important, many studies have
been conducted on this subject. In this section, we just mention some of them. One of them was made by İlarslan
et. al [5]. According to that, they gave some characterizations of timelike, spacelike, null rectifying curves.
Moreover, these curves in dual space were examined in [9]. So, they were explored by taking advantage of the
relationship between the curve on a unit dual sphere and the surface theory. Additionally, the modified Darboux
vector of curve was described and it was shown that this vector is a rectifying curve [8]. Deshmukh et.al [3]
developed the necessary circumstances for the centrode of a curve to be a rectifying curve in Euclidean 3-space
and also, they presented the results about the dilation for rectifying curves and centrodes. This study has been the
main motivation of our study.

In this study, we research on the rectifying curves in the Minkowski 3-space. First of all, we use that the
dilation of u (t) is written as α (t) = f (t)u (t) where u (t) is a curve on the unit sphere S2 centered at the origin
and the fuction f (t) is positive differentiable. If the curve α (t) is the rectifying curve, then the dilation factor
f (t) is given by f (t) = a sec (t+ t0) . Here, a > 0 and t0 are constants [1]. However, this dilation factor in
Minkowski 3-space is defined as different ways for the curves α (t) and u (t) [5]. Considering this difference,
Frenet-Serret apparatus of α are given in terms of the curve u (t). It was also shown in [4] that the centrode of α (t)

is rectifying curve in Minkowski 3-space when it has non-zero constant curvature and non-constant torsion. Here,
we generalize this result. For this, we show that the centrode of any helix is not a rectifying curve in Minkowski
3-space. Then, using this feature and considering the causal characters of Frenet-Serret vectors, we obtain that
the centrode of non-helix curve is the rectifying curve if and only if it satisfies the condition aκ− bτ = c where
a, b, c are constants. Finally, there are many cases from the choices of plane and curve, so we consider all the
cases and give some notations for the centrode of α (t). We find the relations between Frenet-Serret apparatus of
the centrode, which is a rectifying curve, and the Frenet-Serret apparatus of α.

2. Preliminaries

Let E3
1 be a space with the metric g denoted by

g = −dx21 + dx22 + dx23 (2.1)

where x = (x1, x2, x3) is a rectangular coordinate system of E3
1 and also, it is called the three-dimensional

Minkowski space. Pseudo-sphere of radius 1 centered at origin is a hyperquadric in E3
1 and is given by

S2
1 (1) =

{
v ∈ E3

1 | g (v, v) = 1
}

(2.2)

and pseudo-hyperbolic space of radius 1 centered at origin is defined by

H2
0 (1) =

{
v ∈ E3

1 | g (v, v) = −1
}
. (2.3)

Let α (s) be a curve with an arc-length parameter s. It is the non-null curve that satisfies the property
g (α′ (s) , α′ (s)) = ±1 where ′ is the derivation of α [7]. For the Frenet frame {T,N,B} of a unit speed
non-null curve α (s) in E3

1, the Frenet formulas are given in [6] by

T ′ (s) = ε1κ (s)N (s) ,

N ′ (s) = −ε0κ (s)T (s) + ε2τ (s)B (s) ,

B′ (s) = −ε1τ (s)N (s) (2.4)

for g (T, T ) = ε0 = ±1, g (N,N) = ε1 = ±1 and g (B,B) = −ε0ε1 = ε2 where T,N,B are known as the
tangent vector field, the principal normal vector field, the binormal vector field, respectively. Assume that for
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Frenet frame of α, there exists the vector product as

B = T ×N,−ε1T = N ×B,−ε0N = B × T. (2.5)

The centrode of α : I → E3
1 is defined by

d = −ε0ε1τT − ε0ε1κB (2.6)

which is the angular velocity vector of the motion of a mass particle along the curve α and it obeys the laws of
motion [4]

T ′ = d× T,N ′ = d×N,B′ = d×B. (2.7)

In addition, the rectifying curves are formed by expanding a unit speed curve on a unit sphere with a special factor
f . To characterize such rectifying curves in E3

1, İlarslan et.al [5] gave a theorem. According to this theorem, a
unit speed non-null curve α = α (s) is written as the dilation of the curve u (t) to be rectifying curve. So, it is a
rectifying curve with a spacelike rectifying plane if and only if it satisfies the condition

α (t) = u (t)
l

cos t
(2.8)

where l ∈ R+
0 and u (t) is a unit speed spacelike curve on S2

1 (1). Also, it is a spacelike (or timelike) rectifying
curve with a spacelike (or timelike) position vector if and only if it satisfies the condition

α (t) = u (t)
l

sinh t
(2.9)

where u (t) is a unit speed timelike (or spacelike) curve on S2
1 (1). Finally, it is a spacelike (or timelike) rectifying

curve with a spacelike (or timelike) position vector if and only if it satisfies the condition

α (t) = u (t)
l

cosh t
(2.10)

where u (t) is a unit speed spacelike (or timelike) curve on H2
0 (1) (or S2

1 (1)).

3. On the Rectifying Curves and the Dilation of Curves

In Minkowski 3-space, let u (t) be a unit speed spacelike or timelike curve lying on S2
1 (1) or H2

1 (1) and α (t)

be a dilated rectifying curve of u (t). Now, we give the connections between the Frenet-Serret apparatus of the
curves α (t) and u (t) in Minkowski 3-space. For this, the different results are obtained by considering some
theorems in [5], because the dilation α (t) of u (t) is defined according to the causal characters of the curves α (t)

and u (t).
We assume that α is a spacelike rectifying curve with spacelike position vector on timelike rectifying plane

and u (t) is a unit speed timelike curve on pseudo-sphere S2
1 (1). Then, there exists the dilation α (t) =

a

sinh t
u (t). In this case, since the rectifying plane is timelike, clearly its normal vector Nα is spacelike, so

g (Nα, Nα) = 1. If the curve α is spacelike, the tangent of α is also spacelike. Furthermore, its position vector is
spacelike, so we have g (α, α) > 0, g (u′, u′) = −1 and g (u, u) = 1.

We know that Tu = u′ and {u, u′, u× u′} is an orthonormal frame of E3
1. We easily write

u′′ = T ′u = au+ bTu + cu× Tu.

When we use timelike curve u and 〈u′, u〉 = 0, we find a = 1. Similarly, b = 0 is found. Also, we assume
c = 〈u′′, u× u′〉 = r. Then, we get

u′′ = u+ ru× u′. (3.1)
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From (3.1) and using Frenet equations for u (t), there exists

‖u′′‖ =
√

1 + r2 = κu (3.2)

where κu is a curvature of the unit speed timelike curve u (t) and we find

Tu = u′, Nu =
1

κu
u+

r

κu
u× u′. (3.3)

Theorem 3.1. Let u (t) be a unit speed timelike curve on the unit sphere S2
1 (1) in E3

1, α (t) be a spacelike
rectifying curve on a timelike rectifying plane and its position vector be a spacelike vector defined by α (t) =

a

sinh (t+ t0)
u (t) , a ∈ R+. Then, the relation between the Frenet-Serret apparatus of α (t) and u (t) is as

follows:

Tα = sinh (t+ t0)u
′ − cosh (t+ t0)u,

Nα = u× u′,
Bα = sinh (t+ t0)u− cosh (t+ t0)u

′,

κα =
1

a

√
κ2u − 1 sinh3 (t+ t0) ,

τα =
1

a

√
κ2u − 1 cosh (t+ t0) sinh

2 (t+ t0)

where Tα, Nα, Bα, κα, τα are the tangent vector, normal vector, binormal vector, curvature, torsion of α (t),
respectively, and κu is the curvature of u (t).

Proof. Let α is given by α (t) =
a

sinh (t+ t0)
u (t) and {u, u′, u× u′} is an orthonormal frame of E3

1. Thus, we

get ‖α′ (t)‖ = a

sinh2 (t+ t0)
= υα and

Tα = sinh (t+ t0)u
′ − cosh (t+ t0)u. (3.4)

Then differentiating Tα, we obtain

T ′α = cosh (t+ t0)u
′ + sinh (t+ t0)u

′′ − sinh (t+ t0)u− cosh (t+ t0)u
′

= r sinh (t+ t0)u× u′

= ε1υακαNα.

From (3.2) we write r =
√
κ2u − 1. Furthermore, for the left side of (3.2) we say that u × u′ is equal to Nα

because both of them are unit vectors. So, if we write
[
r sinh (t+ t0)

a
sinh2 (t+ t0)

]
u×u′ = aκαNα, then we

get Nα = u× u′ and also

κα =
1

a

√
κ2u − 1 sinh3 (t+ t0) . (3.5)

We know that Bα = Tα ×Nα. Then

Bα = sinh (t+ t0)u− cosh (t+ t0)u
′. (3.6)

After differentiating (3.6), we find

B′α = cosh (t+ t0)u+ sinh (t+ t0)u
′ − sinh (t+ t0)u

′ − cosh (t+ t0)u
′′

= −r cosh (t+ t0)u× u′

= −ε1υαταNα
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which gives [r cosh (t+ t0)]u× u′ = υαταNα that is,

τα =
1

a

√
κ2u − 1 cosh (t+ t0) sinh

2 (t+ t0) . (3.7)

Thus, we establish the desired relationships. �

Every curves, which is constituted by α (t) =
a

sinh (t+ t0)
u (t), do not have to be a rectifying curve. This

result is valid for the curves which are not arc of the great circle. To show that, let u (t) be an arc of the great circle

on S2
1 (1) given by u (t) = (sinh t, 0, cosh t). We write α (t) = a

(
sinh t

sinh (t+ t0)
, 0,

cosh t

sinh (t+ t0)

)
. Hence, we

have ‖α′ (t)‖ = a

sinh2 (t+ t0)
and Tα = (sinh t0, 0,− cosh t0). Thus, κα = 0 and finally we say that α (t) is

not a rectifying curve.

Theorem 3.2. Let u (t) be a unit speed spacelike curve on the unit sphere S2
1 (1) in E3

1, α (t) be a rectifying
curve on a spacelike rectifying plane defined by α (t) =

a

cos (t+ t0)
u (t) , a ∈ R+. Then the relation between

the Frenet-Serret apparatus of α (t) and u (t) is as follows:

Tα = cos (t+ t0)u
′ + sin (t+ t0)u,

Nα = u× u′,
Bα = − cos (t+ t0)u+ sin (t+ t0)u

′,

κα =
1

a

√
1− κ2u cos3 (t+ t0) ,

τα =
−1
a

√
1− κ2u sin (t+ t0) cos

2 (t+ t0)

where Tα, Nα, Bα, κα, τα are the tangent vector, normal vector, binormal vector, curvature, torsion of α (t),
respectively, and κu is the curvature of u (t).

Theorem 3.3. Let u (t) be a unit speed spacelike curve on the unit sphere S2
1 (1) in E3

1, α (t) be a timelike
rectifying curve on a timelike rectifying plane and its position vector be a timelike vector defined by α (t) =

a

sinh (t+ t0)
u (t) , a ∈ R+. Then the relation between the Frenet-Serret apparatus of α (t) and u (t) is as

follows:

Tα =
sinh (t+ t0)√
cosh 2 (t+ t0)

u′ − cosh (t+ t0)√
cosh 2 (t+ t0)

u,

Nα =
−2 sinh(t+ t0)

f(t)
√
cosh 2(t+ t0)

(cosh(t+ t0)u
′ + sinh(t+ t0)u)

− 1

f(t)

√
(1− κ2u) cosh 2(t+ t0)u× u′,

Bα =

√
1− κ2u
f(t)

{sinh (t+ t0)u+ cosh (t+ t0)u
′}+ 2 sinh (t+ t0)

f(t)
u× u′,

κα =
sinh3 (t+ t0)

a cosh3/2 2 (t+ t0)
{4 sinh2 (t+ t0)− (1− κu)2 cosh 2 (t+ t0)}1/2,

τα =

√
cosh 2(t+ t0)

f2(t)

[
−2κu sinh(t+ t0)−

√
1− κ2u cosh(t+ t0)

(
1 + κ2u

)
−2f

′(t)

f(t)

√
1− κ2u sinh(t+ t0)

(
1 +

√
1− κ2u

)]
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where Tα, Nα, Bα, κα, τα are the tangent vector, normal vector, binormal vector, curvature, torsion of α (t),
respectively, and κu is the curvature of u. Also, f(t) is the function such that f(t) = {(1− cosh2(t+ t0))

2 −(
1− κ2u

)
cosh2(t+ t0) sinh

2(t+ t0)}.

Theorem 3.4. Let u (t) be a unit speed spacelike curve on the unit sphere H2
0 (1) in E3

1, α (t) be a spacelike
rectifying curve on a timelike rectifying plane and its position vector be a timelike vector defined by α (t) =

a

cosh (t+ t0)
u (t). Then the relation between the Frenet apparatus of α (t) and u (t) is as follows:

Tα = cosh (t+ t0)u
′ − sinh (t+ t0)u,

Nα = u× u′,
Bα = − cosh (t+ t0)u+ sinh (t+ t0)u

′,

κα =
1

a

√
1 + κ2u cosh

3 (t+ t0) ,

τα = −1

a

√
1 + κ2u sinh (t+ t0) cosh

2 (t+ t0)

where Tα, Nα, Bα, κα, τα are the tangent vector, normal vector, binormal vector, curvature, torsion of α (t),
respectively, and κu is the curvature of u (t).

Theorem 3.5. Let u (t) be a unit speed timelike curve on the unit sphere S2
1 (1) in E3

1, α (t) be a timelike
rectifying curve on a timelike rectifying plane and its position vector be a spacelike vector defined by α (t) =

a

cosh (t+ t0)
u (t). Then the relation between the Frenet-Serret apparatus of α (t) and u (t) is as follows:

Tα = cosh (t+ t0)u
′ − sinh (t+ t0)u,

Nα = u× u′,
Bα = cosh (t+ t0)u− sinh (t+ t0)u

′,

κα =
1

a

√
κ2u − 1 cosh3 (t+ t0) ,

τα =
1

a

√
κ2u − 1 sinh (t+ t0) cosh

2 (t+ t0)

where Tα, Nα, Bα, κα, τα are the tangent vector, normal vector, binormal vector, curvature, torsion of α (t),
respectively, and κu is the curvature of u (t).

4. Centrodes as Rectifying Curves

In this section, considering the Frenet vectors of the curve α in E3
1 and their causal characters, we give a

proposition that if the curve α is the helix, then its centrode is a line segment. Then using this proposition,
we examine the features, which should be provided by the curves whose centrodes are the rectifying curves
except the helix. In the previous studies [1, 4], it was shown for the curves with the constant (or non-constant)
curvature κ and the non-constant (or constant) torsion τ . Here, this result has been expanded.

Let α : I ⊆ R→ E3
1 be a unit speed curve with Frenet frame {Tα, Nα, Bα} and also,

g(Tα, Tα) = ε0, g(Nα, Nα) = ε1, g(Bα, Bα) = ε2. (4.1)

Morever, let d : I ⊆ R → E3
1 be the centrode of α with its Frenet frame {Td, Nd, Bd}. Then we have T ′α =

d×Tα, N ′α = d×Nα and B′α = d×Bα. For all the cases of the unit speed curve α, the centrode d is written by

d = −ε0ε1ταTα − ε0ε1καBα. (4.2)
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Now, we find the Serret-Frenet apparatus of d. For this, we use d′ = −ε0ε1τ ′αTα − ε0ε1κ′αBα. Using d′

we obtain ‖d′‖2 = (τ ′α)
2
ε0 + ε2 (κ

′
α)

2, then the speed of centrode d is given by υd =

√
ε0 (τ ′α)

2
+ ε2 (κ′α)

2
.

Additionally,

Td = −
ε0ε1τ

′
αTα

υd
− ε0ε1κ

′
αBα

υd
. (4.3)

Differentiating (4.3) we find

T ′d =

(
−ε0ε1τ

′
α

υd

)′
Tα −

ε0ε1τ
′
α

υd
T ′α +

(
−ε0ε2κ

′
α

υd

)′
Bα −

ε0ε2κ
′
α

υd
B′α.

The centrode d does not have to be unit speed, then we get

εd1κdυdNd =

(
−ε0ε1τ

′
α

υd

)′
Tα −

ε0τ
′
α

υd
καNα −

(
ε0ε1κ

′
α

υd

)′
Bα +

ε0κ
′
α

υd
ταNα

= −
(
ε0ε1τ

′
α

υd

)′
Tα −

ε0τ
′
ακα − ε0κ′ατα

υd
Nα −

(
ε0ε1κ

′
α

υd

)′
Bα. (4.4)

Using this equation we give the following proposition about helices.

Proposition 4.1. Let α : I → E3
1 be a unit speed curve whose curvature κα and torsion τα satisfy κα > 0 and

ε0 (τ
′
α)

2
+ ε2 (κ

′
α)

2 6= 0. Then α is a helix if and only if its centrode d is a line segment.

Proof. We assume that the centrode of α is a line segment, then its curvature is zero, namely κd = 0. In (4.4),
the coefficients of Tα, Nα, Bα are also zero since Tα, Nα, Bα vectors are linearly independent. Then, we write
the following:

(i)
(
ε0ε1τ

′
α

υd

)′
= 0,

(ii)
ε0τ
′
ακα − ε0κ′ατα

υd
= 0,

(iii)
(
ε0ε1κ

′
α

υd

)′
= 0.

For (ii), from υd 6= 0 there is ε0τ ′ακα − ε0κ′ατα = 0. We know that ε0 6= 0. If we divide both sides of the

equation to ε0, then we find τ ′ακα − κ′ατα = 0. Thus, we write that
τ ′α
κ′α

=
τα
κα

and

(
τα
κα

)′
=
τ ′ακα − τακ′α

κ2α
= 0.

Consequently,
τα
κα

is constant and α is a helix. Conversely, if α is a helix, then we write τα = cκα, c 6= 0. Using

(4.4),

εd1κdυdNd =−
(
ε0ε1cκ

′
α

υd

)′
Tα −

ε0cκ
′
ακα − ε0κ′αcκα

υd
Nα −

(
ε0ε1κ

′
α

υd

)′
Bα

=
(−ε0κ′′αυd + ε0κ

′
αυ
′
d)

υ2d
(ε1cTα + ε1Bα) .

Now, we investigate the cases in Minkowski 3-space. Firstly, we obtain

κ2dυ
2
dg (Nd, Nd) =

(
ε0c

2 + ε2
) [(κ′α

υd

)′]2
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Gülşah AYDIN ŞEKERCİ Sibel SEVİNÇ and Abdilkadir Ceylan ÇÖKEN

and also

εd0 = ε0

(
cκ′α
υd

)2

+ ε2

(
κ′α
υd

)2

where εd0 is the signature of Td, that is g(Td, Td) = εd0. Here, differentiating both sides, we write

2ε0
cκ′α
υd

(
cκ′α
υd

)′
+ 2ε2

κ′α
υd

(
κ′α
υd

)′
= 0.

Hence, it is ε0c2 + ε2 = 0,
κ′α
υd

= 0 or
(
κ′α
υd

)′
= 0.

(1) For ε0c2 + ε2 = 0, there exists κ2dυ
2
dg (Nd, Nd) = 0. From g (Nd, Nd) 6= 0 and υ2d 6= 0, then κd = 0.

(2) For
κ′α
υd

= 0, clearly κd = 0.

(3) For
(
κ′α
υd

)′
0, clearly κd = 0.

Therefore, if α is a helix, then the centrode of α is a line segment. �

Theorem 4.2. Let α be a unit speed spacelike (timelike) curve in E3
1 with a timelike(spacelike) binormal,

κα, τα 6= 0 and (τ ′α)
2 − (κ′α)

2 6= 0. If α is not a helix, then the centrode d of α is a rectifying curve if and
only if κα and τα satisfy the equation aκα − bτα = c where a, b, c are constants and they provide the conditions
c 6= 0, a2 − b2 6= 0.

Proof. Let α = α (t) be a unit speed curve in E3
1 and κα, τα 6= 0, ε0 (τ ′α)

2
+ ε2 (κ

′
α)

2 6= 0, namely α is not a
null curve. If α is not a helix, then we use (4.4) and (4.2). So, we get

εd1κdυdg(Nd (t) , d (t)) =ε0τα

(
τ ′α
υd

)′
+ ε2κα

(
κ′α
υd

)′
. (4.5)

If the centrode d of α is a rectifying curve, the multiplication of the position vector field of d and Nd is zero.
Since α is not a helix, d is not a line segment and κd 6= 0. From κd > 0 and υd 6= 0, we write g(Nd, d) = 0.

Then we find

ε0τα

(
τ ′α
υd

)′
+ ε2κα

(
κ′α
υd

)′
= 0. (4.6)

This equation shows that, if the centrode d of α is rectifying curve, then it satisfies (4.2). Now, we use (4.6) and
try to obtain better notation. Let α be a unit speed curve in E3

1 with a timelike binormal vector. We have

τα

(
τ ′α
υd

)′
− κα

(
κ′α
υd

)′
= 0

and from the hypotesis of the theorem, we take (τ ′α)
2 − (κ′α)

2 6= 0. Then, it is (τ ′α)
2 − (κ′α)

2
> 0 or (τ ′α)

2 −
(κ′α)

2
< 0.

Case 1 : We assume that (τ ′α)
2−(κ′α)

2
> 0. In this situation, if τ ′α is zero, then the condition (τ ′α)

2−(κ′α)
2
>

0 is not satisfied. So τ ′α 6= 0. Then, let θ1(t) be a function defined by sin−1
(
κ′α
τ ′α

)
. Using the equations

sin θ1 (t) =
κ′α
τ ′α
, cos θ1 (t) =

√
(τ ′α)

2 − (κ′α)
2

τ ′α
,

tan θ1 (t) =
κ′α√

(τ ′α)
2 − (κ′α)

2
, sec θ1 (t) =

τ ′α√
(τ ′α)

2 − (κ′α)
2
,
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then we get

τα (sec θ1 (t))
′ − κα (tan θ1 (t))′ = 0,

θ′1 (t) sec θ1 (t) [τα tan θ1 (t)− κα sec θ1 (t)] = 0.

For τα tan θ1 (t)− κα sec θ1 (t) = 0, we find easily that τα tan θ1 (t) = κα sec θ1 (t). Then

τα
κα

=
sec θ1 (t)

tan θ1 (t)
=

1

sin θ1 (t)
= csc θ1 (t) =

τ ′α
κ′α
.

So, α is a helix. But, it is contrast to the hypotesis. For sec θ1 (t) = 0, we write
τ ′α√

(τ ′α)
2 − (κ′α)

2
= 0, namely,

τ ′α = 0 and this is contrast to the hypotesis, too. For θ′1 (t) = 0, then it is clear that θ1 (t) = constant.

Furthermore sin θ1 (t) =
κ′α
τ ′α

= c1 and c1 is a constant. If we choose
b

a
= c1, then there is aκ′α− bτ ′α = 0. From

here, aκα − bτα = c.
Case 2 : We assume that (τ ′α)

2 − (κ′α)
2
< 0. In this situation, κ′α 6= 0 . Let θ2(t) be a function defined by

sin−1
(
τ ′α
κ′α

)
. Using the equations

sin θ2 (t) =
τ ′α
κ′α
, cos θ2 (t) =

√
(κ′α)

2 − (τ ′α)
2

κ′α
,

tan θ2 (t) =
τ ′α√

(κ′α)
2 − (τ ′α)

2
, sec θ2 (t) =

κ′α√
(κ′α)

2 − (τ ′α)
2
,

we get

θ′2 (t) sec θ2 (t) [−τα sec θ2 (t) + κα tan θ2 (t)] = 0.

Thus, we obtain aκα − bτα = c. Conversely, if κα and τα provides the equation aκα − bτα = c, then we find

τα

(
τ ′α
υd

)′
− κα

(
κ′α
υd

)′
= 0 from

(
κ′α
υd

)′
= 0 and

(
τ ′α
υd

)′
= 0. Also, the proof is done for timelike curve with

spacelike binormal vector, similarly. �

Theorem 4.3. Let α be a unit speed spacelike curve in E3
1 with a spacelike binormal vector, κα, τα 6= 0 and

(τ ′α)
2
+ (κ′α)

2 6= 0. If α is not a helix, then the centrode d of α is a rectifying curve if and only if κ and τ satisfy
the equation aκα − bτα = c where a, b, c are constants and they provide the conditions c 6= 0, a2 + b2 6= 0.

Proof. We assume that ε0 = 1 and ε2 = 1. Then, there exists

τα

(
τ ′α
υd

)′
+ κα

(
κ′α
υd

)′
= 0

and (τ ′α)
2
+ (κ′α)

2 6= 0. Thus, we get κ′α 6= 0 or τ ′α 6= 0.

Case 1 : We assume that κ′α 6= 0. Let γ1 (t) be a function given by γ1 (t) = tan−1
(
τ ′α
κ′α

)
. Then, using

sin (γ1 (t)) =
τ ′α√

(τ ′α)
2
+ (κ′α)

2
, cos (γ1 (t)) =

κ′α√
(τ ′α)

2
+ (κ′α)

2
,
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we get

τα cos (γ1 (t)) γ
′
1 (t)− κα sin (γ1 (t)) γ′1 (t) = 0.

Thus, we write γ′1 (t) = 0 and it is a constant. So, we obtain aκ− bτ = c. Since
τα
κα

is non-constant, it is c 6= 0

and a2 + b2 6= 0.

Case 2 : We assume that τ ′α 6= 0. Let γ2 (t) is a function given by γ2 (t) = tan−1
(
κ′α
τ ′α

)
. Then,

tan (γ2 (t)) =
κ′α
τ ′α

and using

sin (γ2 (t)) =
κ′α√

(τ ′α)
2
+ (κ′α)

2
, cos (γ2 (t)) =

τ ′α√
(τ ′α)

2
+ (κ′α)

2
,

we get

(κα cos (γ2 (t))− τα sin (γ2 (t))) γ′2 (t) = 0.

It is easy to show that aκα − bτα = c. �

Now, we find the relations between the Frenet-Serret apparatus of the centrode d, which is a rectifying curve,
and the Frenet-Serret apparatus of α.

Theorem 4.4. Let α be a unit speed spacelike curve in E3
1 with a timelike binormal vector and its Serret-Frenet

apparatus be {Tα, Nα, Bα, κα, τα}. The centrode d(t) of α(t) is a rectifying curve.
(1) If d(t) is a spacelike curve, then the Serret-Frenet apparatus {Td, Nd, Bd, κd, τd} of centrode is given by

Td =
−δ√
1− ĉ2

Tα −
δĉ√
1− ĉ2

Bα,

Nd = Nα,

Bd =
−δ√
1− ĉ2

Bα −
δĉ√
1− ĉ2

Tα,

κd =
ĉτα − κα
τ ′α (1− ĉ2)

,

τd =
ĉκα − τα
τ ′α (1− ĉ2)

where δ is the signature of τ ′α, ĉ =
b

a
and a, b is defined as in Theorem 4.2.

(2) If d(t) is a timelike curve, then the Serret-Frenet apparatus {Td, Nd, Bd, κd, τd} of centrode is given by

Td =
−δc√
1− c2

Tα −
δ√

1− c2
Bα,

Nd = Nα,

Bd =
−δc√
1− c2

Bα −
δ√

1− cc2
Tα,

κd =
τα − cκα
κ′α
(
1− c2

) ,
τd =

κα − cτα
κ′α
(
1− c2

)
where δ is the signature of κ′α, c =

a

b
and a, b is defined as in Theorem 4.2.

190



On rectifying curves in Minkowski 3-space

Proof. From aκ′α − bτ ′α = 0, since d(t) is a spacelike rectifying curve and τ ′α 6= 0, we write κ′α =
b

a
τ ′α. For υd,

we write

υd =

√
| (τ ′α)

2 − (κ′α)
2 | = |τ ′α|

√
1− ĉ2

where ĉ =
b

a
. For the Frenet-Serret apparatus, we give the following:

Td =−
ε0ε1τ

′
α

υd
Tα −

ε0ε1κ
′
α

υd
Bα = − τ ′α

|τ ′α|
√
1− ĉ2

Tα −
ĉτ ′α

|τ ′α|
√
1− ĉ2

Bα,

εd1κdυdNd =

(
−τ
′
α

υd

)′
Tα −

τ ′ακα − κ′ατα
υd

Nα −
(
κ′α
υd

)′
Bα.

Then we get

Nd = Nα,

κd =
−τ ′ακα + κ′ατα(
|τ ′α|
√
1− ĉ2

)2 =
ĉτα − κα
τ ′α (1− ĉ2)

.

Finally, we see easily that

Bd = Td ×Nd =
−δ√
1− ĉ2

Bα −
ĉδ√
1− ĉ2

Tα,

−τdεd1υdNd =
−δ√
1− ĉ2

(−ε1ταNα)−
ĉδ√
1− ĉ2

ε1καNα,

then we have τd =
ĉκα − τα
τ ′α (1− ĉ2)

. �

Theorem 4.5. Let α be a unit speed timelike curve in E3 with a spacelike binormal vector. The centrode d(t) of
α(t) is a rectifying curve.

(1) If d(t) is a spacelike curve, then the Serret-Frenet apparatus {Td, Nd, Bd, κd, τd} of centrode is given by

Td =
δc√
1− c2

Tα +
δ√

1− c2
Bα,

Nd = Nα,

Bd =
δc√
1− c2

Bα +
δ√

1− c2
Tα,

κd =
cκα − τα
κ′α
(
1− c2

) ,
τd =

cτα − κα
κ′α
(
1− c2

)
where δ is the signature of κ′α, c =

a

b
and a, b is defined as in Theorem 4.2.
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(2) If d(t) is a timelike curve, then the Serret-Frenet apparatus {Td, Nd, Bd, κd, τd} of centrode is given by

Td =
δ√

1− ĉ2
Tα +

δĉ√
1− ĉ2

Bα,

Nd = Nα,

Bd =
δ√

1− ĉ2
Bα +

δĉ√
1− ĉ2

Tα,

κd =
κα − ĉτα
τ ′α (1− ĉ2)

,

τd =
τα − ĉκα
τ ′α (1− ĉ2)

where δ is the signature of τ ′α, ĉ =
b

a
and a, b is defined as in Theorem 4.2.

Theorem 4.6. Let α be a unit speed spacelike curve in E3
1 with a spacelike binormal and the centrode d(t) of

α(t) be a rectifying curve.
(1) If τ ′α 6= 0, then the Frenet-Serret apparatus of centrode is given by

Td =
δ√

1 + ĉ2
Tα +

δĉ√
1 + ĉ2

Bα,

Nd = Nα,

Bd =
δ√

1 + ĉ2
Bα −

δĉ√
1 + ĉ2

Tα,

κd =
κα − ĉτα
τ ′α (1 + ĉ2)

,

τd =
τα + καĉ

τ ′α (1 + ĉ2)

where δ is the signature of τ ′α, ĉ =
b

a
and a, b is defined as in Theorem 4.3.

(2) If κ′α 6= 0, then the Frenet-Serret apparatus of centrode is given by

Td =
δc√
1 + c2

Tα +
δ√

1 + c2
Bα,

Nd = Nα,

Bd =
δc√
1 + c2

Bα −
δ√

1 + c2
Tα,

κd =
cκα − τα
κ′α
(
1 + c2

) ,
τd =

cτα + κα

κ′α
(
1 + c2

)
where δ is the signature of τ ′α, c =

a

b
and a, b is defined as in Theorem 4.3.
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