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Abstract

In the present paper we study a new function called as R-function [6], which is an extension of the gen-
eralized Mittag-Leffler functions. We derive the relations that exist between the R-function and Saigo-Maeda
fractional calculus operators. Some results derived by Kumar and Kumar [6], Kilbas [4], Kilbas and Saigo [5];
and Sharma and Jain [23] are special cases of the main results derived in this paper.
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1 Introduction and preliminaries

The Mittag-Leffler function has gained importance and popularity during the last one and a half decades
due mainly to its applications in the solution of fractional-order differential, integral and difference equations
arising in certain problems of mathematical, physical, biological and engineering sciences. Mittag-Leffler
function naturally occurs as the solution of fractional order differintegral equations.

In 1903, the Swedish mathematician Gosta Mittag-Leffler [9, 10] introduced studied the function Eα (z),
defined by

Eα (z) =
∞

∑
n=0

zn

Γ (αn + 1)
, (α ∈ C, Re (α) > 0) . (1.1)

A generalization of this series given by Wiman [27] who defined the function Eα,β (z) as follows

Eα,β (z) =
∞

∑
n=0

zn

Γ (αn + β)
, (α, β ∈ C, Re (α) > 0, Re (β) > 0) . (1.2)

The function Eα,β (z) is now known as Wiman function, which was later studied by Agarwal [1] and others.
The generalization of (1.2) was introduced by Prabhakar [11] in terms of the series representation as given
following:

Eγ
α,β (z) =

∞

∑
n=0

(γ)n zn

Γ (αn + β) n!
, (α, β, γ ∈ C, Re (α) > 0, Re (β) > 0) , (1.3)

Shukla and Prajapati [24] defined and investigated the function Eγ,q
α,β (z) as

Eγ,q
α,β (z) =

∞

∑
n=0

(γ)qn zn

Γ (αn + β) n!
, (α, β, γ ∈ C, Re (α) > 0, Re (β) > 0, Re (γ) > 0) , (1.4)
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where q ∈ (0, 1) ∪ N and (γ)qn = Γ(γ+qn)
Γ(γ) denotes the generalized Pochhammer symbol which in particular

reduces to

qqn
q

∏
r=1

(
γ + r − 1

q

)
n

, q ∈ N .

Srivastava and Tomovski [26] introduced and investigated a further generalization of (1.3), which is defined
in the following way:

Eγ,k
α,β (z) =

∞

∑
n=0

(γ)kn zn

Γ (αn + β) n!
, (z, β, γ ∈ C; Re (α) > max {0, Re(k)− 1} ; Re(k) > 0) , (1.5)

which, in the special case when k = q (q ∈ (0, 1) ∪ N) and min {Re(β), Re(γ)} > 0, is given by (1.4).
It is an entire function of order ρ = [Re (α)]−1. Some special cases of (1.3) are

Eα (z) = E1
α,1 (z) , Eα,β (z) = E1

α,β (z) , φ (β, γ; z) = 1F1 (β, γ; z) = Γ (γ) Eβ
1,γ (z) , (1.6)

An interesting generalization of (1.2) is recently introduced by Kilbas and Saigo [5] in terms of a special entire
function as given below

Eα,m,r (z) =
∞

∑
n=0

cn zn, (1.7)

where cn = ∏n−1
i=0

Γ[α(im+r)+1]
Γ[α(im+r+1)+1] and an empty product is to be interpreted as unity.

In order to prove our main results we only provide here the basic definitions of left-sided fractional cal-
culus operators. The readers can refer for detailed account of fractional calculus operators in several papers
[15, 16, 17] and many more

Let α, α
′
, β, β

′
, γ ∈ C, x > 0, then the left-sided (Iα,α

′
,β,β

′
,γ

0+ ) generalized fractional integral operators of a func-
tion f (x) for Re(γ) > 0 is defined by Saigo and Maeda [16], in the following form:(

Iα,α
′
,β,β

′
,γ

0+ f
)

(x) =
x−α

Γ(γ)

∫ x

0
(x − t)γ−1 t−α

′
F3

(
α, α

′
, β, β

′
; γ; 1− t

x
, 1− x

t

)
f (t)dt, (1.8)

This operator reduce to the left-sided Saigo fractional integral operator [15] due to the following relation:

Iα,0,β,β
′
,γ

0+ f (x) = Iγ,α−γ,−β
0+ f (x) (γ ∈ C), (1.9)

Further, if we set β = −α, then operator (1.9) reduces to left-sided Riemann-Liouville fractional integral
operator

Iα,−α,γ
0+ f (x) = Iα

0+ f (x), (1.10)

Let α, α
′
, β, β

′
, γ ∈ C, and x ∈ R+, then the left-sided generalized fractional differentiation operator [16]

involving the Appell function F3 as a kernel are defined by the following equation:(
Dα,α

′
,β,β

′
,γ

0+ f
)

(x) =
(

I−α
′
,−α,−β

′
,−β,−γ

0+ f
)

(x) (1.11)

=
1

Γ (n − γ)

(
d

dx

)n (
xα′

) ∫ x

0
(x − t)n−γ−1 tα

× F3

(
−α′,−α, n − β′,−β, n − γ; 1− t

x
, 1− x

t

)
f (t) dt, (1.12)

The above operator reduce to the left-sided Saigo fractional derivative operator [15, 18] as(
D0,α

′
,β,β

′
,γ

0+ f
)

(x) =
(

Dγ,α
′−γ,β

′−γ
0+ f

)
(x) , (Re(γ) > 0); (1.13)

If we set β = −α, then operator (1.13) reduces to left-sided Riemann-Liouville fractional derivative operator

Dα,−α,γ
0+ f (x) = Dα

0+ f (x). (1.14)

Under various fractional calculus operators, the computations of image formulas for special functions
are very important from the point of view of the usefulness of these results in the evaluation of generalized
integrals and the solution of differential and integral equations. Therefore, in the literature we found several
papers on the subject, see for instance [12], [13], [19]-[21] and [2] and references cited therein.
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2 The generalized Mittag-Leffler type function (R-function)

The R-function is introduced and studied by Kumar and Kumar [6] as follows:

k
pRα,β;γ

q (z) = k
pRα,β;γ

q
(
a1, ..., ap; b1, ..., bq; z

)
=

∞

∑
n=0

∏
p
j=1

(
aj

)
n

∏
q
j=1

(
bj

)
n

(γ)kn zn

n!Γ (αn + β)
, (2.1)

where α, β, γ ∈ C, Re(α) > max {0, Re(k)− 1} ; Re(k) > 0;
(
aj

)
n and

(
bj

)
n are the Pochhammer symbols.

The series (2.1) is defined when none of the parameters bj’s, j = 1, q is a negative integer or zero. If any
parameter aj is a negative integer or zero, then the series (2.1) terminates to a polynomial in z , and the series
is convergent for all z if p < q + 1. It can also converge in some cases if we have p = q + 1 and |z| = 1. Let
γ = ∑

p
j=1 aj − ∑

q
j=1 bj, it can be shown that if Re(γ) > 0 and p = q + 1 the series is absolutely convergent for

|z| = 1, in order convergent for z = −1 when 0 ≤ Re(γ) < 1 and divergent for |z| = 1 when 1 ≤ Re(γ).

Special Cases of the R-function:

(i) If we set aj = bj = 1, we have

k
0Rα,β;γ

0 (z) =
∞

∑
n=0

(γ)kn zn

n!Γ (αn + β)
= Eγ,k

α,β (z), (2.2)

where Eγ,k
α,β (z) is the generalized Mittag-Leffler function which introduced by Srivastava and Tomovski [26].

(ii) In the special case of (2.2), when k = q (q ∈ (0, 1) ∪ N) and min {Re(β), Re(γ)} > 0, we have the following:

q
0Rα,β;γ

0 (z) =
∞

∑
n=0

(γ)qn zn

n!Γ (αn + β)
= Eγ,q

α,β (z), (2.3)

where Eγ,q
α,β (z) was considered earlier by Shukla and Prajapati [24].

(iii) If we set aj = bj = k = 1 in (2.1), we have

1
0Rα,β;γ

0 (z) =
∞

∑
n=0

(γ)n zn

n!Γ (αn + β)
= Eγ

α,β(z), (2.4)

where Eγ
α,β(z) is generalization of the Mittag-Leffler function which introduced by Prabhakar [11], and studied

by Haubold et al. [3] and others.

(iv) If we put γ = 1 in (2.4), we have

1
0Rα,β;1

0 (z) =
∞

∑
n=0

zn

Γ (αn + β)
= E1

α,β(z) = Eα,β(z), (2.5)

where Eα,β(z) is the generalized Mittag-Leffler function [27] (also known as Wiman function), which was later
studied by Agarwal [1] and others.

(v) If we take β = γ = 1 in (2.4), we have

1
0Rα,1;1

0 (z) =
∞

∑
n=0

zn

Γ (αn + 1)
= E1

α,1(z) = Eα(z), (2.6)

where Eα(z) is the Mittag-Leffler function [9, 10], compare (1.1).

(vi) If we take α = β = γ = 1 in (2.4), we obtain

1
0R1,1;1

0 (z) =
∞

∑
n=0

zn

Γ (n + 1)
= E1

1,1(z) = E1(z) = ex, (2.7)

where ex is the Exponential function [14].
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(vii) If we set γ = k = 1 in (2.1), then the R-function can be represented in the Wright generalized hypergeo-
metric function [28] pψq(z) and the H-function [4, 8] as given below

1
pRα,β;1

q (z) = 1
pRα,β;1

q
(
a1, ..., ap; b1, ..., bq; z

)
=

∏
q
j=1 Γ(bj)

∏
p
j=1 Γ(aj)

p+1ψq+1

[
z
∣∣∣∣(a1,1),··· ,(ap ,1),(1,1)

(b1,1),··· ,(bq ,1),(β,α)

]

=
∏

q
j=1 Γ(bj)

∏
p
j=1 Γ(aj)

H1,p+1
p+1,q+2

[
−z

∣∣∣∣(1−aj ,1)1,p ,(0,1)

(0,1),(1−bj ,1)1,q ,(1−β,α)

]
, (2.8)

where H-function is as defined in the monograph by Mathai et al. [8].

(viii) If we set p = q = 0, and γ = k = 1 in (2.1), then we obtain another special case of R-function in terms of
the Wright generalized hypergeometric function as given below:

1
0Rα,β;1

0 (z) = 1
0Rα,β;1

0 (−; 1; z) =
∞

∑
n=0

Γ(n + 1) zn

Γ (αn + β) n!
=

(1)n zn

Γ (αn + β) n!
= 1ψ1

[
z
∣∣∣∣(1,1)

(β,α)

]
, (2.9)

(ix) If we set α = β = γ = k = 1 in (2.1), then the R-function reduces to the generalized hypergeometric
function pFq (see for detail [7, 14, 17]) as given

1
pR1,1;1

q
(
a1, . . . , ap; b1, . . . , bq; z

)
=

∞

∑
n=0

∏
p
j=1

(
aj

)
n

∏
q
j=1

(
bj

)
n

zn

n!
= pFq

((
aj

)
1,p ;

(
bj

)
1,q ; z

)
. (2.10)

3 Main results

This section deals with results, which established well defined ralations for generalized fractional dif-
ferintegrals (fractional integral and differential operators) and generalized Mittag-Leffler type function (R-
function), defined by (2.1).

Theorem 3.1. Let ϑ, ϑ′, η, η′, δ, α, β, γ ∈ C, Re(δ) > 0, Re(α) > 0 and (a)n = Γ(a + n)/Γ(a), then there holds the
relation

Iϑ,ϑ′ ,η,η′ ,δ
0+

(
k
pRα,β;γ

q (x)
)

= x−ϑ−ϑ′+δ Γ (1 + δ − ϑ − ϑ′ − η) Γ (1 + η′ − ϑ′)
Γ (1 + δ − ϑ − ϑ′) Γ (1 + δ − ϑ′ − η) Γ (1 + η′)

× k
p+3Rα,β;γ

q+3
(
a1, . . . , ap, 1, 1 + δ − ϑ − ϑ′ − η, 1 + η′ − ϑ′ ;

b1, . . . , bq, 1 + δ − ϑ − ϑ′, 1 + δ − ϑ′ − η, 1 + η′; x
)

. (3.1)

Proof. Following the definition of Saigo-Maeda fractional integral [16] as given in (1.8), we have the following
relation:

Iϑ,ϑ′ ,η,η′ ,δ
0+

(
k
pRα,β;γ

q (x)
)

=
x−ϑ

Γ(δ)

∫ x

0
(x − t)δ−1 t−ϑ′F3

(
ϑ, ϑ′, η, η′, δ; 1− t

x
, 1− x

t

)
k
pRα,β;γ

q (t) dt

by virtue of (2.1), we obtain

Iϑ,ϑ′ ,η,η′ ,δ
0+

(
k
pRα,β;γ

q (x)
)

=
x−ϑ

Γ(δ)

∫ x

0
(x − t)δ−1 t−ϑ′F3

(
ϑ, ϑ′, η, η′, δ; 1− t

x
, 1− x

t

)
×

∞

∑
n=0

∏
p
j=1

(
aj

)
n

∏
q
j=1

(
bj

)
n

(γ)kn tn

n!Γ (αn + β)
dt . (3.2)

Interchanging the order of integration and evaluating the inner integral with the help of Beta function, we
arrive at

Iϑ,ϑ′ ,η,η′ ,δ
0+

(
k
pRα,β;γ

q (x)
)

= x−ϑ−ϑ′+δ Γ (1 + δ − ϑ − ϑ′ − η) Γ (1 + η′ − ϑ′)
Γ (1 + δ − ϑ − ϑ′) Γ (1 + δ − ϑ′ − η) Γ (1 + η′)

×
∞

∑
n=0

∏
p
j=1

(
aj

)
n (1)n (1 + δ − ϑ − ϑ′ − η)n (1 + η′ − ϑ′)n

∏
q
j=1

(
bj

)
n (1 + δ − ϑ − ϑ′)n (1 + δ − ϑ′ − η)n (1 + η′)n

(γ)kn xn

n!Γ (αn + β)
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= x−ϑ−ϑ′+δ Γ (1 + δ − ϑ − ϑ′ − η) Γ (1 + η′ − ϑ′)
Γ (1 + δ − ϑ − ϑ′) Γ (1 + δ − ϑ′ − η) Γ (1 + η′)

× k
p+3Rα,β;γ

q+3
(
a1, . . . , ap, 1, 1 + δ − ϑ − ϑ′ − η, 1 + η′ − ϑ′ ;

b1, . . . , bq, 1 + δ − ϑ − ϑ′, 1 + δ − ϑ′ − η, 1 + η′; x
)

.

The interchange of the order of summation is permissible under the conditions stated along with the theorem.
This shows that a Saigo-Maeda fractional integral of the R-function is again the R-function with increased
order (p + 3, q + 3).

This completes the proof of the Theorem 1.

In view of the relation (1.9), we obtain the result given by Kumar and Kumar [6] concerning Saigo fractional
integral operator asserted by the following corollary.

Corollary 3.1. Let ϑ, η, δ, α, β, γ ∈ C, Re(ϑ) > 0, Re(α) > 0 and (a)n = Γ(a + n)/Γ(a), then there holds the relation

Iϑ,η,δ
0+

(
k
pRα,β;γ

q (x)
)

=
x−ηΓ(1 + δ − η)

Γ(1 + ϑ + δ)Γ(1− η)

× k
p+2Rα,β;γ

q+2
(
a1, . . . , ap, 1, 1 + δ − η; b1, . . . , bq, 1 + ϑ + δ, 1− η; x

)
. (3.3)

Further, if we put η = −ϑ in (3.3) then we obtain following Corollary concerning Riemann-Liouville
fractional integral operator [17]:

Corollary 3.2. Let ϑ, α, β, γ ∈ C, Re(ϑ) > 0, Re(α) > 0 and (a)n = Γ(a + n)/Γ(a), then there holds the relation

Iϑ
0+

(
k
pRα,β;γ

q (x)
)

=
xϑ

Γ(1 + ϑ)
k

p+1Rα,β;γ
q+1

(
a1, . . . , ap, 1; b1, . . . , bq, 1 + ϑ; x

)
. (3.4)

Theorem 3.2. Let ϑ, ϑ′, η, η′, δ, α, β, γ ∈ C, Re(δ) > 0, Re(α) > 0 and (a)n = Γ(a + n)/Γ(a), then there holds the
relation

Dϑ,ϑ′ ,η,η′ ,δ
0+

(
k
pRα,β;γ

q (x)
)

= xϑ+ϑ′−δ Γ (1 + ϑ + ϑ′ + η′ − δ) Γ (1 + ϑ − η)
Γ (1 + ϑ + ϑ′ − δ) Γ (1 + ϑ + η′ − δ) Γ (1− η)

× k
p+3Rα,β;γ

q+3
(
a1, . . . , ap, 1, 1 + ϑ + ϑ′ + η′ − δ, 1 + ϑ − η ;

b1, . . . , bq, 1 + ϑ + ϑ′ − δ, 1 + ϑ + η′ − δ, 1− η; x
)

. (3.5)

Proof. Following the definition of Saigo-Maeda fractional derivative [16] as given in (1.12), we have the fol-
lowing relation:

Dϑ,ϑ′ ,η,η′ ,δ
0+

(
k
pRα,β;γ

q (x)
)

=
xϑ′

Γ(r − δ)

(
d

dx

)r ∫ x

0
(x − t)r−δ−1 tϑ

× F3

(
−ϑ′,−ϑ, r − η′,−η, r − δ; 1− t

x
, 1− x

t

)
k
pRα,β;γ

q (t) dt

where r = [−Re (δ)] + 1 by virtue of (2.1), we obtain

Dϑ,ϑ′ ,η,η′ ,δ
0+

(
k
pRα,β;γ

q (x)
)

=
xϑ′

Γ(r − δ)

(
d

dx

)r ∫ x

0
(x − t)r−δ−1 tϑ

× F3

(
−ϑ′,−ϑ, r − η′,−η, r − δ; 1− t

x
, 1− x

t

) ∞

∑
n=0

∏
p
j=1

(
aj

)
n

∏
q
j=1

(
bj

)
n

(γ)kn tn

n!Γ (αn + β)
dt . (3.6)

By using dr

dxr xm = Γ(m+1)
Γ(m−r+1) xm−r (m, r ∈ N0; m ≥ r) in (3.6) and interchanging the order of integration and

evaluating the inner integral with the help of Beta function, we arrive at

Dϑ,ϑ′ ,η,η′ ,δ
0+

(
k
pRα,β;γ

q (x)
)

= xϑ+ϑ′−δ Γ (1 + ϑ + ϑ′ + η′ − δ) Γ (1 + ϑ − η)
Γ (1 + ϑ + ϑ′ − δ) Γ (1 + ϑ + η′ − δ) Γ (1− η)

×
∞

∑
n=0

∏
p
j=1

(
aj

)
n (1)n (1 + ϑ + ϑ′ + η′ − δ)n (1 + ϑ − η)n

∏
q
j=1

(
bj

)
n (1 + ϑ + ϑ′ − δ)n (1 + ϑ + η′ − δ)n (1− η)n

(γ)kn xn

n!Γ (αn + β)
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= xϑ+ϑ′−δ Γ (1 + ϑ + ϑ′ + η′ − δ) Γ (1 + ϑ − η)
Γ (1 + ϑ + ϑ′ − δ) Γ (1 + ϑ + η′ − δ) Γ (1− η)

× k
p+3Rα,β;γ

q+3
(
a1, . . . , ap, 1, 1 + ϑ + ϑ′ + η′ − δ, 1 + ϑ − η ;

b1, . . . , bq, 1 + ϑ + ϑ′ − δ, 1 + ϑ + η′ − δ, 1− η; x
)

.

This shows that a Saigo-Maeda fractional derivative of the R-function is again the R-function with increased
order (p + 3, q + 3).

This completes the proof of the Theorem 2.

Now, on making use the relation (1.13), we obtain the result concerning Saigo fractional derivative operator
given by [6] asserted by the following corollary.

Corollary 3.3. Let ϑ, η, δ, α, β, γ ∈ C, Re(ϑ) > 0, Re(α) > 0 and (a)n = Γ(a + n)/Γ(a), then there holds the relation

Dϑ,η,δ
0+

(
k
pRα,β;γ

q (x)
)

=
xη Γ(1 + ϑ + η + δ)

Γ(1 + δ)Γ(1 + η)

× k
p+2Rα,β;γ

q+2
(
a1, . . . , ap, 1, 1 + ϑ + η + δ; b1, . . . , bq, 1 + δ, 1 + η; x

)
. (3.7)

Again, if we further put η = −ϑ in (3.7), then we obtain following corollary concerning Riemann-Liouville
fractional derivative operator [17]:

Corollary 3.4. Let ϑ, α, β, γ ∈ C, Re(ϑ) > 0, Re(α) > 0 and (a)n = Γ(a + n)/Γ(a), then there holds the relation

Dϑ
0+

(
k
pRα,β;γ

q (x)
)

=
x−ϑ

Γ(1− ϑ)
k

p+1Rα,β;γ
q+1

(
a1, . . . , ap, 1; b1, . . . , bq, 1− ϑ; x

)
(3.8)

It is remarked in passing that a number of known and new results can be obtained as special cases of the
Theorems 3.1 and 3.2.

4 Conclusion

In this paper we derive a new generalization of Mittag-Leffler function and obtain the relations between the
R-function and Saigo-Maeda fractional calculus operators. The results are also extension of work done by
Kumar and Kumar [6] and Sharma [22]. The provided results are new and have uniqueness identity in the
literature. A number of known results can easily be found as special cases of our main results.
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