Abstract
In this paper we introduce α-stable local necks, α-stable monogenically directable, α-stable monogenically strongly directable, α-stable monogenically trap directable, α-stable uniformly monogenically directable, α-stable uniformly monogenically strongly directable, α-stable uniformly monogenically trap-directable fuzzy automata. We have shown that α-stable local necks of fuzzy automaton exists then it is α-stable subautomaton. Further we prove some equivalent conditions on fuzzy automaton.

Keywords
α-Stable local necks, α-Stable monogenically directable, α-Stable monogenically trap-directable, α-Stable uniformly monogenically trap-directable.

AMS Subject Classification
03D05, 20M35, 18B20, 68Q45, 68Q70, 94A45.

1 Department of Mathematics, Government College of Engineering, Bodinayakkanur, Tamilnadu, India.
2 Department of Mathematics, Government College of Engineering, Dharmapuri, Tamilnadu, India.
*Corresponding author: 1mohanaraonavuluri@gmail.com; 2vkarthikau@gmail.com

Article History: Received 06 September 2017; Accepted 10 December 2017 ©2017 MJM.

1. Introduction
Fuzzy set was introduced by L. A. Zadeh in 1965 [8]. The fuzzy set is a simple mathematical tool for representing the inevitability of vagueness, uncertainty, and imprecision in everyday life. W.G. Wee extended the fuzzy idea to automata in 1967 [7]. Later, numerous academics adapted the fuzzy notion to a wide range of domains, and it has a wide range of applications. J.N. Mordeson and D. S. Malik gave a detailed account of fuzzy automata and languages in their book [6].

T. Petkovic et al. [1] discussed directable automata, monogenically directable, generalized directable using necks. T. Petkovic et al.[3] introduce and studied trap-directable, trapped automata and other related automata. Also, we refer the survey paper Directable automata and their generalizations were investigated by S. Bogdanovic et al [2]. Further the necks and local necks of fuzzy automata were studied and discussed in [4, 5]. In this paper we introduce α-stable local necks, α-stable monogenically directable, α-stable monogenically strongly directable, α-stable monogenically trap directable, α-stable uniformly monogenically directable, α-stable uniformly monogenically strongly directable, α-stable uniformly monogenically trap-directable fuzzy automata. We have shown that α-stable local necks of fuzzy automata exists then it is α-stable subautomata. Further we prove some equivalent conditions on fuzzy automaton.

2. Preliminaries

Definition 2.1. [6] A fuzzy automaton $S = (D, I, \psi)$, where,

D - set of states $\{d_0, d_1, d_2, \ldots , d_n\}$,
\textbf{I} - alphabets (or) input symbols,
ψ - function from $D \times I \times D \rightarrow [0, 1]$,

The set of all words of I is denoted by I^*. The empty word is denoted by λ, and the length of each $t \in I^*$ is denoted by $|t|$.

Definition 2.2. [6] Let $S = (D, I, \psi)$ be a fuzzy automaton. The extended transition function is defined by $\psi^*: D \times I^* \times D \rightarrow [0, 1]$ and is given by
\[\psi^*(d_i, t, d_j) = \begin{cases} 1 & \text{if } d_i = d_j \\ 0 & \text{if } d_i \neq d_j \end{cases} \]

\[\psi^*(d_i, t', d_j) = \bigvee_{d_i \in D} \{ \psi^*(d_i, t, d_i) \wedge \psi(d_i, t', d_j) \}, t \in I^*, t' \in I. \]

Definition 2.3. [4] Let \(S = (D, I, \psi) \) be a fuzzy automaton. Let \(D' \subseteq D \). Let \(\psi' \) be the restriction of \(\psi \) and let \(S' = (D', I, \psi') \). The fuzzy automaton \(S' \) is called a subautomaton of \(S \) if

(i) \(\psi : D' \times I \times D' \rightarrow [0,1] \)

(ii) For any \(d_i \in D' \) and \(\psi(d_i, t, d_j) > 0 \) for some \(t \in I^* \), then \(d_j \in D' \).

Definition 2.4. [6] Let \(S = (D, I, \psi) \) be a fuzzy automaton. \(S \) is said to be strongly connected if for every \(d_i, d_j \in D \), there exists \(t \in I^* \) such that \(\psi^*(d_i, t, d_j) > 0 \). Equivalently, \(S \) is strongly connected if it has no proper subautomaton.

Definition 2.5. [4] Let \(S = (D, I, \psi) \) be a fuzzy automaton. A state \(d_i \in D \) is called a neck of \(S \) if there exists \(t \in I^* \) such that \(\psi^*(d_i, t, d_j) > 0 \) for every \(d_j \in D \).

In that case \(d_i \) is also called \(t \)-neck of \(S \) and the word \(t \) is called a directing word of \(S \).

If \(S \) has a directing word, then we say that \(S \) is a directable fuzzy automaton.

Definition 2.6. [5] Let \(S = (D, I, \psi) \) be a fuzzy automaton. If \(d_i \in Q \) is called local neck of \(S \), if it is neck of some directable subautomaton of \(S \). The set of all local necks of \(S \) is denoted by \(LN(S) \).

3. \(\alpha \)-Stable Local Neck of Fuzzy Automata

Definition 3.1. Let \(S = (D, I, \psi) \) be a fuzzy automaton. If \(S \) is said to be \(\alpha \)-stable fuzzy automaton then \(\psi(d_i, t, d_j) \geq \alpha > 0, \forall t \in I, \alpha = \text{Fixed value in } [0,1] \).

Definition 3.2. Let \(S = (D, I, \psi) \) be a fuzzy automaton and let \(d_i \in D \). The \(\alpha \)-stable subautomaton of \(S \) generated by \(d_i \) is denoted by \(\langle d_i \rangle \).

It is given by \(\langle d_i \rangle = \{ d_j \mid \psi^*(d_i, t, d_j) \geq \alpha > 0, t \in I^* \} \).

If it exists, then it is called the \(\alpha \)-stable least subautomaton of \(S \) containing \(d_i \).

Definition 3.3. Let \(S = (D, I, \psi) \) be a fuzzy automaton. For any non-empty \(D' \subseteq D \), the \(\alpha \)-stable subautomaton of \(S \) generated by \(d_i \in D' \) is denoted by \(\langle d_i \rangle \).

It is given by \(\langle d_i \rangle = \{ d_j \mid \psi^*(d_i, t, d_j) \geq \alpha > 0, d_j \in D', t \in I^* \} \).

This is called the \(\alpha \)-stable least subautomaton of \(S \) containing \(d_i \).

Definition 3.4. Let \(S = (D, I, \psi) \) be a fuzzy automaton. A state \(d_i \in D \) is called \(\alpha \)-stable local neck of \(S \) if it is \(\alpha \)-stable neck of some \(\alpha \)-stable directable subautomaton of \(S \). The set of all \(\alpha \)-stable local necks of \(S \) is denoted by \(\alpha \text{SLN}(S) \).

Definition 3.5. Let \(S = (D, I, \psi) \) be a fuzzy automaton. \(S \) is called \(\alpha \)-stable monogenically directable if every monogenic subautomaton of \(S \) is \(\alpha \)-stable directable.

Definition 3.6. Let \(S = (D, I, \psi) \) be a fuzzy automaton. \(S \) is called \(\alpha \)-stable monogenically strongly directable if every monogenic subautomaton of \(M \) is \(\alpha \)-stable strongly directable.

Definition 3.7. Let \(S = (D, I, \psi) \) be a fuzzy automaton. \(S \) is said \(\alpha \)-stable monogenically trap-directable if every monogenic subautomaton of \(S \) has a single \(\alpha \)-stable neck.

Definition 3.8. Let \(S = (D, I, \psi) \) be a fuzzy automaton. If \(t \in I^* \) is \(\alpha \)-stable common directing word of \(S \) if \(t \) is a \(\alpha \)-stable directing word of every monogenic subautomaton of \(S \). The set all \(\alpha \)-stable common directing words of \(S \) will be denoted by \(\alpha \text{SCDW}(S) \).

In other words, \(\alpha \text{SCDW}(S) = \cap_{d_i \in D} \alpha \text{CDW}((d_i)) \).

Definition 3.9. Let \(S = (D, I, \psi) \) be a fuzzy automaton. \(S \) is called \(\alpha \)-stable uniformly monogenically directlyable fuzzy automaton if every monogenic subautomaton of \(S \) is \(\alpha \)-stable directable and have atleast one \(\beta \)-weak common directing word.

Definition 3.10. Let \(S = (D, I, \psi) \) be a fuzzy automaton. \(S \) is called \(\alpha \)-stable uniformly monogenically strongly directlyable fuzzy automaton if every monogenic subautomaton of \(S \) is strongly \(\alpha \)-stable directable and have atleast one \(\alpha \)-stable common directing word.

Definition 3.11. Let \(S = (D, I, \psi) \) be a fuzzy automaton. \(S \) is called \(\alpha \)-stable uniformly monogenically trap-directable fuzzy automaton if every monogenic subautomaton of \(S \) has a single \(\alpha \)-stable neck and have atleast one \(\alpha \)-stable common directing word.

4. Properties of \(\alpha \)-Stable Local Neck of Fuzzy Automata

Theorem 4.1. Let \(S = (D, I, \psi) \) be a fuzzy automaton and \(d_i \in D \). Then the following conditions are equivalent:

(i) \(d_i \) is a \(\alpha \)-stable local neck;

(ii) \((d_i) \) is a strongly \(\alpha \)-stable directable fuzzy automaton;

(iii) For every \(t' \in I^* \), there exists \(t \in I^* \) such that \(\psi^*(d_i, t, d_j) \geq \alpha > 0 \).

Proof. (i) \(\Rightarrow \) (ii)

Let \(d_i \) be a \(\alpha \)-stable local neck of \(S \). Then there exists a \(\alpha \)-stable directable subautomaton \(S' \) of \(S \) such that \(d_i \in \alpha \text{SN}(S') \). Thus \(\alpha \text{SN}(S') \) is a \(\alpha \)-stable directlyable fuzzy automaton. Also, \((d_i) \subseteq \alpha \text{SN}(S') \), and \(\alpha \text{SN}(S') \) is strongly connected, then \((d_i) = \alpha \text{SN}(S') \). Therefore, \((d_i) \) is a
strongly α-stable directable fuzzy automaton.

$\forall i \Rightarrow (iii)$

Let $\langle d_i \rangle$ be a strongly α-stable directable fuzzy automaton. Then d_i is a t-α-stable neck of $\langle d_i \rangle$ for some $t \in I^*$. Since $\langle d_i \rangle$ is strongly α-stable directable, for every $i' \in I^*$, there exists some $d_{i'} \in \langle d_i \rangle$ such that $\{\psi^*(d_i, i', d_i) \geq \alpha \} > 0$. Now, $\psi^*(d_i, i', d_i) = \{\bigwedge_{d_i \in D} \{\psi^*(d_i, i', d_i), \psi^*(d_i, i, d_i)\} \} \geq \alpha > 0$.

$(iii) \Rightarrow (i)$

(iii) clearly shows that d_i is a $t-\alpha$-stable neck of $\langle d_i \rangle$, and hence, it is a α-stable local neck of S.

Theorem 4.2. Let $S = (D, I, \psi)$ be a fuzzy automaton. If $\alpha SLN(S) \neq \emptyset$, then $\alpha SLN(S)$ is a α-stable subautomaton of S.

Proof. Let $d_i \in \alpha SLN(S)$ and $t \in I$. Then, the monogenic α-stable subautomaton $\langle d_i \rangle$ of S is strongly α-stable directable. Now, $\langle d_i \rangle \subseteq \langle d_i \rangle$, for some $d_i \in \langle d_i \rangle$. Since $\langle d_i \rangle$ is strongly connected, $\langle d_i \rangle = \langle d_i \rangle$. Therefore, d_i is also a α-stable local neck of S, i.e., $d_i \in \alpha SLN(S)$. Hence, $\alpha SLN(S)$ is a α-stable subautomaton of S.

Theorem 4.3. Let $S = (D, I, \psi)$ be a fuzzy automaton. Then the following conditions are equivalent:

(i) Every state of D in S is a α-stable local neck;

(ii) S is α-stable monogenically strongly directable;

(iii) S is α-stable monogenically directable and α-stable reversible;

(iv) S is a direct sum of α-stable strongly directable fuzzy automata;

(v) $\forall d_i \in D (\exists t \in I^*) \forall i' \in I^*$ such that $\psi^*(d_i, i', d_i) \geq \alpha > 0$.

Proof. (i) \Rightarrow (ii)

If every state $d_i \in D$ is a α-stable local neck of S. Then we have that for every $d_i \in D$ the α-stable monogenic subautomaton $\langle d_i \rangle$ of D in S is α-stable strongly directable. Hence, S is α-stable monogenically strongly directable.

(ii) \Rightarrow (iii)

If S is α-stable monogenically strongly directable, then it is α-stable monogenically directable. Now, every α-stable monogenic subautomaton of S is strongly connected, hence S is α-stable reversible.

(iii) \Rightarrow (iv)

If S is α-stable reversible, then it is a direct sum of α-stable strongly connected fuzzy automata S_β, $\beta \in Y$. Let $\beta \in Y$ and $d_i \in D_\beta$. Then $\langle d_i \rangle = S_\beta$. Since S_β is strongly connected, and by the α-stable monogenic directability of S we have that $S_\beta = \langle d_i \rangle$ is α-stable directable. Therefore, S_β is α-stable strongly directable, for any $\beta \in Y$.

(iv) \Rightarrow (i)

Let S be a direct sum of α-stable strongly directable fuzzy automata S_β, $\beta \in Y$. Then for each state $d_i \in D$, there exists $\beta \in Y$ such that $d_i \in D_\beta$, that is, $d_i \in S_\beta$ is α-stable, so d_i is a α-stable local neck of S.

(i) \Rightarrow (v)

Since every state of S is a α-stable local neck, for any $d_i \in D$, $\langle d_i \rangle$ is α-stable monogenically strongly directable. Hence, $\langle d_i \rangle$ is α-stable reversible.

(v) \Rightarrow (i)

This is an immediate consequence of proof of the Theorem 4.1.

5. Conclusion

We introduce α-stable local necks, α-stable monogenically directable, α-stable monogenically strongly directable, α-stable monogenically trap-directable, α-stable uniformly monogenically directable, α-stable uniformly monogenically strongly directable, α-stable uniformly monogenically trap-directable fuzzy automata. We have shown that α-stable local necks of fuzzy automata exists then it is α-stable subautomata. Further we prove a some equivalent conditions on fuzzy automaton.

References

