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Abstract. In this paper, we introduce the generalized dual hyperbolic Pell numbers. As special cases, we deal with dual
hyperbolic Pell and dual hyperbolic Pell-Lucas numbers. We present Binet’s formulas, generating functions and the
summation formulas for these numbers. Moreover, we give Catalan’s, Cassini’s, d’Ocagne’s, Gelin-Cesàro’s, Melham’s
identities and present matrices related with these sequences.
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1. Introduction

A generalized Pell sequence {Vn}n≥0 = {Vn(V0, V1)}n≥0 is defined by the second-order recurrence relations

Vn = 2Vn−1 + Vn−2; V0 = a, V1 = b, (n ≥ 2) (1.1)

with the initial values V0, V1 not all being zero. The sequence {Vn}n≥0 can be extended to negative subscripts
by defining

V−n = −2V−(n−1) + V−(n−2)

for n = 1, 2, 3, .... Therefore, recurrence (1.1) holds for all integer n.
The first few generalized Pell numbers with positive subscript and negative subscript are given in the following

Table 1.
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Table 1. A few generalized Pell numbers
n Vn V−n
0 V0
1 V1 −2V0 + V1
2 V0 + 2V1 5V0 − 2V1
3 2V0 + 5V1 −12V0 + 5V1
4 5V0 + 12V1 29V0 − 12V1
5 12V0 + 29V1 −70V0 + 29V1

If we set V0 = 0, V1 = 1 then {Vn} is the well-known Pell sequence and if we set V0 = 2, V1 = 2 then
{Vn} is the well-known Pell-Lucas sequence. In other words, Pell sequence {Pn}n≥0 and Pell-Lucas sequence
{Qn}n≥0 are defined by the second-order recurrence relations

Pn = 2Pn−1 + Pn−2, P0 = 0, P1 = 1 (1.2)

and
Qn = 2Qn−1 +Qn−2, Q0 = 2, Q1 = 2. (1.3)

The sequences {Pn}n≥0 and {Qn}n≥0 can be extended to negative subscripts by defining

P−n = −2P−(n−1) + P−(n−2)

and
Q−n = −2Q−(n−1) +Q−(n−2)

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.2) and (1.3) hold for all integer n.
Pell sequence has been studied by many authors and more detail can be found in the extensive literature

dedicated to these sequences, see for example, [3, 8, 9, 11, 13, 16, 19, 20, 29]. For higher order Pell sequences,
see [17, 18, 24, 25].

We can list some important properties of generalized Pell numbers that are needed.

• Binet formula of generalized Pell sequence can be calculated using its characteristic equation which is
given as

t2 − 2t− 1 = 0.

The roots of characteristic equation are

α = 1 +
√
2, β = 1−

√
2

and the roots satisfy the following

α+ β = 2, αβ = −1, α− β = 2
√
2.

Using these roots and the recurrence relation, Binet formula can be given as

Vn =
Aαn −Bβn

α− β
(1.4)

where A = V1 − V0β and B = V1 − V0α.

• Binet formula of Pell and Pell-Lucas sequences are

Pn =
αn − βn

α− β
and

Qn = αn + βn

respectively.
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• The generating function for generalized Pell numbers is

g(t) =
W0 + (W1 − 2W0) t

1− 2t− t2
. (1.5)

• The Cassini identity for generalized Pell numbers is

Vn+1Vn−1 − V 2
n = (2V0V1 − V 2

1 − V 2
0 ). (1.6)

•

Aαn = αVn + Vn−1, (1.7)

Bβn = βVn + Vn−1. (1.8)

The hypercomplex numbers systems [15], are extensions of real numbers. Complex numbers,

C = {z = a+ ib : a, b ∈ R, i2 = −1},

hyperbolic (double, split-complex) numbers [23],

H = {h = a+ jb : a, b ∈ R, j2 = 1, j 6= ±1},

and dual numbers [10],
D = {d = a+ εb : a, b ∈ R, ε2 = 0, ε 6= 0}.

are some commutative examples of hypercomplex number systems. Quaternions [12],

HQ = {q = a0 + ia1 + ja2 + ka3},

where a0, a1, a2, a3 ∈ R, i2 = j2 = k2 = ijk = −1, octonions [2] and sedenions [26] are some non-
commutative examples of hypercomplex number systems.

The algebras C (complex numbers), HQ (quaternions), O (octonions) and S (sedenions) are real algebras
obtained from the real numbers R by a doubling procedure called the Cayley-Dickson Process. This doubling
process can be extended beyond the sedenions, (see for example [4, 14, 21]).

• Quaternions were invented by Irish mathematician W. R. Hamilton (1805-1865) [12] as an extension to the
complex numbers.

• Hyperbolic numbers with complex coefficients are introduced by J. Cockle in 1848 [7].

• H. H. Cheng and S. Thompson [5] introduced dual numbers with complex coefficients.

• Akar, Yüce and Şahin [1] introduced dual hyperbolic numbers.

A dual hyperbolic number is a hyper-complex number and is defined by

q = (a0 + ja1) + ε(a2 + ja3) = a0 + ja1 + εa2 + εja3

where a0, a1, a2 and a3 are real numbers.
The set of all dual hyperbolic numbers are denoted by

HD = {a0 + ja1 + εa2 + εja3}
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where a0, a1, a2, a3 ∈ R, j2 = 1, j 6= ±1, ε2 = 0, ε 6= 0. The base elements {1, j, ε, εj} of dual hyperbolic
numbers satisfy the following properties (commutative multiplications):

1.ε = ε, 1.j = j, ε2 = ε.ε = (jε)2 = 0, j2 = j.j = 1

ε.j = j.ε, ε.(εj) = (εj).ε = 0, j(εj) = (εj)j = ε

where ε denotes the pure dual unit (ε2 = 0, ε 6= 0), j denotes the hyperbolic unit (j2 = 1), and εj denotes the
dual hyperbolic unit ((jε)2 = 0).

The product of two dual hyperbolic numbers q = a0 + ja1 + εa2 + jεa3 and p = b0 + jb1 + εb2 + jεb3 is
qp = a0b0 + a1b1 + j(a0b1 + a1b0) + ε(a0b2 + a2b0 + a1b3 + a3b1) + jε(a0b3 + a1b2 + a2b1 + b0a3)

and addition of dual hyperbolic numbers is defined as componentwise.
For more information on the dual hyperbolic numbers, see [1].
In this paper, we define the dual hyperbolic generalized Pell numbers in the next section and give some

properties of them.

2. Dual Hyperbolic Generalized Pell Numbers, Generating Functions and Binet’s
Formulas

In this section, we define dual hyperbolic generalized Pell numbers and present generating functions and Binet
formulas for them.

In [6], the authors defined dual hyperbolic Pell and Pell-Lucas numbers and in [28], the author introduced
dual hyperbolic generalized Fibonacci numbers.We now define dual hyperbolic generalized Pell numbers over
HD. The nth dual hyperbolic generalized Pell number is

V̂n = Vn + jVn+1 + εVn+2 + jεVn+3. (2.1)

As special cases, the nth dual hyperbolic Pell numbers and the nth dual hyperbolic Pell-Lucas numbers are given
as

P̂n = Pn + jPn+1 + εPn+2 + jεPn+3

and
Q̂n = Qn + jQn+1 + εQn+2 + jεQn+3

respectively. It can be easily shown that
V̂n = 2V̂n−1 + V̂n−2. (2.2)

The sequence {V̂n}n≥0 can be extended to negative subscripts by defining

V̂−n = −2V̂−(n−1) + V̂−(n−2)

for n = 1, 2, 3, ... respectively. Therefore, recurrence (2.2) holds for all integer n.
The first few dual hyperbolic generalized Pell numbers with positive subscript and negative subscript are

given in the following Table 2.

Table 2. A few dual hyperbolic generalized Pell numbers
n V̂n V̂−n
0 V̂0 ...

1 V̂1 −2V̂0 + V̂1
2 V̂0 + 2V̂1 5V̂0 − 2V̂1
3 2V̂0 + 5V̂1 −12V̂0 + 5V̂1
4 5V̂0 + 12V̂1 29V̂0 − 12V̂1
5 12V̂0 + 29V̂1 −70V̂0 + 29V̂1
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Note that

V̂0 = V0 + jV1 + εV2 + jεV3

= V0 + jV1 + ε(V0 + 2V1) + jε(2V0 + 5V1),

V̂1 = V1 + jV2 + εV3 + jεV4

= V1 + j(V0 + 2V1) + ε(2V0 + 5V1) + jε(5V0 + 12V1).

For dual hyperbolic Pell numbers (taking Vn = Pn, P0 = 0, P1 = 1) we get

P̂0 = j + 2ε+ 5jε,

P̂1 = 1 + 2j + 5ε+ 12jε,

and for dual hyperbolic Pell-Lucas numbers (taking Vn = Qn, Q0 = 2, Q1 = 2) we get

Q̂0 = 2 + 2j + 6ε+ 14jε,

Q̂1 = 2 + 6j + 14ε+ 34jε.

A few dual hyperbolic Pell numbers and dual hyperbolic Pell-Lucas numbers with positive subscript and negative
subscript are given in the following Table 3 and Table 4.

Table 3. Dual hyperbolic Pell numbers
n P̂n P̂−n
0 j + 2ε+ 5jε ...

1 1 + 2j + 5ε+ 12jε 1 + ε+ 2jε

2 2 + 5j + 12ε+ 29jε −2 + j + jε

3 5 + 12j + 29ε+ 70jε 5 + ε− 2j

4 12 + 29j + 70ε+ 169jε −12 + 5j − 2ε+ jε

5 29 + 70j + 169ε+ 408jε 29 + 5ε− 12j − 2jε

Table 4. Dual hyperbolic Pell-Lucas numbers
n Q̂n Q̂−n
0 2 + 2j + 6ε+ 14jε ...

1 2 + 6j + 14ε+ 34jε −2 + 2j + 2ε+ 6jε

2 6 + 14j + 34ε+ 82jε 6 + 2ε− 2j + 2jε

3 14 + 34j + 82ε+ 198jε −14 + 6j − 2ε+ 2jε

4 34 + 82j + 198ε+ 478jε 34 + 6ε− 14j − 2jε

5 82 + 198j + 478ε+ 1154jε −82 + 34j − 14ε+ 6jε

Now, we will state Binet’s formula for the dual hyperbolic generalized Pell numbers and in the rest of the
paper, we fix the following notations:

α̂ = 1 + jα+ εα2 + jεα3,

β̂ = 1 + jβ + εβ2 + jεβ3.
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Ÿüksel Soykan, Mehmet Gümüş and Melih Göcen

Note that we have the following identities:

α̂ = 1 + jα+ ε(2α+ 1) + jε(5α+ 2),

β̂ = 1 + jβ + ε(2β + 1) + jε(5β + 2),

α̂2 = 2 + 2α+ 2αj + (12 + 28α)ε+ (8 + 20α)jε,

β̂
2
= 2 + 2β + 2βj + (12 + 28β)ε+ (8 + 20β)jε,

α̂β̂ = 2j + 12jε,

α̂2β̂ = 2α+ 2j + (4 + 22α)ε+ (14 + 4α)jε,

α̂β̂
2
= 2β + 2j + (4 + 22β)ε+ (14 + 4β)jε,

α̂2β̂
2
= 4 + 48ε.

Theorem 2.1. (Binet’s Formula) For any integer n, the nth dual hyperbolic generalized Pell number is

V̂n =
Aα̂αn −Bβ̂βn

α− β
. (2.3)

Proof. Using Binet’s formula

Vn =
Aαn −Bβn

α− β

of the generalized Pell numbers, we obtain

V̂n = Vn + jVn+1 + εVn+2 + jεVn+3

=
Aαn −Bβn

α− β
+ j

Aαn+1 −Bβn+1

α− β

+ε
Aαn+2 −Bβn+2

α− β
+ jε

Aαn+3 −Bβn+3

α− β

=
A(1 + jα+ εα2 + jεα3)αn

α− β

−B(1 + jβ + εβ2 + jεβ3)βn

α− β
.

This proves (2.3).
As special cases, for any integer n, the Binet’s Formula of nth dual hyperbolic Pell number is

P̂n =
α̂αn − β̂βn

α− β
(2.4)

and the Binet’s Formula of nth dual hyperbolic Pell-Lucas number is

Q̂n = α̂αn + β̂βn. (2.5)

Next, we present generating function.

Theorem 2.2. The generating function for the dual hyperbolic generalized Pell numbers is

∞∑
n=0

V̂nx
n =

V̂0 + (V̂1 − 2V̂0)x

1− 2x− x2
. (2.6)
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Proof. Let

g(x) =

∞∑
n=0

V̂nx
n

be generating function of the dual hyperbolic generalized Pell numbers. Then, using the definition of the dual
hyperbolic generalized Pell numbers, and substracting 2xg(x) and x2g(x) from g(x), we obtain (note the shift in
the index n in the third line)

(1− 2x− x2)g(x) =
∞∑
n=0

V̂nx
n − 2x

∞∑
n=0

V̂nx
n − x2

∞∑
n=0

V̂nx
n

=

∞∑
n=0

V̂nx
n − 2

∞∑
n=0

V̂nx
n+1 −

∞∑
n=0

V̂nx
n+2

=

∞∑
n=0

V̂nx
n − 2

∞∑
n=1

V̂n−1x
n −

∞∑
n=2

V̂n−2x
n

= (V̂0 + V̂1x)− 2V̂0x

+

∞∑
n=2

(V̂n − 2V̂n−1 − V̂n−2)xn

= (V̂0 + V̂1x)− 2V̂0x

= V̂0 + (V̂1 − 2V̂0)x.

Note that we used the recurrence relation V̂n = 2V̂n−1 + V̂n−2. Rearranging above equation, we get

g(x) =
V̂0 + (V̂1 − 2V̂0)x

1− 2x− x2
.

As special cases, the generating functions for the dual hyperbolic Pell and dual hyperbolic Pell-Lucas numbers
are

∞∑
n=0

P̂nx
n =

(j + 2ε+ 5jε) + (1 + ε+ 2jε)x

1− 2x− x2

and
∞∑
n=0

Q̂nx
n =

(2 + 2j + 6ε+ 14jε) + (−2 + 2j + 2ε+ 6jε)x

1− 2x− x2

respectively.

3. Obtaining Binet Formula from Generating Function

We will next find Binet formula of dual hyperbolic generalized Pell number {V̂n} by the use of generating
function for V̂n.

Theorem 3.1. (Binet formula of dual hyperbolic generalized Pell numbers)

V̂n =
d1α

n

(α− β)
− d2β

n

(α− β)
(3.1)

where

d1 = V̂0α+ (V̂1 − 2V̂0),

d2 = V̂0β + (V̂1 − 2V̂0).
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Proof. Let
h(x) = 1− 2x− x2.

Then for some α and β we write
h(x) = (1− αx)(1− βx)

i.e.,
1− 2x− x2 = (1− αx)(1− βx) (3.2)

Hence 1
α ve 1

β are the roots of h(x). This gives α and β as the roots of

h(
1

x
) = 1− 2

x
− 1

x2
= 0.

This implies x2 − 2x− 1 = 0. Now, by (2.6) and (3.2), it follows that

∞∑
n=0

V̂nx
n =

V̂0 + (V̂1 − 2V̂0)x

(1− αx)(1− βx)
.

Then we write
V̂0 + (V̂1 − 2V̂0)x

(1− αx)(1− βx)
=

A1

(1− αx)
+

A2

(1− βx)
. (3.3)

So
V̂0 + (V̂1 − 2V̂0)x = A1(1− βx) +A2(1− αx).

If we consider x = 1
α , we get V̂0 + (V̂1 − 2V̂0)

1
α = A1(1− β 1

α ). This gives

A1 =
V̂0α+ (V̂1 − 2V̂0)

(α− β)
=

d1
(α− β)

.

Similarly, we obtain

V̂0 + (V̂1 − 2V̂0)
1

β
= A2(1− α

1

β
)

⇒ V̂0β + (V̂1 − 2V̂0) = A2(β − α)

and so

A2 = − V̂0β + (V̂1 − 2V̂0)

(α− β)
= − d2

(α− β)
.

Thus (3.3) can be written as

∞∑
n=0

V̂nx
n = A1(1− αx)−1 +A2(1− βx)−1.

This gives
∞∑
n=0

V̂nx
n = A1

∞∑
n=0

αnxn +A2

∞∑
n=0

βnxn =

∞∑
n=0

(A1α
n +A2β

n)xn.

Therefore, comparing coefficients on both sides of the above equality, we obtain

V̂n = A1α
n +A2β

n

and then we get (3.1).
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Note that from (2.3) and (3.1) we have

(V1 − V0β)α̂ = V̂0α+ (V̂1 − 2V̂0),

(V1 − V0α)β̂ = V̂0β + (V̂1 − 2V̂0).

Next, using Theorem 3.1, we present the Binet formulas of dual hyperbolic Pell and dual hyperbolic Pell-
Lucas numbers.

Corollary 3.2. Binet formulas of dual hyperbolic Pell and dual hyperbolic Pell-Lucas numbers are

P̂n =
α̂αn − β̂βn

α− β

and
Q̂n = α̂αn + β̂βn

respectively.

4. Some Identities

We now present a few special identities for the dual hyperbolic generalized Pell sequence {V̂n}. The following
theorem presents the Catalan’s identity for the dual hyperbolic generalized Pell numbers.

Theorem 4.1. (Catalan’s identity) For all integers n and m, the following identity holds

V̂n+mV̂n−m − V̂ 2
n = (−1)n−m+1((A+B)V2m−1+(Aβ+Bα)V2m−2(−1)mAB)

8 (2j + 12jε).

Proof. Using the Binet Formula

V̂n =
Aα̂αn −Bβ̂βn

α− β
and

Aαn = αVn + Vn−1,

Bβn = βVn + Vn−1,

we get
V̂n+mV̂n−m − V̂ 2

n

=
(Aα̂αn+m −Bβ̂βn+m)(Aα̂αn−m −Bβ̂βn−m)− (Aα̂αn −Bβ̂βn)2

(α− β)2

=
−ABα̂β̂αn+mβn−m −ABβ̂α̂αn−mβn+m + 2ABα̂β̂αnβn

(α− β)2

=
−ABα̂β̂αn+mβn−m −ABα̂β̂αn−mβn+m + 2ABα̂β̂αnβn

(α− β)2

= −ABα̂β̂ (α
m − βm)

2

(α− β)2
αn−mβn−m

=
(−1)n−m+1AB (αm − βm)

2

8
α̂β̂

= (−1)n−m+1((A+B)V2m−1+(Aβ+Bα)V2m−2(−1)mAB)
8 (2j + 12jε)

where αβ = −1 and α̂β̂ = 2j + 12jε.

As special cases of the above theorem, we give Catalan’s identity of dual hyperbolic Pell and dual hyperbolic
Pell-Lucas numbers. Firstly, we present Catalan’s identity of dual hyperbolic Pell numbers.
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Corollary 4.2. (Catalan’s identity for the dual hyperbolic Pell numbers) For all integers n and m, the following
identity holds

P̂n+mP̂n−m − P̂ 2
n =

(−1)n−m+1 (P2m−1 + P2m − (−1)m)

2
(j + 6jε).

Proof. Taking Vn = Pn in Theorem 4.1 we get the required result.
Secondly, we give Catalan’s identity of dual hyperbolic Pell-Lucas numbers.

Corollary 4.3. (Catalan’s identity for the dual hyperbolic Pell-Lucas numbers) For all integers n and m, the
following identity holds

Q̂n+mQ̂n−m − Q̂2
n = (−1)n−m (Q2m − 2(−1)m) (2j + 12jε).

Proof. Taking Vn = Qn in Theorem 4.1, we get the required result.
Note that for m = 1 in Catalan’s identity, we get the Cassini’s identity for the dual hyperbolic generalized

Pell sequence.

Corollary 4.4. (Cassini’s identity) For all integers n, the following identity holds

V̂n+1V̂n−1 − V̂ 2
n = (−1)n((A+B)V1+(Aβ+Bα)V2+2AB)

4 (j + 6jε).

As special cases of Cassini’s identity, we give Cassini’s identity of dual hyperbolic Pell and dual hyperbolic
Pell-Lucas numbers. Firstly, we present Cassini’s identity of dual hyperbolic Pell numbers.

Corollary 4.5. (Cassini’s identity of dual hyperbolic Pell numbers) For all integers n, the following identity holds

P̂n+1P̂n−1 − P̂ 2
n = 2(−1)n(j + 6jε).

Secondly, we give Cassini’s identity of dual hyperbolic Pell-Lucas numbers.

Corollary 4.6. (Cassini’s identity of dual hyperbolic Pell-Lucas numbers) For all integers n, the following
identity holds

Q̂n+1Q̂n−1 − Q̂2
n = 16(−1)n+1(j + 6jε).

The d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities can also be obtained by using the Binet Formula of
the dual hyperbolic generalized Pell sequence:

V̂n =
Aα̂αn −Bβ̂βn

α− β
.

The next theorem presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of the dual hyperbolic generalized
Pell sequence {V̂n}.

Theorem 4.7. Let n and m be any integers. Then the following identities are true:

(a) (d’Ocagne’s identity)

V̂m+1V̂n − V̂mV̂n+1 = (VnVm−1 − VmVn−1) (2j + 12jε).

(b) (Gelin-Cesàro’s identity)

V̂n+2V̂n+1V̂n−1V̂n−2 − V̂ 4
n =

AB(−1)n+1

2
(k1 + k2j + k3ε+ k4jε)

where
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k1 = 26 (−1)nAB + 6(V2n−1 (V0 + V1) + V2n(V0 + 3V1))

k2 = 3(4V2n(V0 + 2V1) + V2n−1 ((A+B) + 2(V0 + V1)))

k3 = 12(26 (−1)nAB + 2V2n(5V0 + 13V1) + V2n−1 (A+B + 8(V0 + V1)))

k4 = 12(V2n(16V0 + 36V1) + V2n−1 (3(A+B) + 10(V1 + V0))).

(c) (Melham’s identity)

V̂n+1V̂n+2V̂n+6−V̂ 3
n+3 = 2 (−1)nAB((91Vn+38Vn−1)+(38Vn+15Vn−1)j+(1077Vn+448Vn−1)ε+

(448Vn + 181Vn−1)jε).

Proof.

(a) Using (1.7) and (1.8) we obtain

V̂m+1V̂n − V̂mV̂n+1

=
ABα̂β̂(−αm+1βn − αnβm+1 + αmβn+1 + αn+1βm)

(α− β)2

=
AB (αnβm − αmβn)

(α− β)
α̂β̂

=
(αVn + Vn−1)(βVm + Vm−1)

(α− β)
(2j + 12jε)

− (αVm + Vm−1)(βVn + Vn−1)

(α− β)
(2j + 12jε)

= (VnVm−1 − VmVn−1) (2j + 12jε).

(b) It requires lengthy and tedious work. So we omit the proof.

(c) Using (1.7), (1.8) and Binet formula of V̂n, we get

V̂n+1V̂n+2V̂n+6 − V̂ 3
n+3 = (−1)n+1

AB
(
− 30+23

√
2

4 Aα̂αn + −30+23
√
2

4 Bβ̂βn
)
α̂β̂

and then using

α̂2β̂ = 2α+ 2j + (4 + 22α)ε+ (14 + 4α)jε,

α̂β̂
2
= 2β + 2j + (4 + 22β)ε+ (14 + 4β)jε,

we obtain the required result.

As special cases of the above theorem, we give the d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of
dual hyperbolic Pell and dual hyperbolic Pell-Lucas numbers. Firstly, we present the d’Ocagne’s, Gelin-Cesàro’s
and Melham’ identities of dual hyperbolic Pell numbers.

Corollary 4.8. Let n and m be any integers. Then, for the dual hyperbolic Pell numbers, the following identities
are true:

(a) (d’Ocagne’s identity)

P̂m+1P̂n − P̂mP̂n+1 = (PnPm−1 − PmPn−1) (2j + 12jε).
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(b) (Gelin-Cesàro’s identity)

P̂n+2P̂n+1P̂n−1P̂n−2−P̂ 4
n = (−1)n+1

(13 (−1)n+3(3P2n+P2n−1)+6(2P2n+P2n−1)j+12(13 (−1)n+
13P2n + 5P2n−1)ε+ 24(9P2n + 4P2n−1)jε).

(c) (Melham’s identity)

P̂n+1P̂n+2P̂n+6− P̂ 3
n+3 = 2 (−1)n ((91Pn+38Pn−1)+ (38Pn+15Pn−1)j+(1077Pn+448Pn−1)ε+

(448Pn + 181Pn−1)jε).

Secondly, we present the d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of dual hyperbolic Pell-Lucas
numbers.

Corollary 4.9. Let n and m be any integers. Then, for the dual hyperbolic Pell-Lucas numbers, the following
identities are true:

(a) (d’Ocagne’s identity)

Q̂m+1Q̂n − Q̂mQ̂n+1 = (QnQm−1 −QmQn−1) (2j + 12jε).

(b) (Gelin-Cesàro’s identity)

Q̂n+2Q̂n+1Q̂n−1Q̂n−2 − Q̂4
n = 32(−1)n(26 (−1)n+1

+ 3(2Q2n + Q2n−1) + 3(3Q2n + Q2n−1)j +

12(26 (−1)n+1
+ 9Q2n + 4Q2n−1)ε+ 12(13Q2n + 5Q2n−1)jε).

(c) (Melham’s identity)

Q̂n+1Q̂n+2Q̂n+6 − Q̂3
n+3 = 16 (−1)n+1

((91Qn + 38Qn−1) + (38Qn + 15Qn−1)j + (1077Qn +

448Qn−1)ε+ (448Qn + 181Qn−1)jε).

5. Linear Sums

In this section, we give the summation formulas of the dual hyperbolic generalized Pell numbers with positive
and negatif subscripts. Now, we present the summation formulas of the generalized Pell numbers.

Proposition 5.1. For the generalized Pell numbers, for n ≥ 0 we have the following formulas:

(a)
∑n
k=0 Vk = 1

2 (Vn+2 − Vn+1 − V1 + V0).

(b)
∑n
k=0 V2k = 1

2 (V2n+1 − V1 + 2V0).

(c)
∑n
k=0 V2k+1 = 1

2 (V2n+2 − V2 + 2V1).

Proof. For the proof, see Soykan [27].
Next, we present the formulas which give the summation of the first n dual hyperbolic generalized Pell

numbers.

Theorem 5.2. For n ≥ 0, dual hyperbolic generalized Pell numbers have the following formulas:.

(a)
∑n
k=0 V̂k = 1

2 (V̂n+2 − V̂n+1 − V̂1 + V̂0).

(b)
∑n
k=0 V̂2k = 1

2 (V̂2n+1 − V̂1 + 2V̂0).

(c)
∑n
k=0 V̂2k+1 = 1

2 (V̂2n+2 − V̂0).
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Proof. Note that using Proposition 5.1 (a) we get

n∑
k=0

Vk+1 =
1

2
(Vn+3 − Vn+2 − V1 − V0),

n∑
k=0

Vk+2 =
1

2
(Vn+4 − Vn+3 − 3V1 − V0),

n∑
k=0

Vk+3 =
1

2
(Vn+5 − Vn+4 − 7V1 − 3V0).

Then it follows that
n∑
k=0

V̂k = 1
2 ((Vn+2 + jVn+3 + εVn+4 + jεVn+5)− (Vn+1 + jVn+2 + εVn+3 + jεVn+4)

+(−V1 + V0) + j(−V1 − V0) + ε(−3V1 − V0) + jε(−7V1 − 3V0))

=
1

2
(V̂n+2 − V̂n+1 + ((−V1 + V0) + j(−V2 + V1) + ε(−V3 + V2) + jε(−V4 + V3))

=
1

2
(V̂n+2 − V̂n+1 − V̂1 + V̂0).

This proves (a).
(b) Note that using Proposition 5.1 (b) and (c) we get

n∑
k=0

V2k+2 =
1

2
(V2n+3 − V1),

n∑
k=0

V2k+3 =
1

2
(V2n+4 − 2V1 − V0).

Then it follows that

n∑
k=0

V̂2k

=
1

2
((V2n+1 + jV2n+2 + εV2n+3 + jεV2n+4)

+((−V1 + 2V0) + j(−V0) + ε(−V1) + jε(−2V1 − V0)))

=
1

2
((V2n+1 + jV2n+2 + εV2n+3 + jεV2n+4)

+((−V1 + 2V0) + j(−V2 + 2V1) + ε(−V3 + 2V2) + jε(−V4 + 2V3))

=
1

2
((V2n+1 + jV2n+2 + εV2n+3 + jεV2n+4)

−(V1 + jV2 + εV3 + jεV4) + 2(V0 + jV1 + εV2 + jεV3))

=
1

2
(V̂2n+1 − V̂1 + 2V̂0).

(c) Note that using Proposition 5.1 (b) and (c) we get

n∑
k=0

V2k+4 =
1

2
(V2n+5 − 5V1 − 2V0).
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Ÿüksel Soykan, Mehmet Gümüş and Melih Göcen

Then it follows that

n∑
k=0

V̂2k+1

=
1

2
((V2n+2 + jV2n+3 + εV2n+4 + jεV2n+5)

−(V0 + jV1 + ε(2V1 + V0) + jε(5V1 + 2V0)))

=
1

2
(V̂2n+2 − (V0 + jV1 + εV2 + jεV3))

=
1

2
(V̂2n+2 − V̂0).

As a first special case of the above theorem, we have the following summation formulas for dual hyperbolic
Pell numbers:

Corollary 5.3. For n ≥ 0, dual hyperbolic Pell numbers have the following properties:

(a)
∑n
k=0 P̂k = 1

2 (P̂n+2 − P̂n+1 − P̂1 + P̂0) =
1
2 (P̂n+2 − P̂n+1 − (1 + j + 3ε+ 7jε)).

(b)
∑n
k=0 P̂2k = 1

2 (P̂2n+1 − P̂1 + 2P̂0) =
1
2 (P̂2n+1 − (1 + ε+ 2jε)).

(c)
∑n
k=0 P̂2k+1 = 1

2 (P̂2n+2 − P̂0) =
1
2 (P̂2n+2 − (j + 2ε+ 5jε)).

As a second special case of the above theorem, we have the following summation formulas for dual hyperbolic
Pell-Lucas numbers:

Corollary 5.4. For n ≥ 0, dual hyperbolic Pell-Lucas numbers have the following properties.

(a)
∑n
k=0 Q̂k = 1

2 (Q̂n+2 − Q̂n+1 − Q̂1 + Q̂0) =
1
2 (Q̂n+2 − Q̂n+1 − 4 (j + 2ε+ 5jε)).

(b)
∑n
k=0 Q̂2k = 1

2 (Q̂2n+1 − Q̂1 + 2Q̂0) =
1
2 (Q̂2n+1 + 2(1− j − ε− 3jε)).

(c)
∑n
k=0 Q̂2k+1 = 1

2 (Q̂2n+2 − Q̂0) =
1
2 (Q̂2n+2 − (2 + 2j + 6ε+ 14jε)).

Now, we present the formula which give the summation formulas of the generalized Pell numbers with
negative subscripts.

Proposition 5.5. For n ≥ 1 we have the following formulas:

(a)
∑n
k=1 V−k = 1

2 (−3V−n−1 − V−n−2 + V1 − V0).

(b)
∑n
k=1 V−2k = 1

2 (−V−2n−1 + V1 − 2V0).

(c)
∑n
k=1 V−2k+1 = 1

2 (−V−2n + V0).

Proof. This is given in Soykan [27].
Next, we present the formulas which give the summation of the first n dual hyperbolic generalized Pell

numbers with negative subscripts

Theorem 5.6. For n ≥ 1, dual hyperbolic generalized Pell numbers have the following formulas:

(a)
∑n
k=1 V̂−k = 1

2 (−3V̂−n−1 − V̂−n−2 + V̂1 − V̂0).

(b)
∑n
k=1 V̂−2k = 1

2 (−V̂−2n−1 + V̂1 − 2V̂0).
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(c)
∑n
k=1 V̂−2k+1 = 1

2 (−V̂−2n + V̂0).

Proof. We prove (a). Note that using Proposition 5.1 (a) we get

n∑
k=1

V−k+1 =
1

2
(−3V−n − V−n−1 + V1 + V0),

n∑
k=1

V−k+2 =
1

2
(−3V−n+1 − V−n + 3V1 + V0),

n∑
k=1

V−k+3 =
1

2
(−3V−n+2 − V−n+1 + 7V1 + 3V0).

Then it follows that∑n
k=1 V̂−k = 1

2 (3(V−n−1 + jV−n + εV−n+1 + jεV−n+2)− (V−n−2 + jV−n−1 + εV−n + jεV−n+1)

+(V1 − V0) + j(V1 + V0) + ε(3V1 + V0) + jε(7V1 + 3V0))

=
1

2
(−3V̂−n−1 − V̂−n−2 + ((V1 − V0) + j(V2 − V1) + ε(V3 − V2) + jε(V4 − V3))

=
1

2
(−3V̂−n−1 − V̂−n−2 + V̂1 − V̂0).

This proves (a). (b) and (c) can be proved similarly.
As a first special case of above theorem, we have the following summation formulas for dual hyperbolic Pell

numbers:

Corollary 5.7. For n ≥ 1, dual hyperbolic Pell numbers have the following properties:

(a)
∑n
k=1 P̂−k = 1

2 (−3P̂−n−1 − P̂−n−2 + P̂1 − P̂0) =
1
2 (−3P̂−n−1 − P̂−n−2 + (1 + j + 3ε+ 7jε)).

(b)
∑n
k=1 P̂−2k = 1

2 (−P̂−2n−1 + P̂1 − 2P̂0) =
1
2 (−P̂−2n−1 + (1 + ε+ 2jε)).

(c)
∑n
k=1 P̂−2k+1 = 1

2 (−P̂−2n + P̂0) =
1
2 (−P̂−2n + (j + 2ε+ 5jε)).

Corollary 5.8. For n ≥ 1, dual hyperbolic Pell-Lucas numbers have the following properties.

(a)
∑n
k=1 Q̂−k = 1

2 (−3Q̂−n−1 − Q̂−n−2 + Q̂1 − Q̂0) =
1
2 (−3Q̂−n−1 − Q̂−n−2 + (4j + 8ε+ 20jε)).

(b)
∑n
k=1 Q̂−2k = 1

2 (−Q̂−2n−1 + Q̂1 − 2Q̂0) =
1
2 (−Q̂−2n−1 + (−2 + 2j + 2ε+ 6jε)).

(c)
∑n
k=1 Q̂−2k+1 = 1

2 (−Q̂−2n + Q̂0) =
1
2 (−Q̂−2n + (2 + 2j + 6ε+ 14jε)).

6. Matrices related with Dual Hyperbolic Generalized Pell Numbers

We define the square matrix M of order 2 as:

M =

(
2 1

1 0

)
such that detM = −1. Induction proof may be used to establish

Mn =

(
Pn+1 Pn
Pn Pn−1

)
(6.1)

and (the matrix formulation of Vn) (
Vn+1

Vn

)
=

(
2 1

1 0

)n(
V1
V0

)
. (6.2)
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Now, we define the matrices MV as

MV =

(
V̂3 V̂2
V̂2 V̂1

)
.

This matrice MV is called dual hyperbolic generalized Pell matrix. As special cases, dual hyperbolic Pell matrix
and dual hyperbolic Pell-Lucas matrix are

MP =

(
P̂3 P̂2

P̂2 P̂1

)
and

MQ =

(
Q̂3 Q̂2

Q̂2 Q̂1

)

respectively.

Theorem 6.1. For n ≥ 0, the following is valid:

MV

(
2 1

1 0

)n
=

(
V̂n+3 V̂n+2

V̂n+2 V̂n+1

)
. (6.3)

Proof. We prove by mathematical induction on n. If n = 0, then the result is clear. Now, we assume it is true
for n = k, that is

MVM
k =

(
V̂k+3 V̂k+2

V̂k+2 V̂k+1

)
.

If we use (2.1), then we have V̂k+2 = 2V̂k+1 + V̂k. Then, by induction hypothesis, we obtain

MVM
k+1 = (MVM

k)M =

(
V̂k+3 V̂k+2

V̂k+2 V̂k+1

)(
2 1

1 0

)

=

(
2V̂k+3 + V̂k+2 V̂k+3

2V̂k+2 + V̂k+1 V̂k+2

)

=

(
V̂k+4 V̂k+3

V̂k+3 V̂k+2

)
.

Thus, (6.3) holds for all non-negative integers n.

Remark 6.2. The above theorem is true for n ≤ −1. It can also be proved by induction.

Corollary 6.3. For all integers n, the following holds:

V̂n+2 = V̂2Pn+1 + V̂1Pn.

Proof. The proof can be seen by the coefficient of the matrix MV and (6.1).
Taking Vn = Pn and Vn = Qn, respectively, in the above corollary, we obtain the following results.

Corollary 6.4. For all integers n, the followings are true.

(a) P̂n+2 = P̂2Pn+1 + P̂1Pn.

(b) Q̂n+2 = Q̂2Pn+1 + Q̂1Pn.
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