Some special Smarandache curves according to the extended Darboux frame in \mathbb{E}_{1}^{4}

Bahar Uyar Düldül ${ }^{1 *}$

Abstract

In this study, we define some special Smarandache curves according to the extended Darboux frame in Minkowski 4 -space \mathbb{E}_{1}^{4}. We obtain the Frenet vectors and the curvatures of TD-Smarandache curve depending on the invariants of the extended Darboux frame of second kind.

Keywords
Smarandache curve, extended Darboux frame field, Minkowski space.
AMS Subject Classification
53A04, 53 A07.
${ }^{1}$ Yildiz Technical University, Education Faculty, Department of Mathematics and Science Education, Istanbul, Turkey.
*Corresponding author: ${ }^{1}$ buduldul@yildiz.edu.tr
Article History: Received 18 June 2018; Accepted 15 November 2018

Contents

1 Introduction 72
2 Preliminaries 72
3 Smarandache curves according to the extended Dar- boux frame in \mathbb{E}_{1}^{4} 73
References 75

1. Introduction

Special curves are important study areas where new researches have been continuously carried out in differential geometry. There are many studies in the literature about Smarandache curves which are one of these special curves. A regular curve, whose position vector is obtained by Frenet frame vectors of another regular curve is called Smarandache curve in Minkowski space-time [7]. Both in Euclidean space and in Minkowski space, there are many researches related with special Smarandache curves, [1-5, 7, 10].

We know that one of the most important problem in differential geometry is the characterization of a regular curve. It is well-known that the curvature functions and the Frenet vectors characterize a curve and play an important role to determine the shape and size of the curve. Because of this, finding the Frenet apparatus of a curve is very significant.

In this study, considering the extended Darboux frame (or
shortly ED-frame) in Minkowski 4-space [8], we define some special Smarandache curves according to the ED-frame in \mathbb{E}_{1}^{4}. Then we obtain the Frenet apparatus of TD-Smarandache curve depending on the invariants of the ED-frame of second kind.

2. Preliminaries

The Minkowski 4-space \mathbb{E}_{1}^{4} is the real vector space \mathbb{R}^{4} provided with the indefinite flat metric given by

$$
\langle,\rangle=-d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+d x_{4}^{2}
$$

where $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is a rectangular coordinate system of \mathbb{E}_{1}^{4}. An arbitrary vector x in $\mathbb{R}_{1}^{4}-\{0\}$ is called a spacelike vector if $\langle x, x\rangle>0$, is called a timelike vector if $\langle x, x\rangle<0$ and is called a null or lightlike vector if $\langle x, x\rangle=0$, respectively. Specially, the vector $x=0$ is a spacelike vector. The norm of a vector x is defined by $\|x\|=\sqrt{|\langle x, x\rangle|}$ and a vector x satisfying $\langle x, x\rangle= \pm 1$ is called a unit vector. If $\langle x, y\rangle=0$, then the vectors x and y are said to be orthogonal vectors. For an arbitrary curve α in \mathbb{E}_{1}^{4}, if all of velocity vectors of α are spacelike, timelike and null or lightlike vectors, the curve α is called a spacelike, a timelike and a null or lightlike curve, respectively, [6].

A hypersurface in the Minkowski 4-space is called a spacelike hypersurface if the induced metric on the hypersurface is a positive definite Riemannian metric and is called a timelike hypersurface if the induced metric on the hypersurface
is a Lorentzian metric. The normal vector of the spacelike hypersurface is a timelike vector and the normal vector of the timelike hypersurface is a spacelike vector.

For the vectors $\mathrm{x}=\sum_{i=1}^{4} x_{i} \mathrm{e}_{i}, \mathrm{y}=\sum_{i=1}^{4} y_{i} \mathrm{e}_{i}$, and $\mathrm{z}=\sum_{i=1}^{4} z_{i} \mathrm{e}_{i}$ in \mathbb{R}_{1}^{4}, the ternary or vector product of these vectors is defined by

$$
\mathrm{x} \otimes \mathrm{y} \otimes \mathrm{z}=-\left|\begin{array}{cccc}
-\mathrm{e}_{1} & \mathrm{e}_{2} & \mathrm{e}_{3} & \mathrm{e}_{4} \\
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right|
$$

where $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is the standard basis of \mathbb{R}_{1}^{4}. Then for the vectors e_{1}, e_{2}, e_{3} and e_{4}, the equations

$$
\begin{array}{ll}
e_{1} \otimes e_{2} \otimes e_{3}=e_{4}, & e_{2} \otimes e_{3} \otimes e_{4}=e_{1}, \\
e_{3} \otimes e_{4} \otimes e_{1}=e_{2}, & e_{4} \otimes e_{1} \otimes e_{2}=-e_{3}
\end{array}
$$

are satisfied, [9].
Let \mathscr{M} be an oriented non-null hypersurface in \mathbb{E}_{1}^{4} and α be a non-null regular Frenet curve with speed $v=\left\|\alpha^{\prime}\right\|$ on \mathscr{M}. Let $\left\{\mathrm{t}, \mathrm{n}, \mathrm{b}_{1}, \mathrm{~b}_{2}\right\}$ be the moving Frenet frame along the curve α. Then the Frenet formulas of α are:

$$
\left\{\begin{aligned}
\mathrm{t}^{\prime} & =\varepsilon_{\mathrm{n}} v k_{1} \mathrm{n} \\
\mathrm{n}^{\prime} & =-\varepsilon_{\mathrm{t}} v k_{1} \mathrm{t}+\varepsilon_{\mathrm{b}_{1}} v k_{2} \mathrm{~b}_{1}, \\
\mathrm{~b}_{1}^{\prime} & =-\varepsilon_{\mathrm{n}} v k_{2} \mathrm{n}-\varepsilon_{\mathrm{t}} \varepsilon_{\mathrm{n}} \varepsilon_{\mathrm{b}_{1}} v k_{3} \mathrm{~b}_{2} \\
\mathrm{~b}_{2}^{\prime} & =-\varepsilon_{\mathrm{b}_{1}} v k_{3} \mathrm{~b}_{1}
\end{aligned}\right.
$$

where $\varepsilon_{\mathrm{t}}=\langle\mathrm{t}, \mathrm{t}\rangle, \varepsilon_{\mathrm{n}}=\langle\mathrm{n}, \mathrm{n}\rangle, \varepsilon_{\mathrm{b}_{1}}=\left\langle\mathrm{b}_{1}, \mathrm{~b}_{1}\right\rangle, \varepsilon_{\mathrm{b}_{2}}=\left\langle\mathrm{b}_{2}, \mathrm{~b}_{2}\right\rangle$ whereby $\varepsilon_{\mathrm{t}}, \varepsilon_{\mathrm{n}}, \varepsilon_{\mathrm{b}_{1}}, \varepsilon_{\mathrm{b}_{2}} \in\{-1,1\}$, and $\varepsilon_{\mathrm{t}} \varepsilon_{\mathrm{n}} \varepsilon_{\mathrm{b}_{1}} \varepsilon_{\mathrm{b}_{2}}=-1$.

The vectors $\alpha^{\prime}, \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}$ and $\alpha^{(4)}$ of a non-null regular curve α are given by

$$
\begin{gathered}
\alpha^{\prime}=v \mathrm{t} \\
\quad \alpha^{\prime \prime}=v^{\prime} \mathrm{t}+\varepsilon_{\mathrm{n}} v^{2} k_{1} \mathrm{n}, \\
\alpha^{\prime \prime \prime}=\left(v^{\prime \prime}-\varepsilon_{\mathrm{t}} \varepsilon_{\mathrm{n}} v^{3} k_{1}^{2}\right) \mathrm{t}+\varepsilon_{\mathrm{n}}\left(3 v v^{\prime} k_{1}+v^{2} k_{1}^{\prime}\right) \mathrm{n}+\varepsilon_{\mathrm{n}} \varepsilon_{\mathrm{b}_{1}} v^{3} k_{1} k_{2} \mathrm{~b}_{1}, \\
\\
\alpha^{(4)}=(\ldots) \mathrm{t}+(\ldots) \mathrm{n}+(\ldots) \mathrm{b}_{1}+\left(-\varepsilon_{\mathrm{t}} v^{4} k_{1} k_{2} k_{3}\right) \mathrm{b}_{2} .
\end{gathered}
$$

Then for the Frenet vectors t, n, b_{1}, b_{2} and the curvatures k_{1}, k_{2}, k_{3} of α, we have

$$
\begin{gather*}
\mathrm{t}=\frac{\alpha^{\prime}}{\left\|\alpha^{\prime}\right\|}, \quad \mathrm{b}_{2}=\varepsilon_{\mathrm{b}_{1}} \frac{\alpha^{\prime} \otimes \alpha^{\prime \prime} \otimes \alpha^{\prime \prime \prime}}{\left\|\alpha^{\prime} \otimes \alpha^{\prime \prime} \otimes \alpha^{\prime \prime \prime}\right\|}, \\
\mathrm{b}_{1}=-\varepsilon_{\mathrm{n}} \frac{\mathrm{~b}_{2} \otimes \alpha^{\prime} \otimes \alpha^{\prime \prime}}{\left\|\mathrm{b}_{2} \otimes \alpha^{\prime} \otimes \alpha^{\prime \prime}\right\|}, \quad \mathrm{n}=\frac{\mathrm{b}_{1} \otimes \mathrm{~b}_{2} \otimes \alpha^{\prime}}{\left\|\mathrm{b}_{1} \otimes \mathrm{~b}_{2} \otimes \alpha^{\prime}\right\|}, \tag{2.1}\\
k_{1}=\frac{\left\langle\mathrm{n}, \alpha^{\prime \prime}\right\rangle}{\left\|\alpha^{\prime}\right\|^{2}}, \quad k_{2}=\varepsilon_{\mathrm{n}} \frac{\left\langle\mathrm{~b}_{1}, \alpha^{\prime \prime \prime}\right\rangle}{\left\|\alpha^{\prime}\right\|^{3} k_{1}}, \quad k_{3}=-\varepsilon_{\mathrm{t}} \varepsilon_{\mathrm{b}_{2}} \frac{\left\langle\mathrm{~b}_{2}, \alpha^{(4)}\right\rangle}{\left\|\alpha^{\prime}\right\|^{4} k_{1} k_{2}} . \tag{2.2}
\end{gather*}
$$

Since the curve α lies on \mathscr{M}, if we denote the unit normal vector field of \mathscr{M} restricted to α with N , we also have the EDframe field $\{T, E, D, N\}$ other than Frenet frame $\left\{t, n, b_{1}, b_{2}\right\}$ along α, where

$$
\mathrm{T}=\frac{\alpha^{\prime}}{\left\|\alpha^{\prime}\right\|}=\mathrm{t}
$$

if $\left\{\mathrm{N}, \mathrm{T}, \alpha^{\prime \prime}\right\}$ is linearly independent (Case 1)

$$
\mathrm{E}=\frac{\alpha^{\prime \prime}-\left\langle\alpha^{\prime \prime}, \mathrm{N}\right\rangle \mathrm{N}}{\left\|\alpha^{\prime \prime}-\left\langle\alpha^{\prime \prime}, \mathrm{N}\right\rangle \mathrm{N}\right\|},
$$

if $\left\{\mathrm{N}, \mathrm{T}, \alpha^{\prime \prime}\right\}$ is linearly dependent (Case 2)

$$
\begin{aligned}
& \mathrm{E}=\frac{\alpha^{\prime \prime \prime}-\left\langle\alpha^{\prime \prime \prime}, \mathrm{N}\right\rangle \mathrm{N}-\left\langle\alpha^{\prime \prime \prime}, \mathrm{T}\right\rangle \mathrm{T}}{\left\|\alpha^{\prime \prime \prime}-\left\langle\alpha^{\prime \prime \prime}, \mathrm{N}\right\rangle \mathrm{N}-\left\langle\alpha^{\prime \prime \prime}, \mathrm{T}\right\rangle \mathrm{T}\right\|}, \\
& \mathrm{D}=-\mathrm{N} \otimes \mathrm{~T} \otimes \mathrm{E}
\end{aligned}
$$

Then we have the following differential equations for the ED-frame field of first kind (Case 1)

$$
\left[\begin{array}{l}
\mathrm{T}^{\prime} \\
\mathrm{E}^{\prime} \\
\mathrm{D}^{\prime} \\
\mathrm{N}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & \varepsilon_{2} \kappa_{g}^{1} & 0 & \varepsilon_{4} \kappa_{n} \\
-\varepsilon_{1} \kappa_{g}^{1} & 0 & \varepsilon_{3} \kappa_{g}^{2} & \varepsilon_{4} \tau_{g}^{1} \\
0 & -\varepsilon_{2} \kappa_{g}^{2} & 0 & \varepsilon_{4} \tau_{g}^{2} \\
-\varepsilon_{1} \kappa_{n} & -\varepsilon_{2} \tau_{g}^{1} & -\varepsilon_{3} \tau_{g}^{2} & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{T} \\
\mathrm{E} \\
\mathrm{D} \\
\mathrm{~N}
\end{array}\right],
$$

and the ED-frame field of second kind (Case 2)

$$
\left[\begin{array}{c}
\mathrm{T}^{\prime} \tag{2.3}\\
\mathrm{E}^{\prime} \\
\mathrm{D}^{\prime} \\
\mathrm{N}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 0 & \varepsilon_{4} \kappa_{n} \\
0 & 0 & \varepsilon_{3} \kappa_{g}^{2} & \varepsilon_{4} \tau_{g}^{1} \\
0 & -\varepsilon_{2} \kappa_{g}^{2} & 0 & 0 \\
-\varepsilon_{1} \kappa_{n} & -\varepsilon_{2} \tau_{g}^{1} & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{T} \\
\mathrm{E} \\
\mathrm{D} \\
\mathrm{~N}
\end{array}\right],
$$

where κ_{g}^{i} and τ_{g}^{i} are the geodesic curvature and the geodesic torsion of order $i,(i=1,2)$, respectively, and $\varepsilon_{1}=\langle\mathrm{T}, \mathrm{T}\rangle$, $\varepsilon_{2}=\langle\mathrm{E}, \mathrm{E}\rangle, \varepsilon_{3}=\langle\mathrm{D}, \mathrm{D}\rangle, \varepsilon_{4}=\langle\mathrm{N}, \mathrm{N}\rangle$ whereby $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4} \in$ $\{-1,1\}$. Besides, when $\varepsilon_{i}=-1$, then $\varepsilon_{j}=1$ for all $j \neq i$, $1 \leq i, j \leq 4$ and $\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{4}=-1$, [8].

3. Smarandache curves according to the extended Darboux frame in \mathbb{E}_{1}^{4}

In this section, we define some special Smarandache curves according to the ED-frame in Minkowski 4-space and obtain the Frenet vectors and the curvatures of TD-Smarandache curve depending on the invariants of the ED-frame of the second kind.

Definition 3.1. Let α be a non-null regular Frenet curve with arc-length parameter s on a non-null oriented hypersurface \mathscr{M} in \mathbb{E}_{1}^{4} and $\{\mathrm{T}(s), \mathrm{E}(s), \mathrm{D}(s), \mathrm{N}(s)\}$ denotes the ED-frame field of $\alpha(s)$. Then some special Smarandache curves according the ED-frame can be defined as

TE-Smarandache curve: $\quad \beta_{T E}(s)=\frac{1}{\sqrt{2}}(\mathrm{~T}(s)+\mathrm{E}(s))$,

TD-Smarandache curve: $\quad \beta_{T D}(s)=\frac{1}{\sqrt{2}}(\mathrm{~T}(s)+\mathrm{D}(s))$,

TN-Smarandache curve: $\quad \beta_{T N}(s)=\frac{1}{\sqrt{2}}(\mathrm{~T}(s)+\mathrm{N}(s))$,
ED-Smarandache curve: $\quad \beta_{E D}(s)=\frac{1}{\sqrt{2}}(\mathrm{E}(s)+\mathrm{D}(s))$,
EN-Smarandache curve: $\quad \beta_{E N}(s)=\frac{1}{\sqrt{2}}(\mathrm{E}(s)+\mathrm{N}(s))$,
DN-Smarandache curve: $\quad \beta_{D N}(s)=\frac{1}{\sqrt{2}}(\mathrm{D}(s)+\mathrm{N}(s))$.
Let us now consider TD-Smarandache curve and compute the Frenet vectors $\mathrm{T}^{*}, \mathrm{n}^{*}, \mathrm{~b}_{1}^{*}, \mathrm{~b}_{2}^{*}$ and the curvatures k_{1}^{*}, k_{2}^{*}, k_{3}^{*} of TD-Smarandache curve depending on the invariants of the ED-frame of the second kind. Let s^{*} be the arc-length parameter of TD-Smarandache curve $\beta_{T D}$. If we differentiate (3.1) with respect to s and use (2.3), we have

$$
\begin{equation*}
\beta_{T D}^{\prime}=\frac{1}{\sqrt{2}}\left(-\varepsilon_{2} \kappa_{g}^{2} \mathrm{E}+\varepsilon_{4} \kappa_{n} \mathrm{~N}\right) . \tag{3.2}
\end{equation*}
$$

Since

$$
\left\|\beta_{T D}^{\prime}\right\|=\frac{1}{\sqrt{2}} \sqrt{\left(\kappa_{g}^{2}\right)^{2}+\kappa_{n}^{2}},
$$

from (2.1), the unit tangent vector T* of TD-Smarandache curve $\beta_{T D}$ is obtained as

$$
\mathrm{T}^{*}=\frac{1}{\sqrt{\left(\kappa_{g}^{2}\right)^{2}+\kappa_{n}^{2}}}\left(-\varepsilon_{2} \kappa_{g}^{2} \mathrm{E}+\varepsilon_{4} \kappa_{n} \mathrm{~N}\right) .
$$

Denoting $\varepsilon_{i j}=\varepsilon_{i} \varepsilon_{j}, 1 \leq i, j \leq 4$, from (3.2) we get

$$
\begin{align*}
\beta_{T D}^{\prime \prime}= & \frac{-1}{\sqrt{2}}\left(\varepsilon_{14} \kappa_{n}^{2} \mathrm{~T}+\left(\varepsilon_{2}\left(\kappa_{g}^{2}\right)^{\prime}+\varepsilon_{24} \kappa_{n} \tau_{g}^{1}\right) \mathrm{E}+\varepsilon_{23}\left(\kappa_{g}^{2}\right)^{2} \mathrm{D}\right. \\
& \left.+\left(\varepsilon_{24} \kappa_{g}^{2} \tau_{g}^{1}-\varepsilon_{4} \kappa_{n}^{\prime}\right) \mathrm{N}\right) \tag{3.3}
\end{align*}
$$

and

$$
\begin{equation*}
\beta_{T D}^{\prime \prime \prime}=\frac{1}{\sqrt{2}}\left(\mu_{1} \mathrm{~T}+\mu_{2} \mathrm{E}+\mu_{3} \mathrm{D}+\mu_{4} \mathrm{~N}\right), \tag{3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu_{1}=\varepsilon_{14} \kappa_{n}\left(\varepsilon_{2} \kappa_{g}^{2} \tau_{g}^{1}-3 \kappa_{n}^{\prime}\right), \\
\mu_{2}= & \varepsilon_{3}\left(\kappa_{g}^{2}\right)^{3}+\varepsilon_{4} \kappa_{g}^{2}\left(\tau_{g}^{1}\right)^{2}-\varepsilon_{24}\left(2 \kappa_{n}^{\prime} \tau_{g}^{1}+\kappa_{n}\left(\tau_{g}^{1}\right)^{\prime}\right)-\varepsilon_{2}\left(\kappa_{g}^{2}\right)^{\prime \prime}, \\
& \mu_{3}=-\varepsilon_{23} \kappa_{g}^{2}\left(\varepsilon_{4} \kappa_{n} \tau_{g}^{1}+3\left(\kappa_{g}^{2}\right)^{\prime}\right), \\
\mu_{4}= & -\varepsilon_{1} \kappa_{n}^{3}-\varepsilon_{2} \kappa_{n}\left(\tau_{g}^{1}\right)^{2}-\varepsilon_{24}\left(2\left(\kappa_{g}^{2}\right)^{\prime} \tau_{g}^{1}+\kappa_{g}^{2}\left(\tau_{g}^{1}\right)^{\prime}\right)+\varepsilon_{4} \kappa_{n}^{\prime \prime} .
\end{aligned}
$$

Using (3.2), (3.3) and (3.4) yields

$$
\beta_{T D}^{\prime} \otimes \beta_{T D}^{\prime \prime} \otimes \beta_{T D}^{\prime \prime \prime}=\frac{1}{2 \sqrt{2}}\left(\lambda_{1} \mathrm{~T}+\lambda_{2} \mathrm{E}+\lambda_{3} \mathrm{D}+\lambda_{4} \mathrm{~N}\right),
$$

where

$$
\begin{aligned}
\lambda_{1}= & -\mu_{3} \tau_{g}^{1}\left(\varepsilon_{4}\left(\kappa_{g}^{2}\right)^{2}+\varepsilon_{2} \kappa_{n}^{2}\right)+\varepsilon_{24} \mu_{3}\left(\kappa_{g}^{2} \kappa_{n}^{\prime}-\left(\kappa_{g}^{2}\right)^{\prime} \kappa_{n}\right) \\
& +\varepsilon_{3}\left(\kappa_{g}^{2}\right)^{2}\left(\varepsilon_{24} \mu_{2} \kappa_{n}+\mu_{4} \kappa_{g}^{2}\right), \\
\lambda_{2}= & -\varepsilon_{1} \kappa_{n}\left(\mu_{1}\left(\kappa_{g}^{2}\right)^{2}+\mu_{3} \kappa_{n}^{2}\right), \\
\lambda_{3}= & -\mu_{1} \tau_{g}^{1}\left(\varepsilon_{4}\left(\kappa_{g}^{2}\right)^{2}+\varepsilon_{2} \kappa_{n}^{2}\right)+\varepsilon_{24} \mu_{1}\left(\kappa_{g}^{2} \kappa_{n}^{\prime}-\left(\kappa_{g}^{2}\right)^{\prime} \kappa_{n}\right) \\
& +\kappa_{n}^{2}\left(\varepsilon_{1} \mu_{2} \kappa_{n}-\varepsilon_{3} \mu_{4} \kappa_{g}^{2}\right), \\
\lambda_{4}= & \varepsilon_{3} \kappa_{g}^{2}\left(\mu_{1}\left(\kappa_{g}^{2}\right)^{2}+\mu_{3} \kappa_{n}^{2}\right)
\end{aligned}
$$

and

$$
\left\|\beta_{T D}^{\prime} \otimes \beta_{T D}^{\prime \prime} \otimes \beta_{T D}^{\prime \prime \prime}\right\|=\frac{1}{2 \sqrt{2}} \sqrt{\left|-\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}\right| .}
$$

Then from (2.1), the second binormal vector b_{2}^{*} of TD-Smarandache curve $\beta_{T D}$ is

$$
\mathrm{b}_{2}^{*}=\frac{\varepsilon_{\mathrm{b}_{1}^{*}}}{\sqrt{\left|-\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}\right|}}\left(\lambda_{1} \mathrm{~T}+\lambda_{2} \mathrm{E}+\lambda_{3} \mathrm{D}+\lambda_{4} \mathrm{~N}\right),
$$

where $\varepsilon_{b_{1}^{*}}=\left\langle b_{1}^{*}, b_{1}^{*}\right\rangle=\mp 1$. Besides, we obtain the first binormal vector bat of TD-Smarandache curve $\beta_{T D}$ as

$$
\mathrm{b}_{1}^{*}=\frac{\varepsilon_{\mathrm{n}^{*}} \varepsilon_{\mathrm{b}_{1}^{*}}}{\sqrt{\left|-v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}\right|}}\left(v_{1} \mathrm{~T}+v_{2} \mathrm{E}+v_{3} \mathrm{D}+v_{4} \mathrm{~N}\right),
$$

where

$$
\begin{aligned}
\varepsilon_{n^{*}}= & \left\langle\mathrm{n}^{*}, \mathrm{n}^{*}\right\rangle=\mp 1, \\
v_{1}= & \lambda_{3} \tau_{g}^{1}\left(\varepsilon_{4}\left(\kappa_{g}^{2}\right)^{2}+\varepsilon_{2} \kappa_{n}^{2}\right)+\varepsilon_{24} \lambda_{3}\left(\left(\kappa_{g}^{2}\right)^{\prime} \kappa_{n}-\kappa_{g}^{2} \kappa_{n}^{\prime}\right) \\
& +\left(\kappa_{g}^{2}\right)^{2}\left(\varepsilon_{1} \lambda_{2} \kappa_{n}-\varepsilon_{3} \lambda_{4} \kappa_{g}^{2}\right), \\
v_{2}= & \varepsilon_{1} \kappa_{n}\left(\lambda_{1}\left(\kappa_{g}^{2}\right)^{2}+\lambda_{3} \kappa_{n}^{2}\right), \\
v_{3}= & \lambda_{1} \tau_{g}^{1}\left(\varepsilon_{4}\left(\kappa_{g}^{2}\right)^{2}+\varepsilon_{2} \kappa_{n}^{2}\right)+\varepsilon_{24} \lambda_{1}\left(\left(\kappa_{g}^{2}\right)^{\prime} \kappa_{n}-\kappa_{g}^{2} \kappa_{n}^{\prime}\right) \\
& -\kappa_{n}^{2}\left(\varepsilon_{1} \lambda_{2} \kappa_{n}-\varepsilon_{3} \lambda_{4} \kappa_{g}^{2}\right), \\
v_{4}= & -\varepsilon_{3} \kappa_{g}^{2}\left(\lambda_{1}\left(\kappa_{g}^{2}\right)^{2}+\lambda_{3} \kappa_{n}^{2}\right) .
\end{aligned}
$$

From (2.1), the principal normal vector n^{*} of TD-Smarandache curve $\beta_{T D}$ is found as

$$
\mathrm{n}^{*}=\frac{\varepsilon_{\mathrm{n}^{*}}}{\sqrt{\left|-\rho_{1}^{2}+\rho_{2}^{2}+\rho_{3}^{2}+\rho_{4}^{2}\right|}}\left(\rho_{1} \mathrm{~T}+\rho_{2} \mathrm{E}+\rho_{3} \mathrm{D}+\rho_{4} \mathrm{~N}\right),
$$

where

$$
\rho_{1}=\varepsilon_{4} \kappa_{n}\left(\lambda_{3} v_{2}-\lambda_{2} v_{3}\right)+\varepsilon_{2} \kappa_{g}^{2}\left(\lambda_{3} v_{4}-\lambda_{4} v_{3}\right),
$$

$$
\begin{aligned}
& \rho_{2}=\varepsilon_{4} \kappa_{n}\left(\lambda_{3} v_{1}-\lambda_{1} v_{3}\right) \\
& \rho_{3}=\varepsilon_{4} \kappa_{n}\left(\lambda_{1} v_{2}-\lambda_{2} v_{1}\right)+\varepsilon_{2} \kappa_{g}^{2}\left(\lambda_{1} v_{4}-\lambda_{4} v_{1}\right) \\
& \rho_{4}=\varepsilon_{2} \kappa_{g}^{2}\left(\lambda_{3} v_{1}-\lambda_{1} v_{3}\right)
\end{aligned}
$$

Using (2.2) yields the first curvature k_{1}^{*} of TD-Smarandache curve $\beta_{T D}$ as

$$
k_{1}^{*}=\omega \Delta
$$

where

$$
\omega=\frac{\varepsilon_{n^{*}} \sqrt{2}}{\left[\left(\kappa_{g}^{2}\right)^{2}+\kappa_{n}^{2}\right] \sqrt{\left|-\rho_{1}^{2}+\rho_{2}^{2}+\rho_{3}^{2}+\rho_{4}^{2}\right|}}
$$

and

$$
\begin{aligned}
\Delta= & \varepsilon_{14} \rho_{1} \kappa_{n}^{2}-\rho_{2}\left(\varepsilon_{2}\left(\kappa_{g}^{2}\right)^{\prime}+\varepsilon_{24} \kappa_{n} \tau_{g}^{1}\right)-\varepsilon_{23} \rho_{3}\left(\kappa_{g}^{2}\right)^{2} \\
& -\rho_{4}\left(\varepsilon_{24} \kappa_{g}^{2} \tau_{g}^{1}-\varepsilon_{4} \kappa_{n}^{\prime}\right) .
\end{aligned}
$$

From (2.2), we compute the second curvature k_{2}^{*} of TDSmarandache curve $\beta_{T D}$ as

$$
k_{2}^{*}=\frac{\xi}{\Delta}\left(\sum_{i=2}^{4} \mu_{i} v_{i}-\mu_{1} v_{1}\right)
$$

where

$$
\xi=\frac{\varepsilon_{\mathrm{n}^{*}} \varepsilon_{\mathrm{b}_{1}^{*}} \sqrt{2\left|-\rho_{1}^{2}+\rho_{2}^{2}+\rho_{3}^{2}+\rho_{4}^{2}\right|}}{\sqrt{\left(\kappa_{g}^{2}\right)^{2}+\kappa_{n}^{2}} \sqrt{\left|-v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}\right|}}
$$

Moreover from (3.4), we get

$$
\begin{aligned}
\beta_{T D}^{(4)}= & \frac{1}{\sqrt{2}}\left(\left(\mu_{1}^{\prime}-\varepsilon_{1} \mu_{4} \kappa_{n}\right) \mathrm{T}+\left(\mu_{2}^{\prime}-\varepsilon_{2} \mu_{3} \kappa_{g}^{2}-\varepsilon_{2} \mu_{4} \tau_{g}^{1}\right) \mathrm{E}\right. \\
& \left.+\left(\mu_{3}^{\prime}+\varepsilon_{3} \mu_{2} \kappa_{g}^{2}\right) \mathrm{D}+\left(\mu_{4}^{\prime}+\varepsilon_{4} \mu_{1} \kappa_{n}+\varepsilon_{4} \mu_{2} \tau_{g}^{1}\right) \mathrm{N}\right)
\end{aligned}
$$

Then from (2.2), the third curvature k_{3}^{*} of TD-Smarandache curve $\beta_{T D}$ is calculated as

$$
k_{3}^{*}=\eta \Gamma
$$

where
$\eta=\frac{-\varepsilon_{\mathrm{t}^{*}} \varepsilon_{\mathrm{b}_{2}^{*}} \sqrt{2\left|-v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}\right|}}{\sqrt{\left(\kappa_{g}^{2}\right)^{2}+\kappa_{n}^{2}} \sqrt{\left|-\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}\right|}\left(\sum_{i=2}^{4} \mu_{i} v_{i}-\mu_{1} v_{1}\right)}$
and

$$
\begin{aligned}
\Gamma= & -\lambda_{1}\left(\mu_{1}^{\prime}-\varepsilon_{1} \mu_{4} \kappa_{n}\right)+\lambda_{2}\left(\mu_{2}^{\prime}-\varepsilon_{2} \mu_{3} \kappa_{g}^{2}-\varepsilon_{2} \mu_{4} \tau_{g}^{1}\right) \\
& +\lambda_{3}\left(\mu_{3}^{\prime}+\varepsilon_{3} \mu_{2} \kappa_{g}^{2}\right)+\lambda_{4}\left(\mu_{4}^{\prime}+\varepsilon_{4} \mu_{1} \kappa_{n}+\varepsilon_{4} \mu_{2} \tau_{g}^{1}\right)
\end{aligned}
$$

Conclusion

In this study, some special Smarandache curves according to the ED-frame in Minkowski 4 -space \mathbb{E}_{1}^{4} are defined and considering the ED-frame of second kind, the Frenet vectors and the curvatures of TD-Smarandache curve are obtained depending on the invariants of the ED-frame of second kind. Similarly for the other Smarandache curves, the Frenet apparatus of these curves can be calculated depending on the invariants of the ED-frame of first kind or second kind.

References

[1] Abdel-Aziz HS Saad MK. Computation of Smarandache curves according to Darboux frame in Minkowski 3space, Journal of the Egyptian Mathematical Society, 25(4)(2017), 382-390.
${ }^{[2]}$ Ali AT. Special Smarandache curves in the Euclidean space, International Journal of Mathematical Combinatorics, 2(2010), 30-36.
${ }^{\text {[3] }}$ Çetin M, Tunçer Y. Karacan MK. Smarandache curves according to Bishop frame in Euclidean 3-space, Gen. Math. Notes, 20(2)(2014), 50-66.
${ }^{\text {[4] }}$ Elzawy M. Smarandache curves in Euclidean 4- space E^{4}, Journal of the Egyptian Mathematical Society, 25(2017), 268-271.
${ }^{\text {[5] Gürses N. Bektaş Ö. Yüce S. Special Smarandache curves }}$ in \mathbb{R}_{1}^{3}, Commun. Fac. Sci. Univ. Ank. Sér. Al Math. Stat., 65(2)(2016), 143-160.
${ }^{[6]}$ O'Neill B. Semi Riemannian Geometry. Academic Press, New York-London, 1983.
${ }^{[7]}$ Turgut M. Yılmaz S. Smarandache curves in Minkowski space-time, International Journal of Mathematical Combinatorics, 3(2008), 51-55.
${ }^{[8]}$ Uyar Düldül B. Extended Darboux frame field in Minkowski space-time \mathbb{E}_{1}^{4}, Malaya Journal of Matematik, 6(3)(2018), 473-477.
${ }^{[9]}$ Yılmaz S. Turgut M. On the differential geometry of the curves in Minkowski space-time I, Int. J. Contemp. Math. Sciences, 3(27)(2008), 1343-1349.
${ }^{[10]}$ Yılmaz S. Savcı ÜZ. Smarandache curves and applications according to type-2 Bishop frame in Euclidean 3space, International Journal of Mathematical Combinatorics, 2(2016), 1-15.
$\operatorname{ISSN}(\mathrm{P}): 2319-3786$
Malaya Journal of Matematik
ISSN(O):2321-5666

