Skew codes over the split quaternions
Downloads
DOI:
https://doi.org/10.26637/mjm1301/001Abstract
In this paper, the structures of linear codes over the split quaternions with coefficients from Z3,Hs,3=Z3+iZ3+jZ3+kZ3 are determined with i2=−1,j2=k2=1,ij=k=−ji,jk=−i=−kj,ki=j=−ik,ijk=1. It is shown that the split quaternions over Z3 decompose into two parts from Z3+iZ3 with idempotent coefficients. The structures of the skew cyclic and skew constacyclic codes over Hs,3 are obtained.
Keywords:
Skew constacyclic code, split quaternionsMathematics Subject Classification:
11R52, 94B05- Pages: 1-7
- Date Published: 01-01-2025
- Vol. 13 No. 01 (2025): Malaya Journal of Matematik (MJM)
PIAGGIO, H. T. H., The Significance and Development of Hamilton’s Quaternions, Nature, 152(1943), 553-555. DOI: https://doi.org/10.1038/152553a0
KANDASAMY, W. B. V., On the finite Quaternion rings and skew fields, Acta Ciencia Indica, 2(2000), 133-135.
AKBIYIK, S. AND ERSOY, B. A., Cyclic codes over a non-commutative ring, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), IEEE, 2017. DOI: https://doi.org/10.1109/ICMSAO.2017.7934873
KANG, S. M., MUNIR, M., NIZAMI, A. R., ALI, M. AND NAZEER, W., On elements of split quaternions over Zp, Global Journal of Pure and Applied Mathematics, 12(2016), 4253-4271.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Abdullah Dertli, Yasemin Cengellenmis

This work is licensed under a Creative Commons Attribution 4.0 International License.