Skew codes over the split quaternions

Downloads

DOI:

https://doi.org/10.26637/mjm1301/001

Abstract

In this paper, the structures of linear codes over the split quaternions with coefficients from Z3,Hs,3=Z3+iZ3+jZ3+kZ3 are determined with i2=1,j2=k2=1,ij=k=ji,jk=i=kj,ki=j=ik,ijk=1. It is shown that the split quaternions over Z3 decompose into two parts from Z3+iZ3 with idempotent coefficients. The structures of the skew cyclic and skew constacyclic codes over Hs,3 are obtained.

Keywords:

Skew constacyclic code, split quaternions

Mathematics Subject Classification:

11R52, 94B05
  • Pages: 1-7
  • Date Published: 01-01-2025
  • Vol. 13 No. 01 (2025): Malaya Journal of Matematik (MJM)

PIAGGIO, H. T. H., The Significance and Development of Hamilton’s Quaternions, Nature, 152(1943), 553-555. DOI: https://doi.org/10.1038/152553a0

KANDASAMY, W. B. V., On the finite Quaternion rings and skew fields, Acta Ciencia Indica, 2(2000), 133-135.

AKBIYIK, S. AND ERSOY, B. A., Cyclic codes over a non-commutative ring, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), IEEE, 2017. DOI: https://doi.org/10.1109/ICMSAO.2017.7934873

KANG, S. M., MUNIR, M., NIZAMI, A. R., ALI, M. AND NAZEER, W., On elements of split quaternions over Zp, Global Journal of Pure and Applied Mathematics, 12(2016), 4253-4271.

Metrics

PDF views
182
Jan 2025Jul 2025Jan 202651

Published

01-01-2025

How to Cite

Dertli, A., and Y. Cengellenmis. “Skew Codes over the Split Quaternions”. Malaya Journal of Matematik, vol. 13, no. 01, Jan. 2025, pp. 1-7, doi:10.26637/mjm1301/001.